diff --git a/channels/chan_iax2.c b/channels/chan_iax2.c
index 72c2696f5ce6a099cef8d270837f1ab8a1a2d624..5bb6b2c5938573ef3871691d6fd19c6fce69e71e 100644
--- a/channels/chan_iax2.c
+++ b/channels/chan_iax2.c
@@ -80,7 +80,6 @@ ASTERISK_FILE_VERSION(__FILE__, "$Revision$")
 #include "asterisk/utils.h"
 #include "asterisk/causes.h"
 #include "asterisk/localtime.h"
-#include "asterisk/aes.h"
 #include "asterisk/dnsmgr.h"
 #include "asterisk/devicestate.h"
 #include "asterisk/netsock.h"
@@ -6035,7 +6034,7 @@ static void build_rand_pad(unsigned char *buf, ssize_t len)
 static void build_encryption_keys(const unsigned char *digest, struct chan_iax2_pvt *pvt)
 {
 	build_ecx_key(digest, pvt);
-	ast_aes_decrypt_key(digest, &pvt->dcx);
+	ast_aes_set_decrypt_key(digest, &pvt->dcx);
 }
 
 static void build_ecx_key(const unsigned char *digest, struct chan_iax2_pvt *pvt)
@@ -6044,8 +6043,8 @@ static void build_ecx_key(const unsigned char *digest, struct chan_iax2_pvt *pvt
 	 * in the pvt struct because queued frames occasionally need to be decrypted and
 	 * re-encrypted when updated for a retransmission */
 	build_rand_pad(pvt->semirand, sizeof(pvt->semirand));
-	ast_aes_encrypt_key(digest, &pvt->ecx);
-	ast_aes_decrypt_key(digest, &pvt->mydcx);
+	ast_aes_set_encrypt_key(digest, &pvt->ecx);
+	ast_aes_set_decrypt_key(digest, &pvt->mydcx);
 }
 
 static void memcpy_decrypt(unsigned char *dst, const unsigned char *src, int len, ast_aes_decrypt_key *dcx)
@@ -11214,7 +11213,7 @@ immediatedial:
 
 				IAX_DEBUGDIGEST("Receiving", ies.challenge);
 
-				ast_aes_decrypt_key((unsigned char *) ies.challenge, &iaxs[fr->callno]->dcx);
+				ast_aes_set_decrypt_key((unsigned char *) ies.challenge, &iaxs[fr->callno]->dcx);
 				break;
 			case IAX_COMMAND_DPREP:
 				complete_dpreply(iaxs[fr->callno], &ies);
diff --git a/channels/iax2-parser.h b/channels/iax2-parser.h
index ec6472e876a5d1d4b1f039a427cd760828717015..f25aaa3b7ade0b32de2f8bbff619a652abe420e0 100644
--- a/channels/iax2-parser.h
+++ b/channels/iax2-parser.h
@@ -19,7 +19,7 @@
 #define _IAX2_PARSER_H
 
 #include "asterisk/linkedlists.h"
-#include "asterisk/aes.h"
+#include "asterisk/crypto.h"
 #include "asterisk/frame_defs.h"
 
 struct iax_ies {
diff --git a/funcs/func_aes.c b/funcs/func_aes.c
index 87319fa77f19c60cee53ad4ce41b42e6561be2a8..21ee244ab9fa46eb17ad6b81dc8a4b75008b4643 100644
--- a/funcs/func_aes.c
+++ b/funcs/func_aes.c
@@ -22,6 +22,9 @@
  * \ingroup functions
  */
 
+/*** MODULEINFO
+	<use>crypto</use>
+ ***/
 
 #include "asterisk.h"
 
@@ -30,7 +33,7 @@ ASTERISK_FILE_VERSION(__FILE__, "$Revision$")
 #include "asterisk/module.h"
 #include "asterisk/pbx.h"
 #include "asterisk/app.h"
-#include "asterisk/aes.h"
+#include "asterisk/crypto.h"
 
 #define AES_BLOCK_SIZE 16
 
@@ -97,8 +100,8 @@ static int aes_helper(struct ast_channel *chan, const char *cmd, char *data,
 		return -1;
 	}
 
-	ast_aes_encrypt_key((unsigned char *) args.key, &ecx);   /* encryption:  plaintext -> encryptedtext -> base64 */
-	ast_aes_decrypt_key((unsigned char *) args.key, &dcx);   /* decryption:  base64 -> encryptedtext -> plaintext */
+	ast_aes_set_encrypt_key((unsigned char *) args.key, &ecx);   /* encryption:  plaintext -> encryptedtext -> base64 */
+	ast_aes_set_decrypt_key((unsigned char *) args.key, &dcx);   /* decryption:  base64 -> encryptedtext -> plaintext */
 	tmp = ast_calloc(1, len);                     /* requires a tmp buffer for the base64 decode */
 	tmpP = tmp;
 	encrypt = strcmp("AES_DECRYPT", cmd);           /* -1 if encrypting, 0 if decrypting */
diff --git a/include/asterisk/aes.h b/include/asterisk/aes.h
deleted file mode 100644
index 2476aaa5555ac2b462e946b97dffaea0858c4ea3..0000000000000000000000000000000000000000
--- a/include/asterisk/aes.h
+++ /dev/null
@@ -1,68 +0,0 @@
-/*
- * Asterisk -- An open source telephony toolkit.
- *
- * Copyright (C) 20075, Digium, Inc.
- *
- * Kevin P. Fleming <kpfleming@digium.com>
- *
- * See http://www.asterisk.org for more information about
- * the Asterisk project. Please do not directly contact
- * any of the maintainers of this project for assistance;
- * the project provides a web site, mailing lists and IRC
- * channels for your use.
- *
- * This program is free software, distributed under the terms of
- * the GNU General Public License Version 2. See the LICENSE file
- * at the top of the source tree.
- */
-
-/*! \file
- * Wrappers for AES encryption/decryption
- *
- * \author Kevin P. Fleming <kpfleming@digium.com>
- *
- * These wrappers provided a generic interface to either the
- * AES methods provided by OpenSSL's crypto library, or the
- * AES implementation included with Asterisk.
- */
-
-#ifndef _ASTERISK_AES_H
-#define _ASTERISK_AES_H
-
-#ifdef HAVE_CRYPTO
-
-/* Use the OpenSSL crypto library */
-#include "openssl/aes.h"
-
-typedef AES_KEY ast_aes_encrypt_key;
-typedef AES_KEY ast_aes_decrypt_key;
-
-#define ast_aes_encrypt_key(key, context) AES_set_encrypt_key(key, 128, context)
-
-#define ast_aes_decrypt_key(key, context) AES_set_decrypt_key(key, 128, context)
-
-#define ast_aes_encrypt(in, out, context) AES_encrypt(in, out, context)
-
-#define ast_aes_decrypt(in, out, context) AES_decrypt(in, out, context)
-
-#else /* !HAVE_CRYPTO */
-
-/* Use the included AES implementation */
-
-#define AES_128
-#include "aes_internal.h"
-
-typedef aes_encrypt_ctx ast_aes_encrypt_key;
-typedef aes_decrypt_ctx ast_aes_decrypt_key;
-
-#define ast_aes_encrypt_key(key, context) aes_encrypt_key128(key, context)
-
-#define ast_aes_decrypt_key(key, context) aes_decrypt_key128(key, context)
-
-#define ast_aes_encrypt(in, out, context) aes_encrypt(in, out, context)
-
-#define ast_aes_decrypt(in, out, context) aes_decrypt(in, out, context)
-
-#endif /* !HAVE_CRYPTO */
-
-#endif /* _ASTERISK_AES_H */
diff --git a/include/asterisk/aes_internal.h b/include/asterisk/aes_internal.h
deleted file mode 100644
index 18c27a6d44dab7b377efb5cfa84e5983fad1e269..0000000000000000000000000000000000000000
--- a/include/asterisk/aes_internal.h
+++ /dev/null
@@ -1,170 +0,0 @@
-/*
- * Asterisk -- An open source telephony toolkit.
- *
- * See http://www.asterisk.org for more information about
- * the Asterisk project. Please do not directly contact
- * any of the maintainers of this project for assistance;
- * the project provides a web site, mailing lists and IRC
- * channels for your use.
- */
-
-/*
- ---------------------------------------------------------------------------
- Copyright (c) 2003, Dr Brian Gladman <brg@gladman.me.uk>, Worcester, UK.
- All rights reserved.
-
- LICENSE TERMS
-
- The free distribution and use of this software in both source and binary
- form is allowed (with or without changes) provided that:
-
-   1. distributions of this source code include the above copyright
-      notice, this list of conditions and the following disclaimer;
-
-   2. distributions in binary form include the above copyright
-      notice, this list of conditions and the following disclaimer
-      in the documentation and/or other associated materials;
-
-   3. the copyright holder's name is not used to endorse products
-      built using this software without specific written permission.
-
- ALTERNATIVELY, provided that this notice is retained in full, this product
- may be distributed under the terms of the GNU General Public License (GPL),
- in which case the provisions of the GPL apply INSTEAD OF those given above.
-
- DISCLAIMER
-
- This software is provided 'as is' with no explicit or implied warranties
- in respect of its properties, including, but not limited to, correctness
- and/or fitness for purpose.
- ---------------------------------------------------------------------------
- Issue Date: 26/08/2003
-*/
-/*!\file
-
- \brief This file contains the definitions required to use AES in C. See aesopt.h
- for optimisation details.
-*/
-
-#ifndef _AES_INTERNAL_H
-#define _AES_INTERNAL_H
-
-/*  This include is used to find 8 & 32 bit unsigned integer types  */
-#include "limits.h"
-
-#if defined(__cplusplus)
-extern "C"
-{
-#endif
-
-#define AES_128     /* define if AES with 128 bit keys is needed    */
-#undef AES_192     /* define if AES with 192 bit keys is needed    */
-#undef AES_256     /* define if AES with 256 bit keys is needed    */
-#undef AES_VAR     /* define if a variable key size is needed      */
-
-/* The following must also be set in assembler files if being used  */
-
-#define AES_ENCRYPT /* if support for encryption is needed          */
-#define AES_DECRYPT /* if support for decryption is needed          */
-#define AES_ERR_CHK /* for parameter checks & error return codes    */
-
-#if UCHAR_MAX == 0xff                   /* an unsigned 8 bit type   */
-  typedef unsigned char      aes_08t;
-#else
-#error Please define aes_08t as an 8-bit unsigned integer type in aes.h
-#endif
-
-#if UINT_MAX == 0xffffffff              /* an unsigned 32 bit type  */
-  typedef   unsigned int     aes_32t;
-#elif ULONG_MAX == 0xffffffff
-  typedef   unsigned long    aes_32t;
-#else
-#error Please define aes_32t as a 32-bit unsigned integer type in aes.h
-#endif
-
-#define AES_BLOCK_SIZE  16  /* the AES block size in bytes          */
-#define N_COLS           4  /* the number of columns in the state   */
-
-/* a maximum of 60 32-bit words are needed for the key schedule but */
-/* 64 are claimed to allow space at the top for a CBC xor buffer.   */
-/* If this is not needed, this value can be reduced to 60. A value  */
-/* of 64 may also help in maintaining alignment in some situations  */
-#define KS_LENGTH       64
-
-#ifdef  AES_ERR_CHK
-#define aes_ret     int
-#define aes_good    0
-#define aes_error  -1
-#else
-#define aes_ret     void
-#endif
-
-#ifndef AES_DLL                 /* implement normal/DLL functions   */
-#define aes_rval    aes_ret
-#else
-#define aes_rval    aes_ret __declspec(dllexport) _stdcall
-#endif
-
-/* This routine must be called before first use if non-static       */
-/* tables are being used                                            */
-
-void gen_tabs(void);
-
-/* The key length (klen) is input in bytes when it is in the range  */
-/* 16 <= klen <= 32 or in bits when in the range 128 <= klen <= 256 */
-
-#ifdef  AES_ENCRYPT
-
-typedef struct  
-{   aes_32t ks[KS_LENGTH];
-} aes_encrypt_ctx;
-
-#if defined(AES_128) || defined(AES_VAR)
-aes_rval aes_encrypt_key128(const void *in_key, aes_encrypt_ctx cx[1]);
-#endif
-
-#if defined(AES_192) || defined(AES_VAR)
-aes_rval aes_encrypt_key192(const void *in_key, aes_encrypt_ctx cx[1]);
-#endif
-
-#if defined(AES_256) || defined(AES_VAR)
-aes_rval aes_encrypt_key256(const void *in_key, aes_encrypt_ctx cx[1]);
-#endif
-
-#if defined(AES_VAR)
-aes_rval aes_encrypt_key(const void *in_key, int key_len, aes_encrypt_ctx cx[1]);
-#endif
-
-aes_rval aes_encrypt(const void *in_blk, void *out_blk, const aes_encrypt_ctx cx[1]);
-#endif
-
-#ifdef AES_DECRYPT
-
-typedef struct  
-{   aes_32t ks[KS_LENGTH];
-} aes_decrypt_ctx;
-
-#if defined(AES_128) || defined(AES_VAR)
-aes_rval aes_decrypt_key128(const void *in_key, aes_decrypt_ctx cx[1]);
-#endif
-
-#if defined(AES_192) || defined(AES_VAR)
-aes_rval aes_decrypt_key192(const void *in_key, aes_decrypt_ctx cx[1]);
-#endif
-
-#if defined(AES_256) || defined(AES_VAR)
-aes_rval aes_decrypt_key256(const void *in_key, aes_decrypt_ctx cx[1]);
-#endif
-
-#if defined(AES_VAR)
-aes_rval aes_decrypt_key(const void *in_key, int key_len, aes_decrypt_ctx cx[1]);
-#endif
-
-aes_rval aes_decrypt(const void *in_blk, void *out_blk, const aes_decrypt_ctx cx[1]);
-#endif
-
-#if defined(__cplusplus)
-}
-#endif
-
-#endif
diff --git a/include/asterisk/crypto.h b/include/asterisk/crypto.h
index c84728618496550b7b55f7ab1723a5802754499a..1f87811f44a677508fdd74ccf3e86305d0aebbe3 100644
--- a/include/asterisk/crypto.h
+++ b/include/asterisk/crypto.h
@@ -28,6 +28,16 @@ extern "C" {
 #endif
 
 #include "asterisk/optional_api.h"
+#include "asterisk/logger.h"
+
+#ifdef HAVE_CRYPTO
+#include "openssl/aes.h"
+typedef AES_KEY ast_aes_encrypt_key;
+typedef AES_KEY ast_aes_decrypt_key;
+#else /* !HAVE_CRYPTO */
+typedef char ast_aes_encrypt_key;
+typedef char ast_aes_decrypt_key;
+#endif /* HAVE_CRYPTO */
 
 #define AST_KEY_PUBLIC	(1 << 0)
 #define AST_KEY_PRIVATE	(1 << 1)
@@ -122,6 +132,50 @@ AST_OPTIONAL_API(int, ast_encrypt_bin, (unsigned char *dst, const unsigned char
  */
 AST_OPTIONAL_API(int, ast_decrypt_bin, (unsigned char *dst, const unsigned char *src, int srclen, struct ast_key *key), { return -1; });
 
+/*!
+ * \brief Set an encryption key
+ * \param key a 16 char key
+ * \param ctx address of an aes encryption context
+ *
+ * \retval 0 success
+ * \retval nonzero failure
+ */
+AST_OPTIONAL_API(int, ast_aes_set_encrypt_key,
+	(const unsigned char *key, ast_aes_encrypt_key *ctx),
+	{ ast_log(LOG_WARNING, "AES encryption disabled. Install OpenSSL.\n"); return -1; });
+
+/*!
+ * \brief Set a decryption key
+ * \param key a 16 char key
+ * \param ctx address of an aes encryption context
+ *
+ * \retval 0 success
+ * \retval nonzero failure
+ */
+AST_OPTIONAL_API(int, ast_aes_set_decrypt_key,
+	(const unsigned char *key, ast_aes_decrypt_key *ctx),
+	{ ast_log(LOG_WARNING, "AES encryption disabled. Install OpenSSL.\n"); return -1; });
+
+/*!
+ * \brief AES encrypt data
+ * \param in data to be encrypted
+ * \param out pointer to a buffer to hold the encrypted output
+ * \param ctx address of an aes encryption context filled in with ast_aes_set_encrypt_key
+ */
+AST_OPTIONAL_API(void, ast_aes_encrypt,
+	(const unsigned char *in, unsigned char *out, const ast_aes_encrypt_key *ctx),
+	{ ast_log(LOG_WARNING, "AES encryption disabled. Install OpenSSL.\n");return; });
+
+/*!
+ * \brief AES decrypt data
+ * \param in encrypted data
+ * \param out pointer to a buffer to hold the decrypted output
+ * \param ctx address of an aes encryption context filled in with ast_aes_set_decrypt_key
+ */
+AST_OPTIONAL_API(void, ast_aes_decrypt,
+	(const unsigned char *in, unsigned char *out, const ast_aes_decrypt_key *ctx),
+	{ ast_log(LOG_WARNING, "AES encryption disabled. Install OpenSSL.\n");return; });
+
 AST_OPTIONAL_API(int, ast_crypto_loaded, (void), { return 0; });
 
 #if defined(__cplusplus) || defined(c_plusplus)
diff --git a/main/aescrypt.c b/main/aescrypt.c
deleted file mode 100644
index 86aeb2133e030d48c5c84da2c7439f7c79eee40b..0000000000000000000000000000000000000000
--- a/main/aescrypt.c
+++ /dev/null
@@ -1,321 +0,0 @@
-/*
- ---------------------------------------------------------------------------
- Copyright (c) 2003, Dr Brian Gladman <brg@gladman.me.uk>, Worcester, UK.
- All rights reserved.
-
- LICENSE TERMS
-
- The free distribution and use of this software in both source and binary
- form is allowed (with or without changes) provided that:
-
-   1. distributions of this source code include the above copyright
-      notice, this list of conditions and the following disclaimer;
-
-   2. distributions in binary form include the above copyright
-      notice, this list of conditions and the following disclaimer
-      in the documentation and/or other associated materials;
-
-   3. the copyright holder's name is not used to endorse products
-      built using this software without specific written permission.
-
- ALTERNATIVELY, provided that this notice is retained in full, this product
- may be distributed under the terms of the GNU General Public License (GPL),
- in which case the provisions of the GPL apply INSTEAD OF those given above.
-
- DISCLAIMER
-
- This software is provided 'as is' with no explicit or implied warranties
- in respect of its properties, including, but not limited to, correctness
- and/or fitness for purpose.
- ---------------------------------------------------------------------------
- Issue Date: 26/08/2003
-
-*/
-
-/*! \file
- *
- * \brief  This file contains the code for implementing encryption and decryption
- * for AES (Rijndael) for block and key sizes of 16, 24 and 32 bytes. It
- * can optionally be replaced by code written in assembler using NASM. For
- * further details see the file aesopt.h
- *
- * \author Dr Brian Gladman <brg@gladman.me.uk>
- */
-
-#if defined(__cplusplus)
-extern "C"
-{
-#endif
-
-#ifndef HAVE_CRYPTO
-
-#include "aesopt.h"
-
-#define si(y,x,k,c) (s(y,c) = word_in(x, c) ^ (k)[c])
-#define so(y,x,c)   word_out(y, c, s(x,c))
-
-#if defined(ARRAYS)
-#define locals(y,x)     x[4],y[4]
-#else
-#define locals(y,x)     x##0,x##1,x##2,x##3,y##0,y##1,y##2,y##3
-#endif
-
-#define l_copy(y, x)    s(y,0) = s(x,0); s(y,1) = s(x,1); \
-                        s(y,2) = s(x,2); s(y,3) = s(x,3);
-#define state_in(y,x,k) si(y,x,k,0); si(y,x,k,1); si(y,x,k,2); si(y,x,k,3)
-#define state_out(y,x)  so(y,x,0); so(y,x,1); so(y,x,2); so(y,x,3)
-#define round(rm,y,x,k) rm(y,x,k,0); rm(y,x,k,1); rm(y,x,k,2); rm(y,x,k,3)
-
-#if defined(ENCRYPTION) && !defined(AES_ASM)
-
-/* Visual C++ .Net v7.1 provides the fastest encryption code when using
-   Pentium optimiation with small code but this is poor for decryption
-   so we need to control this with the following VC++ pragmas
-*/
-
-#if defined(_MSC_VER)
-#pragma optimize( "s", on )
-#endif
-
-/* Given the column (c) of the output state variable, the following
-   macros give the input state variables which are needed in its
-   computation for each row (r) of the state. All the alternative
-   macros give the same end values but expand into different ways
-   of calculating these values.  In particular the complex macro
-   used for dynamically variable block sizes is designed to expand
-   to a compile time constant whenever possible but will expand to
-   conditional clauses on some branches (I am grateful to Frank
-   Yellin for this construction)
-*/
-
-#define fwd_var(x,r,c)\
- ( r == 0 ? ( c == 0 ? s(x,0) : c == 1 ? s(x,1) : c == 2 ? s(x,2) : s(x,3))\
- : r == 1 ? ( c == 0 ? s(x,1) : c == 1 ? s(x,2) : c == 2 ? s(x,3) : s(x,0))\
- : r == 2 ? ( c == 0 ? s(x,2) : c == 1 ? s(x,3) : c == 2 ? s(x,0) : s(x,1))\
- :          ( c == 0 ? s(x,3) : c == 1 ? s(x,0) : c == 2 ? s(x,1) : s(x,2)))
-
-#if defined(FT4_SET)
-#undef  dec_fmvars
-#define fwd_rnd(y,x,k,c)    (s(y,c) = (k)[c] ^ four_tables(x,t_use(f,n),fwd_var,rf1,c))
-#elif defined(FT1_SET)
-#undef  dec_fmvars
-#define fwd_rnd(y,x,k,c)    (s(y,c) = (k)[c] ^ one_table(x,upr,t_use(f,n),fwd_var,rf1,c))
-#else
-#define fwd_rnd(y,x,k,c)    (s(y,c) = (k)[c] ^ fwd_mcol(no_table(x,t_use(s,box),fwd_var,rf1,c)))
-#endif
-
-#if defined(FL4_SET)
-#define fwd_lrnd(y,x,k,c)   (s(y,c) = (k)[c] ^ four_tables(x,t_use(f,l),fwd_var,rf1,c))
-#elif defined(FL1_SET)
-#define fwd_lrnd(y,x,k,c)   (s(y,c) = (k)[c] ^ one_table(x,ups,t_use(f,l),fwd_var,rf1,c))
-#else
-#define fwd_lrnd(y,x,k,c)   (s(y,c) = (k)[c] ^ no_table(x,t_use(s,box),fwd_var,rf1,c))
-#endif
-
-aes_rval aes_encrypt(const void *in_blk, void *out_blk, const aes_encrypt_ctx cx[1])
-{   aes_32t         locals(b0, b1);
-    const aes_32t   *kp = cx->ks;
-#ifdef dec_fmvars
-    dec_fmvars; /* declare variables for fwd_mcol() if needed */
-#endif
-
-    aes_32t nr = (kp[45] ^ kp[52] ^ kp[53] ? kp[52] : 14);
-
-#ifdef AES_ERR_CHK
-    if(   (nr != 10 || !(kp[0] | kp[3] | kp[4]))
-       && (nr != 12 || !(kp[0] | kp[5] | kp[6]))
-       && (nr != 14 || !(kp[0] | kp[7] | kp[8])) )
-        return aes_error;
-#endif
-
-    state_in(b0, in_blk, kp);
-
-#if (ENC_UNROLL == FULL)
-
-    switch(nr)
-    {
-    case 14:
-        round(fwd_rnd,  b1, b0, kp + 1 * N_COLS);
-        round(fwd_rnd,  b0, b1, kp + 2 * N_COLS);
-        kp += 2 * N_COLS;
-    case 12:
-        round(fwd_rnd,  b1, b0, kp + 1 * N_COLS);
-        round(fwd_rnd,  b0, b1, kp + 2 * N_COLS);
-        kp += 2 * N_COLS;
-    case 10:
-        round(fwd_rnd,  b1, b0, kp + 1 * N_COLS);
-        round(fwd_rnd,  b0, b1, kp + 2 * N_COLS);
-        round(fwd_rnd,  b1, b0, kp + 3 * N_COLS);
-        round(fwd_rnd,  b0, b1, kp + 4 * N_COLS);
-        round(fwd_rnd,  b1, b0, kp + 5 * N_COLS);
-        round(fwd_rnd,  b0, b1, kp + 6 * N_COLS);
-        round(fwd_rnd,  b1, b0, kp + 7 * N_COLS);
-        round(fwd_rnd,  b0, b1, kp + 8 * N_COLS);
-        round(fwd_rnd,  b1, b0, kp + 9 * N_COLS);
-        round(fwd_lrnd, b0, b1, kp +10 * N_COLS);
-    }
-
-#else
-
-#if (ENC_UNROLL == PARTIAL)
-    {   aes_32t    rnd;
-        for(rnd = 0; rnd < (nr >> 1) - 1; ++rnd)
-        {
-            kp += N_COLS;
-            round(fwd_rnd, b1, b0, kp);
-            kp += N_COLS;
-            round(fwd_rnd, b0, b1, kp);
-        }
-        kp += N_COLS;
-        round(fwd_rnd,  b1, b0, kp);
-#else
-    {   aes_32t    rnd;
-        for(rnd = 0; rnd < nr - 1; ++rnd)
-        {
-            kp += N_COLS;
-            round(fwd_rnd, b1, b0, kp);
-            l_copy(b0, b1);
-        }
-#endif
-        kp += N_COLS;
-        round(fwd_lrnd, b0, b1, kp);
-    }
-#endif
-
-    state_out(out_blk, b0);
-#ifdef AES_ERR_CHK
-    return aes_good;
-#endif
-}
-
-#endif
-
-#if defined(DECRYPTION) && !defined(AES_ASM)
-
-/* Visual C++ .Net v7.1 provides the fastest encryption code when using
-   Pentium optimiation with small code but this is poor for decryption
-   so we need to control this with the following VC++ pragmas
-*/
-
-#if defined(_MSC_VER)
-#pragma optimize( "t", on )
-#endif
-
-/* Given the column (c) of the output state variable, the following
-   macros give the input state variables which are needed in its
-   computation for each row (r) of the state. All the alternative
-   macros give the same end values but expand into different ways
-   of calculating these values.  In particular the complex macro
-   used for dynamically variable block sizes is designed to expand
-   to a compile time constant whenever possible but will expand to
-   conditional clauses on some branches (I am grateful to Frank
-   Yellin for this construction)
-*/
-
-#define inv_var(x,r,c)\
- ( r == 0 ? ( c == 0 ? s(x,0) : c == 1 ? s(x,1) : c == 2 ? s(x,2) : s(x,3))\
- : r == 1 ? ( c == 0 ? s(x,3) : c == 1 ? s(x,0) : c == 2 ? s(x,1) : s(x,2))\
- : r == 2 ? ( c == 0 ? s(x,2) : c == 1 ? s(x,3) : c == 2 ? s(x,0) : s(x,1))\
- :          ( c == 0 ? s(x,1) : c == 1 ? s(x,2) : c == 2 ? s(x,3) : s(x,0)))
-
-#if defined(IT4_SET)
-#undef  dec_imvars
-#define inv_rnd(y,x,k,c)    (s(y,c) = (k)[c] ^ four_tables(x,t_use(i,n),inv_var,rf1,c))
-#elif defined(IT1_SET)
-#undef  dec_imvars
-#define inv_rnd(y,x,k,c)    (s(y,c) = (k)[c] ^ one_table(x,upr,t_use(i,n),inv_var,rf1,c))
-#else
-#define inv_rnd(y,x,k,c)    (s(y,c) = inv_mcol((k)[c] ^ no_table(x,t_use(i,box),inv_var,rf1,c)))
-#endif
-
-#if defined(IL4_SET)
-#define inv_lrnd(y,x,k,c)   (s(y,c) = (k)[c] ^ four_tables(x,t_use(i,l),inv_var,rf1,c))
-#elif defined(IL1_SET)
-#define inv_lrnd(y,x,k,c)   (s(y,c) = (k)[c] ^ one_table(x,ups,t_use(i,l),inv_var,rf1,c))
-#else
-#define inv_lrnd(y,x,k,c)   (s(y,c) = (k)[c] ^ no_table(x,t_use(i,box),inv_var,rf1,c))
-#endif
-
-aes_rval aes_decrypt(const void *in_blk, void *out_blk, const aes_decrypt_ctx cx[1])
-{   aes_32t        locals(b0, b1);
-#ifdef dec_imvars
-    dec_imvars; /* declare variables for inv_mcol() if needed */
-#endif
-
-    aes_32t nr = (cx->ks[45] ^ cx->ks[52] ^ cx->ks[53] ? cx->ks[52] : 14);
-    const aes_32t *kp = cx->ks + nr * N_COLS;
-
-#ifdef AES_ERR_CHK
-    if(   (nr != 10 || !(cx->ks[0] | cx->ks[3] | cx->ks[4]))
-       && (nr != 12 || !(cx->ks[0] | cx->ks[5] | cx->ks[6]))
-       && (nr != 14 || !(cx->ks[0] | cx->ks[7] | cx->ks[8])) )
-        return aes_error;
-#endif
-
-    state_in(b0, in_blk, kp);
-
-#if (DEC_UNROLL == FULL)
-
-    switch(nr)
-    {
-    case 14:
-        round(inv_rnd,  b1, b0, kp -  1 * N_COLS);
-        round(inv_rnd,  b0, b1, kp -  2 * N_COLS);
-        kp -= 2 * N_COLS;
-    case 12:
-        round(inv_rnd,  b1, b0, kp -  1 * N_COLS);
-        round(inv_rnd,  b0, b1, kp -  2 * N_COLS);
-        kp -= 2 * N_COLS;
-    case 10:
-        round(inv_rnd,  b1, b0, kp -  1 * N_COLS);
-        round(inv_rnd,  b0, b1, kp -  2 * N_COLS);
-        round(inv_rnd,  b1, b0, kp -  3 * N_COLS);
-        round(inv_rnd,  b0, b1, kp -  4 * N_COLS);
-        round(inv_rnd,  b1, b0, kp -  5 * N_COLS);
-        round(inv_rnd,  b0, b1, kp -  6 * N_COLS);
-        round(inv_rnd,  b1, b0, kp -  7 * N_COLS);
-        round(inv_rnd,  b0, b1, kp -  8 * N_COLS);
-        round(inv_rnd,  b1, b0, kp -  9 * N_COLS);
-        round(inv_lrnd, b0, b1, kp - 10 * N_COLS);
-    }
-
-#else
-
-#if (DEC_UNROLL == PARTIAL)
-    {   aes_32t    rnd;
-        for(rnd = 0; rnd < (nr >> 1) - 1; ++rnd)
-        {
-            kp -= N_COLS;
-            round(inv_rnd, b1, b0, kp);
-            kp -= N_COLS;
-            round(inv_rnd, b0, b1, kp);
-        }
-        kp -= N_COLS;
-        round(inv_rnd, b1, b0, kp);
-#else
-    {   aes_32t    rnd;
-        for(rnd = 0; rnd < nr - 1; ++rnd)
-        {
-            kp -= N_COLS;
-            round(inv_rnd, b1, b0, kp);
-            l_copy(b0, b1);
-        }
-#endif
-        kp -= N_COLS;
-        round(inv_lrnd, b0, b1, kp);
-    }
-#endif
-
-    state_out(out_blk, b0);
-#ifdef AES_ERR_CHK
-    return aes_good;
-#endif
-}
-
-#endif
-
-#endif /* !HAVE_CRYPTO */
-
-#if defined(__cplusplus)
-}
-#endif
diff --git a/main/aeskey.c b/main/aeskey.c
deleted file mode 100644
index cd0c7faf83cb324fa05dd3937b01d48f2615f464..0000000000000000000000000000000000000000
--- a/main/aeskey.c
+++ /dev/null
@@ -1,473 +0,0 @@
-/*
- ---------------------------------------------------------------------------
- Copyright (c) 2003, Dr Brian Gladman <brg@gladman.me.uk>, Worcester, UK.
- All rights reserved.
-
- LICENSE TERMS
-
- The free distribution and use of this software in both source and binary
- form is allowed (with or without changes) provided that:
-
-   1. distributions of this source code include the above copyright
-      notice, this list of conditions and the following disclaimer;
-
-   2. distributions in binary form include the above copyright
-      notice, this list of conditions and the following disclaimer
-      in the documentation and/or other associated materials;
-
-   3. the copyright holder's name is not used to endorse products
-      built using this software without specific written permission.
-
- ALTERNATIVELY, provided that this notice is retained in full, this product
- may be distributed under the terms of the GNU General Public License (GPL),
- in which case the provisions of the GPL apply INSTEAD OF those given above.
-
- DISCLAIMER
-
- This software is provided 'as is' with no explicit or implied warranties
- in respect of its properties, including, but not limited to, correctness
- and/or fitness for purpose.
- ---------------------------------------------------------------------------
- Issue Date: 26/08/2003
-
-*/
-
-/*! \file
- *
- *  \brief  This file contains the code for implementing the key schedule for AES
- *  (Rijndael) for block and key sizes of 16, 24, and 32 bytes. See aesopt.h
- *  for further details including optimisation.
- *
- * \author Dr Brian Gladman <brg@gladman.me.uk>
- */
-
-#if defined(__cplusplus)
-extern "C"
-{
-#endif
-
-#ifndef HAVE_CRYPTO
-
-#include "aesopt.h"
-
-/* Initialise the key schedule from the user supplied key. The key
-   length can be specified in bytes, with legal values of 16, 24
-   and 32, or in bits, with legal values of 128, 192 and 256. These
-   values correspond with Nk values of 4, 6 and 8 respectively.
-
-   The following macros implement a single cycle in the key
-   schedule generation process. The number of cycles needed
-   for each cx->n_col and nk value is:
-
-    nk =             4  5  6  7  8
-    ------------------------------
-    cx->n_col = 4   10  9  8  7  7
-    cx->n_col = 5   14 11 10  9  9
-    cx->n_col = 6   19 15 12 11 11
-    cx->n_col = 7   21 19 16 13 14
-    cx->n_col = 8   29 23 19 17 14
-*/
-
-#define ke4(k,i) \
-{   k[4*(i)+4] = ss[0] ^= ls_box(ss[3],3) ^ t_use(r,c)[i]; k[4*(i)+5] = ss[1] ^= ss[0]; \
-    k[4*(i)+6] = ss[2] ^= ss[1]; k[4*(i)+7] = ss[3] ^= ss[2]; \
-}
-#define kel4(k,i) \
-{   k[4*(i)+4] = ss[0] ^= ls_box(ss[3],3) ^ t_use(r,c)[i]; k[4*(i)+5] = ss[1] ^= ss[0]; \
-    k[4*(i)+6] = ss[2] ^= ss[1]; k[4*(i)+7] = ss[3] ^= ss[2]; \
-}
-
-#define ke6(k,i) \
-{   k[6*(i)+ 6] = ss[0] ^= ls_box(ss[5],3) ^ t_use(r,c)[i]; k[6*(i)+ 7] = ss[1] ^= ss[0]; \
-    k[6*(i)+ 8] = ss[2] ^= ss[1]; k[6*(i)+ 9] = ss[3] ^= ss[2]; \
-    k[6*(i)+10] = ss[4] ^= ss[3]; k[6*(i)+11] = ss[5] ^= ss[4]; \
-}
-#define kel6(k,i) \
-{   k[6*(i)+ 6] = ss[0] ^= ls_box(ss[5],3) ^ t_use(r,c)[i]; k[6*(i)+ 7] = ss[1] ^= ss[0]; \
-    k[6*(i)+ 8] = ss[2] ^= ss[1]; k[6*(i)+ 9] = ss[3] ^= ss[2]; \
-}
-
-#define ke8(k,i) \
-{   k[8*(i)+ 8] = ss[0] ^= ls_box(ss[7],3) ^ t_use(r,c)[i]; k[8*(i)+ 9] = ss[1] ^= ss[0]; \
-    k[8*(i)+10] = ss[2] ^= ss[1]; k[8*(i)+11] = ss[3] ^= ss[2]; \
-    k[8*(i)+12] = ss[4] ^= ls_box(ss[3],0); k[8*(i)+13] = ss[5] ^= ss[4]; \
-    k[8*(i)+14] = ss[6] ^= ss[5]; k[8*(i)+15] = ss[7] ^= ss[6]; \
-}
-#define kel8(k,i) \
-{   k[8*(i)+ 8] = ss[0] ^= ls_box(ss[7],3) ^ t_use(r,c)[i]; k[8*(i)+ 9] = ss[1] ^= ss[0]; \
-    k[8*(i)+10] = ss[2] ^= ss[1]; k[8*(i)+11] = ss[3] ^= ss[2]; \
-}
-
-#if defined(ENCRYPTION_KEY_SCHEDULE)
-
-#if defined(AES_128) || defined(AES_VAR)
-
-aes_rval aes_encrypt_key128(const void *in_key, aes_encrypt_ctx cx[1])
-{   aes_32t    ss[4];
-
-    cx->ks[0] = ss[0] = word_in(in_key, 0);
-    cx->ks[1] = ss[1] = word_in(in_key, 1);
-    cx->ks[2] = ss[2] = word_in(in_key, 2);
-    cx->ks[3] = ss[3] = word_in(in_key, 3);
-
-#if ENC_UNROLL == NONE
-    {   aes_32t i;
-
-        for(i = 0; i < ((11 * N_COLS - 1) / 4); ++i)
-            ke4(cx->ks, i);
-    }
-#else
-    ke4(cx->ks, 0);  ke4(cx->ks, 1);
-    ke4(cx->ks, 2);  ke4(cx->ks, 3);
-    ke4(cx->ks, 4);  ke4(cx->ks, 5);
-    ke4(cx->ks, 6);  ke4(cx->ks, 7);
-    ke4(cx->ks, 8); kel4(cx->ks, 9);
-#endif
-
-    /* cx->ks[45] ^ cx->ks[52] ^ cx->ks[53] is zero for a 256 bit       */
-    /* key and must be non-zero for 128 and 192 bits keys   */
-    cx->ks[53] = cx->ks[45] = 0;
-    cx->ks[52] = 10;
-#ifdef AES_ERR_CHK
-    return aes_good;
-#endif
-}
-
-#endif
-
-#if defined(AES_192) || defined(AES_VAR)
-
-aes_rval aes_encrypt_key192(const void *in_key, aes_encrypt_ctx cx[1])
-{   aes_32t    ss[6];
-
-    cx->ks[0] = ss[0] = word_in(in_key, 0);
-    cx->ks[1] = ss[1] = word_in(in_key, 1);
-    cx->ks[2] = ss[2] = word_in(in_key, 2);
-    cx->ks[3] = ss[3] = word_in(in_key, 3);
-    cx->ks[4] = ss[4] = word_in(in_key, 4);
-    cx->ks[5] = ss[5] = word_in(in_key, 5);
-
-#if ENC_UNROLL == NONE
-    {   aes_32t i;
-
-        for(i = 0; i < (13 * N_COLS - 1) / 6; ++i)
-            ke6(cx->ks, i);
-    }
-#else
-    ke6(cx->ks, 0);  ke6(cx->ks, 1);
-    ke6(cx->ks, 2);  ke6(cx->ks, 3);
-    ke6(cx->ks, 4);  ke6(cx->ks, 5);
-    ke6(cx->ks, 6); kel6(cx->ks, 7);
-#endif
-
-    /* cx->ks[45] ^ cx->ks[52] ^ cx->ks[53] is zero for a 256 bit       */
-    /* key and must be non-zero for 128 and 192 bits keys   */
-    cx->ks[53] = cx->ks[45];
-    cx->ks[52] = 12;
-#ifdef AES_ERR_CHK
-    return aes_good;
-#endif
-}
-
-#endif
-
-#if defined(AES_256) || defined(AES_VAR)
-
-aes_rval aes_encrypt_key256(const void *in_key, aes_encrypt_ctx cx[1])
-{   aes_32t    ss[8];
-
-    cx->ks[0] = ss[0] = word_in(in_key, 0);
-    cx->ks[1] = ss[1] = word_in(in_key, 1);
-    cx->ks[2] = ss[2] = word_in(in_key, 2);
-    cx->ks[3] = ss[3] = word_in(in_key, 3);
-    cx->ks[4] = ss[4] = word_in(in_key, 4);
-    cx->ks[5] = ss[5] = word_in(in_key, 5);
-    cx->ks[6] = ss[6] = word_in(in_key, 6);
-    cx->ks[7] = ss[7] = word_in(in_key, 7);
-
-#if ENC_UNROLL == NONE
-    {   aes_32t i;
-
-        for(i = 0; i < (15 * N_COLS - 1) / 8; ++i)
-            ke8(cx->ks,  i);
-    }
-#else
-    ke8(cx->ks, 0); ke8(cx->ks, 1);
-    ke8(cx->ks, 2); ke8(cx->ks, 3);
-    ke8(cx->ks, 4); ke8(cx->ks, 5);
-    kel8(cx->ks, 6);
-#endif
-#ifdef AES_ERR_CHK
-    return aes_good;
-#endif
-}
-
-#endif
-
-#if defined(AES_VAR)
-
-aes_rval aes_encrypt_key(const void *in_key, int key_len, aes_encrypt_ctx cx[1])
-{
-    switch(key_len)
-    {
-#ifdef AES_ERR_CHK
-    case 16: case 128: return aes_encrypt_key128(in_key, cx);
-    case 24: case 192: return aes_encrypt_key192(in_key, cx);
-    case 32: case 256: return aes_encrypt_key256(in_key, cx);
-    default: return aes_error;
-#else
-    case 16: case 128: aes_encrypt_key128(in_key, cx); return;
-    case 24: case 192: aes_encrypt_key192(in_key, cx); return;
-    case 32: case 256: aes_encrypt_key256(in_key, cx); return;
-#endif
-    }
-}
-
-#endif
-
-#endif
-
-#if defined(DECRYPTION_KEY_SCHEDULE)
-
-#if DEC_ROUND == NO_TABLES
-#define ff(x)   (x)
-#else
-#define ff(x)   inv_mcol(x)
-#ifdef  dec_imvars
-#define d_vars  dec_imvars
-#endif
-#endif
-
-#if 1
-#define kdf4(k,i) \
-{   ss[0] = ss[0] ^ ss[2] ^ ss[1] ^ ss[3]; ss[1] = ss[1] ^ ss[3]; ss[2] = ss[2] ^ ss[3]; ss[3] = ss[3]; \
-    ss[4] = ls_box(ss[(i+3) % 4], 3) ^ t_use(r,c)[i]; ss[i % 4] ^= ss[4]; \
-    ss[4] ^= k[4*(i)];   k[4*(i)+4] = ff(ss[4]); ss[4] ^= k[4*(i)+1]; k[4*(i)+5] = ff(ss[4]); \
-    ss[4] ^= k[4*(i)+2]; k[4*(i)+6] = ff(ss[4]); ss[4] ^= k[4*(i)+3]; k[4*(i)+7] = ff(ss[4]); \
-}
-#define kd4(k,i) \
-{   ss[4] = ls_box(ss[(i+3) % 4], 3) ^ t_use(r,c)[i]; ss[i % 4] ^= ss[4]; ss[4] = ff(ss[4]); \
-    k[4*(i)+4] = ss[4] ^= k[4*(i)]; k[4*(i)+5] = ss[4] ^= k[4*(i)+1]; \
-    k[4*(i)+6] = ss[4] ^= k[4*(i)+2]; k[4*(i)+7] = ss[4] ^= k[4*(i)+3]; \
-}
-#define kdl4(k,i) \
-{   ss[4] = ls_box(ss[(i+3) % 4], 3) ^ t_use(r,c)[i]; ss[i % 4] ^= ss[4]; \
-    k[4*(i)+4] = (ss[0] ^= ss[1]) ^ ss[2] ^ ss[3]; k[4*(i)+5] = ss[1] ^ ss[3]; \
-    k[4*(i)+6] = ss[0]; k[4*(i)+7] = ss[1]; \
-}
-#else
-#define kdf4(k,i) \
-{   ss[0] ^= ls_box(ss[3],3) ^ t_use(r,c)[i]; k[4*(i)+ 4] = ff(ss[0]); ss[1] ^= ss[0]; k[4*(i)+ 5] = ff(ss[1]); \
-    ss[2] ^= ss[1]; k[4*(i)+ 6] = ff(ss[2]); ss[3] ^= ss[2]; k[4*(i)+ 7] = ff(ss[3]); \
-}
-#define kd4(k,i) \
-{   ss[4] = ls_box(ss[3],3) ^ t_use(r,c)[i]; \
-    ss[0] ^= ss[4]; ss[4] = ff(ss[4]); k[4*(i)+ 4] = ss[4] ^= k[4*(i)]; \
-    ss[1] ^= ss[0]; k[4*(i)+ 5] = ss[4] ^= k[4*(i)+ 1]; \
-    ss[2] ^= ss[1]; k[4*(i)+ 6] = ss[4] ^= k[4*(i)+ 2]; \
-    ss[3] ^= ss[2]; k[4*(i)+ 7] = ss[4] ^= k[4*(i)+ 3]; \
-}
-#define kdl4(k,i) \
-{   ss[0] ^= ls_box(ss[3],3) ^ t_use(r,c)[i]; k[4*(i)+ 4] = ss[0]; ss[1] ^= ss[0]; k[4*(i)+ 5] = ss[1]; \
-    ss[2] ^= ss[1]; k[4*(i)+ 6] = ss[2]; ss[3] ^= ss[2]; k[4*(i)+ 7] = ss[3]; \
-}
-#endif
-
-#define kdf6(k,i) \
-{   ss[0] ^= ls_box(ss[5],3) ^ t_use(r,c)[i]; k[6*(i)+ 6] = ff(ss[0]); ss[1] ^= ss[0]; k[6*(i)+ 7] = ff(ss[1]); \
-    ss[2] ^= ss[1]; k[6*(i)+ 8] = ff(ss[2]); ss[3] ^= ss[2]; k[6*(i)+ 9] = ff(ss[3]); \
-    ss[4] ^= ss[3]; k[6*(i)+10] = ff(ss[4]); ss[5] ^= ss[4]; k[6*(i)+11] = ff(ss[5]); \
-}
-#define kd6(k,i) \
-{   ss[6] = ls_box(ss[5],3) ^ t_use(r,c)[i]; \
-    ss[0] ^= ss[6]; ss[6] = ff(ss[6]); k[6*(i)+ 6] = ss[6] ^= k[6*(i)]; \
-    ss[1] ^= ss[0]; k[6*(i)+ 7] = ss[6] ^= k[6*(i)+ 1]; \
-    ss[2] ^= ss[1]; k[6*(i)+ 8] = ss[6] ^= k[6*(i)+ 2]; \
-    ss[3] ^= ss[2]; k[6*(i)+ 9] = ss[6] ^= k[6*(i)+ 3]; \
-    ss[4] ^= ss[3]; k[6*(i)+10] = ss[6] ^= k[6*(i)+ 4]; \
-    ss[5] ^= ss[4]; k[6*(i)+11] = ss[6] ^= k[6*(i)+ 5]; \
-}
-#define kdl6(k,i) \
-{   ss[0] ^= ls_box(ss[5],3) ^ t_use(r,c)[i]; k[6*(i)+ 6] = ss[0]; ss[1] ^= ss[0]; k[6*(i)+ 7] = ss[1]; \
-    ss[2] ^= ss[1]; k[6*(i)+ 8] = ss[2]; ss[3] ^= ss[2]; k[6*(i)+ 9] = ss[3]; \
-}
-
-#define kdf8(k,i) \
-{   ss[0] ^= ls_box(ss[7],3) ^ t_use(r,c)[i]; k[8*(i)+ 8] = ff(ss[0]); ss[1] ^= ss[0]; k[8*(i)+ 9] = ff(ss[1]); \
-    ss[2] ^= ss[1]; k[8*(i)+10] = ff(ss[2]); ss[3] ^= ss[2]; k[8*(i)+11] = ff(ss[3]); \
-    ss[4] ^= ls_box(ss[3],0); k[8*(i)+12] = ff(ss[4]); ss[5] ^= ss[4]; k[8*(i)+13] = ff(ss[5]); \
-    ss[6] ^= ss[5]; k[8*(i)+14] = ff(ss[6]); ss[7] ^= ss[6]; k[8*(i)+15] = ff(ss[7]); \
-}
-#define kd8(k,i) \
-{   aes_32t g = ls_box(ss[7],3) ^ t_use(r,c)[i]; \
-    ss[0] ^= g; g = ff(g); k[8*(i)+ 8] = g ^= k[8*(i)]; \
-    ss[1] ^= ss[0]; k[8*(i)+ 9] = g ^= k[8*(i)+ 1]; \
-    ss[2] ^= ss[1]; k[8*(i)+10] = g ^= k[8*(i)+ 2]; \
-    ss[3] ^= ss[2]; k[8*(i)+11] = g ^= k[8*(i)+ 3]; \
-    g = ls_box(ss[3],0); \
-    ss[4] ^= g; g = ff(g); k[8*(i)+12] = g ^= k[8*(i)+ 4]; \
-    ss[5] ^= ss[4]; k[8*(i)+13] = g ^= k[8*(i)+ 5]; \
-    ss[6] ^= ss[5]; k[8*(i)+14] = g ^= k[8*(i)+ 6]; \
-    ss[7] ^= ss[6]; k[8*(i)+15] = g ^= k[8*(i)+ 7]; \
-}
-#define kdl8(k,i) \
-{   ss[0] ^= ls_box(ss[7],3) ^ t_use(r,c)[i]; k[8*(i)+ 8] = ss[0]; ss[1] ^= ss[0]; k[8*(i)+ 9] = ss[1]; \
-    ss[2] ^= ss[1]; k[8*(i)+10] = ss[2]; ss[3] ^= ss[2]; k[8*(i)+11] = ss[3]; \
-}
-
-#if defined(AES_128) || defined(AES_VAR)
-
-aes_rval aes_decrypt_key128(const void *in_key, aes_decrypt_ctx cx[1])
-{   aes_32t    ss[5];
-#ifdef  d_vars
-        d_vars;
-#endif
-    cx->ks[0] = ss[0] = word_in(in_key, 0);
-    cx->ks[1] = ss[1] = word_in(in_key, 1);
-    cx->ks[2] = ss[2] = word_in(in_key, 2);
-    cx->ks[3] = ss[3] = word_in(in_key, 3);
-
-#if DEC_UNROLL == NONE
-    {   aes_32t i;
-
-        for(i = 0; i < (11 * N_COLS - 1) / 4; ++i)
-            ke4(cx->ks, i);
-#if !(DEC_ROUND == NO_TABLES)
-        for(i = N_COLS; i < 10 * N_COLS; ++i)
-            cx->ks[i] = inv_mcol(cx->ks[i]);
-#endif
-    }
-#else
-    kdf4(cx->ks, 0);  kd4(cx->ks, 1);
-     kd4(cx->ks, 2);  kd4(cx->ks, 3);
-     kd4(cx->ks, 4);  kd4(cx->ks, 5);
-     kd4(cx->ks, 6);  kd4(cx->ks, 7);
-     kd4(cx->ks, 8); kdl4(cx->ks, 9);
-#endif
-
-    /* cx->ks[45] ^ cx->ks[52] ^ cx->ks[53] is zero for a 256 bit       */
-    /* key and must be non-zero for 128 and 192 bits keys   */
-    cx->ks[53] = cx->ks[45] = 0;
-    cx->ks[52] = 10;
-#ifdef AES_ERR_CHK
-    return aes_good;
-#endif
-}
-
-#endif
-
-#if defined(AES_192) || defined(AES_VAR)
-
-aes_rval aes_decrypt_key192(const void *in_key, aes_decrypt_ctx cx[1])
-{   aes_32t    ss[7];
-#ifdef  d_vars
-        d_vars;
-#endif
-    cx->ks[0] = ss[0] = word_in(in_key, 0);
-    cx->ks[1] = ss[1] = word_in(in_key, 1);
-    cx->ks[2] = ss[2] = word_in(in_key, 2);
-    cx->ks[3] = ss[3] = word_in(in_key, 3);
-
-#if DEC_UNROLL == NONE
-    cx->ks[4] = ss[4] = word_in(in_key, 4);
-    cx->ks[5] = ss[5] = word_in(in_key, 5);
-    {   aes_32t i;
-
-        for(i = 0; i < (13 * N_COLS - 1) / 6; ++i)
-            ke6(cx->ks, i);
-#if !(DEC_ROUND == NO_TABLES)
-        for(i = N_COLS; i < 12 * N_COLS; ++i)
-            cx->ks[i] = inv_mcol(cx->ks[i]);
-#endif
-    }
-#else
-    cx->ks[4] = ff(ss[4] = word_in(in_key, 4));
-    cx->ks[5] = ff(ss[5] = word_in(in_key, 5));
-    kdf6(cx->ks, 0); kd6(cx->ks, 1);
-    kd6(cx->ks, 2);  kd6(cx->ks, 3);
-    kd6(cx->ks, 4);  kd6(cx->ks, 5);
-    kd6(cx->ks, 6); kdl6(cx->ks, 7);
-#endif
-
-    /* cx->ks[45] ^ cx->ks[52] ^ cx->ks[53] is zero for a 256 bit       */
-    /* key and must be non-zero for 128 and 192 bits keys   */
-    cx->ks[53] = cx->ks[45];
-    cx->ks[52] = 12;
-#ifdef AES_ERR_CHK
-    return aes_good;
-#endif
-}
-
-#endif
-
-#if defined(AES_256) || defined(AES_VAR)
-
-aes_rval aes_decrypt_key256(const void *in_key, aes_decrypt_ctx cx[1])
-{   aes_32t    ss[8];
-#ifdef  d_vars
-        d_vars;
-#endif
-    cx->ks[0] = ss[0] = word_in(in_key, 0);
-    cx->ks[1] = ss[1] = word_in(in_key, 1);
-    cx->ks[2] = ss[2] = word_in(in_key, 2);
-    cx->ks[3] = ss[3] = word_in(in_key, 3);
-
-#if DEC_UNROLL == NONE
-    cx->ks[4] = ss[4] = word_in(in_key, 4);
-    cx->ks[5] = ss[5] = word_in(in_key, 5);
-    cx->ks[6] = ss[6] = word_in(in_key, 6);
-    cx->ks[7] = ss[7] = word_in(in_key, 7);
-    {   aes_32t i;
-
-        for(i = 0; i < (15 * N_COLS - 1) / 8; ++i)
-            ke8(cx->ks,  i);
-#if !(DEC_ROUND == NO_TABLES)
-        for(i = N_COLS; i < 14 * N_COLS; ++i)
-            cx->ks[i] = inv_mcol(cx->ks[i]);
-#endif
-    }
-#else
-    cx->ks[4] = ff(ss[4] = word_in(in_key, 4));
-    cx->ks[5] = ff(ss[5] = word_in(in_key, 5));
-    cx->ks[6] = ff(ss[6] = word_in(in_key, 6));
-    cx->ks[7] = ff(ss[7] = word_in(in_key, 7));
-    kdf8(cx->ks, 0); kd8(cx->ks, 1);
-    kd8(cx->ks, 2);  kd8(cx->ks, 3);
-    kd8(cx->ks, 4);  kd8(cx->ks, 5);
-    kdl8(cx->ks, 6);
-#endif
-#ifdef AES_ERR_CHK
-    return aes_good;
-#endif
-}
-
-#endif
-
-#if defined(AES_VAR)
-
-aes_rval aes_decrypt_key(const void *in_key, int key_len, aes_decrypt_ctx cx[1])
-{
-    switch(key_len)
-    {
-#ifdef AES_ERR_CHK
-    case 16: case 128: return aes_decrypt_key128(in_key, cx);
-    case 24: case 192: return aes_decrypt_key192(in_key, cx);
-    case 32: case 256: return aes_decrypt_key256(in_key, cx);
-    default: return aes_error;
-#else
-    case 16: case 128: aes_decrypt_key128(in_key, cx); return;
-    case 24: case 192: aes_decrypt_key192(in_key, cx); return;
-    case 32: case 256: aes_decrypt_key256(in_key, cx); return;
-#endif
-    }
-}
-
-#endif
-
-#endif
-
-#endif /* !HAVE_CRYPTO */
-
-#if defined(__cplusplus)
-}
-#endif
diff --git a/main/aesopt.h b/main/aesopt.h
deleted file mode 100644
index bb4f05a0b89a0065cd9a803a9d4259a49b21879c..0000000000000000000000000000000000000000
--- a/main/aesopt.h
+++ /dev/null
@@ -1,1029 +0,0 @@
-/*
- ---------------------------------------------------------------------------
- Copyright (c) 2003, Dr Brian Gladman <brg@gladman.me.uk>, Worcester, UK.
- All rights reserved.
-
- LICENSE TERMS
-
- The free distribution and use of this software in both source and binary
- form is allowed (with or without changes) provided that:
-
-   1. distributions of this source code include the above copyright
-      notice, this list of conditions and the following disclaimer;
-
-   2. distributions in binary form include the above copyright
-      notice, this list of conditions and the following disclaimer
-      in the documentation and/or other associated materials;
-
-   3. the copyright holder's name is not used to endorse products
-      built using this software without specific written permission.
-
- ALTERNATIVELY, provided that this notice is retained in full, this product
- may be distributed under the terms of the GNU General Public License (GPL),
- in which case the provisions of the GPL apply INSTEAD OF those given above.
-
- DISCLAIMER
-
- This software is provided 'as is' with no explicit or implied warranties
- in respect of its properties, including, but not limited to, correctness
- and/or fitness for purpose.
- ---------------------------------------------------------------------------
- Issue Date: 26/08/2003
-
- My thanks go to Dag Arne Osvik for devising the schemes used here for key
- length derivation from the form of the key schedule
-
- This file contains the compilation options for AES (Rijndael) and code
- that is common across encryption, key scheduling and table generation.
-
-    OPERATION
-
-    These source code files implement the AES algorithm Rijndael designed by
-    Joan Daemen and Vincent Rijmen. This version is designed for the standard
-    block size of 16 bytes and for key sizes of 128, 192 and 256 bits (16, 24
-    and 32 bytes).
-
-    This version is designed for flexibility and speed using operations on
-    32-bit words rather than operations on bytes.  It can be compiled with
-    either big or little endian internal byte order but is faster when the
-    native byte order for the processor is used.
-
-    THE CIPHER INTERFACE
-
-    The cipher interface is implemented as an array of bytes in which lower
-    AES bit sequence indexes map to higher numeric significance within bytes.
-
-    aes_08t                 (an unsigned  8-bit type)
-    aes_32t                 (an unsigned 32-bit type)
-    struct aes_encrypt_ctx  (structure for the cipher encryption context)
-    struct aes_decrypt_ctx  (structure for the cipher decryption context)
-    aes_rval                the function return type
-
-    C subroutine calls:
-
-      aes_rval aes_encrypt_key128(const void *in_key, aes_encrypt_ctx cx[1]);
-      aes_rval aes_encrypt_key192(const void *in_key, aes_encrypt_ctx cx[1]);
-      aes_rval aes_encrypt_key256(const void *in_key, aes_encrypt_ctx cx[1]);
-      aes_rval aes_encrypt(const void *in_blk,
-                                 void *out_blk, const aes_encrypt_ctx cx[1]);
-
-      aes_rval aes_decrypt_key128(const void *in_key, aes_decrypt_ctx cx[1]);
-      aes_rval aes_decrypt_key192(const void *in_key, aes_decrypt_ctx cx[1]);
-      aes_rval aes_decrypt_key256(const void *in_key, aes_decrypt_ctx cx[1]);
-      aes_rval aes_decrypt(const void *in_blk,
-                                 void *out_blk, const aes_decrypt_ctx cx[1]);
-
-    IMPORTANT NOTE: If you are using this C interface with dynamic tables make sure that
-    you call genTabs() before AES is used so that the tables are initialised.
-
-    C++ aes class subroutines:
-
-        Class AESencrypt  for encryption
-
-        Construtors:
-            AESencrypt(void)
-            AESencrypt(const void *in_key) - 128 bit key
-        Members:
-            void key128(const void *in_key)
-            void key192(const void *in_key)
-            void key256(const void *in_key)
-            void encrypt(const void *in_blk, void *out_blk) const
-
-        Class AESdecrypt  for encryption
-        Construtors:
-            AESdecrypt(void)
-            AESdecrypt(const void *in_key) - 128 bit key
-        Members:
-            void key128(const void *in_key)
-            void key192(const void *in_key)
-            void key256(const void *in_key)
-            void decrypt(const void *in_blk, void *out_blk) const
-
-    COMPILATION
-
-    The files used to provide AES (Rijndael) are
-
-    a. aes.h for the definitions needed for use in C.
-    b. aescpp.h for the definitions needed for use in C++.
-    c. aesopt.h for setting compilation options (also includes common code).
-    d. aescrypt.c for encryption and decrytpion, or
-    e. aeskey.c for key scheduling.
-    f. aestab.c for table loading or generation.
-    g. aescrypt.asm for encryption and decryption using assembler code.
-    h. aescrypt.mmx.asm for encryption and decryption using MMX assembler.
-
-    To compile AES (Rijndael) for use in C code use aes.h and set the
-    defines here for the facilities you need (key lengths, encryption
-    and/or decryption). Do not define AES_DLL or AES_CPP.  Set the options
-    for optimisations and table sizes here.
-
-    To compile AES (Rijndael) for use in in C++ code use aescpp.h but do
-    not define AES_DLL
-
-    To compile AES (Rijndael) in C as a Dynamic Link Library DLL) use
-    aes.h and include the AES_DLL define.
-
-    CONFIGURATION OPTIONS (here and in aes.h)
-
-    a. set AES_DLL in aes.h if AES (Rijndael) is to be compiled as a DLL
-    b. You may need to set PLATFORM_BYTE_ORDER to define the byte order.
-    c. If you want the code to run in a specific internal byte order, then
-       ALGORITHM_BYTE_ORDER must be set accordingly.
-    d. set other configuration options decribed below.
-*/
-
-#ifndef _AESOPT_H
-#define _AESOPT_H
-
-#include "asterisk/aes.h"
-#include "asterisk/endian.h"
-
-/*  CONFIGURATION - USE OF DEFINES
-
-    Later in this section there are a number of defines that control the
-    operation of the code.  In each section, the purpose of each define is
-    explained so that the relevant form can be included or excluded by
-    setting either 1's or 0's respectively on the branches of the related
-    #if clauses.
-*/
-
-/*  BYTE ORDER IN 32-BIT WORDS
-
-    To obtain the highest speed on processors with 32-bit words, this code
-    needs to determine the byte order of the target machine. The following 
-    block of code is an attempt to capture the most obvious ways in which 
-    various environemnts define byte order. It may well fail, in which case 
-    the definitions will need to be set by editing at the points marked 
-    **** EDIT HERE IF NECESSARY **** below.  My thanks to Peter Gutmann for 
-    some of these defines (from cryptlib).
-*/
-
-#define BRG_LITTLE_ENDIAN   1234 /* byte 0 is least significant (i386) */
-#define BRG_BIG_ENDIAN      4321 /* byte 0 is most significant (mc68k) */
-
-#if defined( __alpha__ ) || defined( __alpha ) || defined( i386 )       ||   \
-    defined( __i386__ )  || defined( _M_I86 )  || defined( _M_IX86 )    ||   \
-    defined( __OS2__ )   || defined( sun386 )  || defined( __TURBOC__ ) ||   \
-    defined( vax )       || defined( vms )     || defined( VMS )        ||   \
-    defined( __VMS ) 
-
-#define PLATFORM_BYTE_ORDER BRG_LITTLE_ENDIAN
-
-#endif
-
-#if defined( AMIGA )    || defined( applec )  || defined( __AS400__ )  ||   \
-    defined( _CRAY )    || defined( __hppa )  || defined( __hp9000 )   ||   \
-    defined( ibm370 )   || defined( mc68000 ) || defined( m68k )       ||   \
-    defined( __MRC__ )  || defined( __MVS__ ) || defined( __MWERKS__ ) ||   \
-    defined( sparc )    || defined( __sparc)  || defined( SYMANTEC_C ) ||   \
-    defined( __TANDEM ) || defined( THINK_C ) || defined( __VMCMS__ )
-    
-#define PLATFORM_BYTE_ORDER BRG_BIG_ENDIAN
-
-#endif
-
-/*  if the platform is still not known, try to find its byte order  */
-/*  from commonly used definitions in the headers included earlier  */
-
-#if !defined(PLATFORM_BYTE_ORDER)
-
-#if defined(LITTLE_ENDIAN) || defined(BIG_ENDIAN)
-#  if    defined(LITTLE_ENDIAN) && !defined(BIG_ENDIAN)
-#    define PLATFORM_BYTE_ORDER BRG_LITTLE_ENDIAN
-#  elif !defined(LITTLE_ENDIAN) &&  defined(BIG_ENDIAN)
-#    define PLATFORM_BYTE_ORDER BRG_BIG_ENDIAN
-#  elif defined(BYTE_ORDER) && (BYTE_ORDER == LITTLE_ENDIAN)
-#    define PLATFORM_BYTE_ORDER BRG_LITTLE_ENDIAN
-#  elif defined(BYTE_ORDER) && (BYTE_ORDER == BIG_ENDIAN)
-#    define PLATFORM_BYTE_ORDER BRG_BIG_ENDIAN
-#  endif
-
-#elif defined(_LITTLE_ENDIAN) || defined(_BIG_ENDIAN)
-#  if    defined(_LITTLE_ENDIAN) && !defined(_BIG_ENDIAN)
-#    define PLATFORM_BYTE_ORDER BRG_LITTLE_ENDIAN
-#  elif !defined(_LITTLE_ENDIAN) &&  defined(_BIG_ENDIAN)
-#    define PLATFORM_BYTE_ORDER BRG_BIG_ENDIAN
-#  elif defined(_BYTE_ORDER) && (_BYTE_ORDER == _LITTLE_ENDIAN)
-#    define PLATFORM_BYTE_ORDER BRG_LITTLE_ENDIAN
-#  elif defined(_BYTE_ORDER) && (_BYTE_ORDER == _BIG_ENDIAN)
-#    define PLATFORM_BYTE_ORDER BRG_BIG_ENDIAN
-#  endif
-
-#elif defined(__LITTLE_ENDIAN__) || defined(__BIG_ENDIAN__)
-#  if    defined(__LITTLE_ENDIAN__) && !defined(__BIG_ENDIAN__)
-#    define PLATFORM_BYTE_ORDER BRG_LITTLE_ENDIAN
-#  elif !defined(__LITTLE_ENDIAN__) &&  defined(__BIG_ENDIAN__)
-#    define PLATFORM_BYTE_ORDER BRG_BIG_ENDIAN
-#  elif defined(__BYTE_ORDER__) && (__BYTE_ORDER__ == __LITTLE_ENDIAN__)
-#    define PLATFORM_BYTE_ORDER BRG_LITTLE_ENDIAN
-#  elif defined(__BYTE_ORDER__) && (__BYTE_ORDER__ == __BIG_ENDIAN__)
-#    define PLATFORM_BYTE_ORDER BRG_BIG_ENDIAN
-#  endif
-
-#elif 0     /* **** EDIT HERE IF NECESSARY **** */
-#define PLATFORM_BYTE_ORDER BRG_LITTLE_ENDIAN
-
-#elif 0     /* **** EDIT HERE IF NECESSARY **** */
-#define PLATFORM_BYTE_ORDER BRG_BIG_ENDIAN
-
-#else
-#error Please edit aesopt.h (line 235 or 238) to set the platform byte order
-#endif
-
-#endif
-
-/*  SOME LOCAL DEFINITIONS  */
-
-#define NO_TABLES              0
-#define ONE_TABLE              1
-#define FOUR_TABLES            4
-#define NONE                   0
-#define PARTIAL                1
-#define FULL                   2
-
-#if defined(bswap32)
-#define aes_sw32    bswap32
-#elif defined(bswap_32)
-#define aes_sw32    bswap_32
-#else 
-#define brot(x,n)   (((aes_32t)(x) <<  n) | ((aes_32t)(x) >> (32 - n)))
-#define aes_sw32(x) ((brot((x),8) & 0x00ff00ff) | (brot((x),24) & 0xff00ff00))
-#endif
-
-/*  1. FUNCTIONS REQUIRED
-
-    This implementation provides subroutines for encryption, decryption
-    and for setting the three key lengths (separately) for encryption
-    and decryption. When the assembler code is not being used the following
-    definition blocks allow the selection of the routines that are to be
-    included in the compilation.
-*/
-#ifdef AES_ENCRYPT
-#define ENCRYPTION
-#define ENCRYPTION_KEY_SCHEDULE
-#endif
-
-#ifdef AES_DECRYPT
-#define DECRYPTION
-#define DECRYPTION_KEY_SCHEDULE
-#endif
-
-/*  2. ASSEMBLER SUPPORT
-
-    This define (which can be on the command line) enables the use of the
-    assembler code routines for encryption and decryption with the C code
-    only providing key scheduling
-*/
-#if 0
-#define AES_ASM
-#endif
-
-/*  3. BYTE ORDER WITHIN 32 BIT WORDS
-
-    The fundamental data processing units in Rijndael are 8-bit bytes. The
-    input, output and key input are all enumerated arrays of bytes in which
-    bytes are numbered starting at zero and increasing to one less than the
-    number of bytes in the array in question. This enumeration is only used
-    for naming bytes and does not imply any adjacency or order relationship
-    from one byte to another. When these inputs and outputs are considered
-    as bit sequences, bits 8*n to 8*n+7 of the bit sequence are mapped to
-    byte[n] with bit 8n+i in the sequence mapped to bit 7-i within the byte.
-    In this implementation bits are numbered from 0 to 7 starting at the
-    numerically least significant end of each byte (bit n represents 2^n).
-
-    However, Rijndael can be implemented more efficiently using 32-bit
-    words by packing bytes into words so that bytes 4*n to 4*n+3 are placed
-    into word[n]. While in principle these bytes can be assembled into words
-    in any positions, this implementation only supports the two formats in
-    which bytes in adjacent positions within words also have adjacent byte
-    numbers. This order is called big-endian if the lowest numbered bytes
-    in words have the highest numeric significance and little-endian if the
-    opposite applies.
-
-    This code can work in either order irrespective of the order used by the
-    machine on which it runs. Normally the internal byte order will be set
-    to the order of the processor on which the code is to be run but this
-    define can be used to reverse this in special situations
-
-    NOTE: Assembler code versions rely on PLATFORM_BYTE_ORDER being set
-*/
-#if 1 || defined(AES_ASM)
-#define ALGORITHM_BYTE_ORDER PLATFORM_BYTE_ORDER
-#elif 0
-#define ALGORITHM_BYTE_ORDER BRG_LITTLE_ENDIAN
-#elif 0
-#define ALGORITHM_BYTE_ORDER BRG_BIG_ENDIAN
-#else
-#error The algorithm byte order is not defined
-#endif
-
-/*  4. FAST INPUT/OUTPUT OPERATIONS.
-
-    On some machines it is possible to improve speed by transferring the
-    bytes in the input and output arrays to and from the internal 32-bit
-    variables by addressing these arrays as if they are arrays of 32-bit
-    words.  On some machines this will always be possible but there may
-    be a large performance penalty if the byte arrays are not aligned on
-    the normal word boundaries. On other machines this technique will
-    lead to memory access errors when such 32-bit word accesses are not
-    properly aligned. The option SAFE_IO avoids such problems but will
-    often be slower on those machines that support misaligned access
-    (especially so if care is taken to align the input  and output byte
-    arrays on 32-bit word boundaries). If SAFE_IO is not defined it is
-    assumed that access to byte arrays as if they are arrays of 32-bit
-    words will not cause problems when such accesses are misaligned.
-*/
-#if 1 && !defined(_MSC_VER)
-#define SAFE_IO
-#endif
-
-/*  5. LOOP UNROLLING
-
-    The code for encryption and decrytpion cycles through a number of rounds
-    that can be implemented either in a loop or by expanding the code into a
-    long sequence of instructions, the latter producing a larger program but
-    one that will often be much faster. The latter is called loop unrolling.
-    There are also potential speed advantages in expanding two iterations in
-    a loop with half the number of iterations, which is called partial loop
-    unrolling.  The following options allow partial or full loop unrolling
-    to be set independently for encryption and decryption
-*/
-#if 1
-#define ENC_UNROLL  FULL
-#elif 0
-#define ENC_UNROLL  PARTIAL
-#else
-#define ENC_UNROLL  NONE
-#endif
-
-#if 1
-#define DEC_UNROLL  FULL
-#elif 0
-#define DEC_UNROLL  PARTIAL
-#else
-#define DEC_UNROLL  NONE
-#endif
-
-/*  6. FAST FINITE FIELD OPERATIONS
-
-    If this section is included, tables are used to provide faster finite
-    field arithmetic (this has no effect if FIXED_TABLES is defined).
-*/
-#if 1
-#define FF_TABLES
-#endif
-
-/*  7. INTERNAL STATE VARIABLE FORMAT
-
-    The internal state of Rijndael is stored in a number of local 32-bit
-    word varaibles which can be defined either as an array or as individual
-    names variables. Include this section if you want to store these local
-    varaibles in arrays. Otherwise individual local variables will be used.
-*/
-#if 1
-#define ARRAYS
-#endif
-
-/* In this implementation the columns of the state array are each held in
-   32-bit words. The state array can be held in various ways: in an array
-   of words, in a number of individual word variables or in a number of
-   processor registers. The following define maps a variable name x and
-   a column number c to the way the state array variable is to be held.
-   The first define below maps the state into an array x[c] whereas the
-   second form maps the state into a number of individual variables x0,
-   x1, etc.  Another form could map individual state colums to machine
-   register names.
-*/
-
-#if defined(ARRAYS)
-#define s(x,c) x[c]
-#else
-#define s(x,c) x##c
-#endif
-
-/*  8. FIXED OR DYNAMIC TABLES
-
-    When this section is included the tables used by the code are compiled
-    statically into the binary file.  Otherwise the subroutine gen_tabs()
-    must be called to compute them before the code is first used.
-*/
-#if 1
-#define FIXED_TABLES
-#endif
-
-/*  9. TABLE ALIGNMENT
-
-    On some sytsems speed will be improved by aligning the AES large lookup
-    tables on particular boundaries. This define should be set to a power of
-    two giving the desired alignment. It can be left undefined if alignment 
-    is not needed.  This option is specific to the Microsft VC++ compiler -
-    it seems to sometimes cause trouble for the VC++ version 6 compiler.
-*/
-
-#if 0 && defined(_MSC_VER) && (_MSC_VER >= 1300)
-#define TABLE_ALIGN 64
-#endif
-
-/*  10. INTERNAL TABLE CONFIGURATION
-
-    This cipher proceeds by repeating in a number of cycles known as 'rounds'
-    which are implemented by a round function which can optionally be speeded
-    up using tables.  The basic tables are each 256 32-bit words, with either
-    one or four tables being required for each round function depending on
-    how much speed is required. The encryption and decryption round functions
-    are different and the last encryption and decrytpion round functions are
-    different again making four different round functions in all.
-
-    This means that:
-      1. Normal encryption and decryption rounds can each use either 0, 1
-         or 4 tables and table spaces of 0, 1024 or 4096 bytes each.
-      2. The last encryption and decryption rounds can also use either 0, 1
-         or 4 tables and table spaces of 0, 1024 or 4096 bytes each.
-
-    Include or exclude the appropriate definitions below to set the number
-    of tables used by this implementation.
-*/
-
-#if 1   /* set tables for the normal encryption round */
-#define ENC_ROUND   FOUR_TABLES
-#elif 0
-#define ENC_ROUND   ONE_TABLE
-#else
-#define ENC_ROUND   NO_TABLES
-#endif
-
-#if 1   /* set tables for the last encryption round */
-#define LAST_ENC_ROUND  FOUR_TABLES
-#elif 0
-#define LAST_ENC_ROUND  ONE_TABLE
-#else
-#define LAST_ENC_ROUND  NO_TABLES
-#endif
-
-#if 1   /* set tables for the normal decryption round */
-#define DEC_ROUND   FOUR_TABLES
-#elif 0
-#define DEC_ROUND   ONE_TABLE
-#else
-#define DEC_ROUND   NO_TABLES
-#endif
-
-#if 1   /* set tables for the last decryption round */
-#define LAST_DEC_ROUND  FOUR_TABLES
-#elif 0
-#define LAST_DEC_ROUND  ONE_TABLE
-#else
-#define LAST_DEC_ROUND  NO_TABLES
-#endif
-
-/*  The decryption key schedule can be speeded up with tables in the same
-    way that the round functions can.  Include or exclude the following
-    defines to set this requirement.
-*/
-#if 1
-#define KEY_SCHED   FOUR_TABLES
-#elif 0
-#define KEY_SCHED   ONE_TABLE
-#else
-#define KEY_SCHED   NO_TABLES
-#endif
-
-/* END OF CONFIGURATION OPTIONS */
-
-#define RC_LENGTH   (5 * (AES_BLOCK_SIZE / 4 - 2))
-
-/* Disable or report errors on some combinations of options */
-
-#if ENC_ROUND == NO_TABLES && LAST_ENC_ROUND != NO_TABLES
-#undef  LAST_ENC_ROUND
-#define LAST_ENC_ROUND  NO_TABLES
-#elif ENC_ROUND == ONE_TABLE && LAST_ENC_ROUND == FOUR_TABLES
-#undef  LAST_ENC_ROUND
-#define LAST_ENC_ROUND  ONE_TABLE
-#endif
-
-#if ENC_ROUND == NO_TABLES && ENC_UNROLL != NONE
-#undef  ENC_UNROLL
-#define ENC_UNROLL  NONE
-#endif
-
-#if DEC_ROUND == NO_TABLES && LAST_DEC_ROUND != NO_TABLES
-#undef  LAST_DEC_ROUND
-#define LAST_DEC_ROUND  NO_TABLES
-#elif DEC_ROUND == ONE_TABLE && LAST_DEC_ROUND == FOUR_TABLES
-#undef  LAST_DEC_ROUND
-#define LAST_DEC_ROUND  ONE_TABLE
-#endif
-
-#if DEC_ROUND == NO_TABLES && DEC_UNROLL != NONE
-#undef  DEC_UNROLL
-#define DEC_UNROLL  NONE
-#endif
-
-/*  upr(x,n):  rotates bytes within words by n positions, moving bytes to
-               higher index positions with wrap around into low positions
-    ups(x,n):  moves bytes by n positions to higher index positions in
-               words but without wrap around
-    bval(x,n): extracts a byte from a word
-
-    NOTE:      The definitions given here are intended only for use with
-               unsigned variables and with shift counts that are compile
-               time constants
-*/
-
-#if (ALGORITHM_BYTE_ORDER == BRG_LITTLE_ENDIAN)
-#define upr(x,n)        (((aes_32t)(x) << (8 * (n))) | ((aes_32t)(x) >> (32 - 8 * (n))))
-#define ups(x,n)        ((aes_32t) (x) << (8 * (n)))
-#define bval(x,n)       ((aes_08t)((x) >> (8 * (n))))
-#define bytes2word(b0, b1, b2, b3)  \
-        (((aes_32t)(b3) << 24) | ((aes_32t)(b2) << 16) | ((aes_32t)(b1) << 8) | (b0))
-#endif
-
-#if (ALGORITHM_BYTE_ORDER == BRG_BIG_ENDIAN)
-#define upr(x,n)        (((aes_32t)(x) >> (8 * (n))) | ((aes_32t)(x) << (32 - 8 * (n))))
-#define ups(x,n)        ((aes_32t) (x) >> (8 * (n))))
-#define bval(x,n)       ((aes_08t)((x) >> (24 - 8 * (n))))
-#define bytes2word(b0, b1, b2, b3)  \
-        (((aes_32t)(b0) << 24) | ((aes_32t)(b1) << 16) | ((aes_32t)(b2) << 8) | (b3))
-#endif
-
-#if defined(SAFE_IO)
-
-#define word_in(x,c)    bytes2word(((aes_08t*)(x)+4*c)[0], ((aes_08t*)(x)+4*c)[1], \
-                                   ((aes_08t*)(x)+4*c)[2], ((aes_08t*)(x)+4*c)[3])
-#define word_out(x,c,v) { ((aes_08t*)(x)+4*c)[0] = bval(v,0); ((aes_08t*)(x)+4*c)[1] = bval(v,1); \
-                          ((aes_08t*)(x)+4*c)[2] = bval(v,2); ((aes_08t*)(x)+4*c)[3] = bval(v,3); }
-
-#elif (ALGORITHM_BYTE_ORDER == PLATFORM_BYTE_ORDER)
-
-#define word_in(x,c)    (*((aes_32t*)(x)+(c)))
-#define word_out(x,c,v) (*((aes_32t*)(x)+(c)) = (v))
-
-#else
-
-#define word_in(x,c)    aes_sw32(*((aes_32t*)(x)+(c)))
-#define word_out(x,c,v) (*((aes_32t*)(x)+(c)) = aes_sw32(v))
-
-#endif
-
-/* the finite field modular polynomial and elements */
-
-#define WPOLY   0x011b
-#define BPOLY     0x1b
-
-/* multiply four bytes in GF(2^8) by 'x' {02} in parallel */
-
-#define m1  0x80808080
-#define m2  0x7f7f7f7f
-#define gf_mulx(x)  ((((x) & m2) << 1) ^ ((((x) & m1) >> 7) * BPOLY))
-
-/* The following defines provide alternative definitions of gf_mulx that might
-   give improved performance if a fast 32-bit multiply is not available. Note
-   that a temporary variable u needs to be defined where gf_mulx is used.
-
-#define gf_mulx(x) (u = (x) & m1, u |= (u >> 1), ((x) & m2) << 1) ^ ((u >> 3) | (u >> 6))
-#define m4  (0x01010101 * BPOLY)
-#define gf_mulx(x) (u = (x) & m1, ((x) & m2) << 1) ^ ((u - (u >> 7)) & m4)
-*/
-
-/* Work out which tables are needed for the different options   */
-
-#ifdef  AES_ASM
-#ifdef  ENC_ROUND
-#undef  ENC_ROUND
-#endif
-#define ENC_ROUND   FOUR_TABLES
-#ifdef  LAST_ENC_ROUND
-#undef  LAST_ENC_ROUND
-#endif
-#define LAST_ENC_ROUND  FOUR_TABLES
-#ifdef  DEC_ROUND
-#undef  DEC_ROUND
-#endif
-#define DEC_ROUND   FOUR_TABLES
-#ifdef  LAST_DEC_ROUND
-#undef  LAST_DEC_ROUND
-#endif
-#define LAST_DEC_ROUND  FOUR_TABLES
-#ifdef  KEY_SCHED
-#undef  KEY_SCHED
-#define KEY_SCHED   FOUR_TABLES
-#endif
-#endif
-
-#if defined(ENCRYPTION) || defined(AES_ASM)
-#if ENC_ROUND == ONE_TABLE
-#define FT1_SET
-#elif ENC_ROUND == FOUR_TABLES
-#define FT4_SET
-#else
-#define SBX_SET
-#endif
-#if LAST_ENC_ROUND == ONE_TABLE
-#define FL1_SET
-#elif LAST_ENC_ROUND == FOUR_TABLES
-#define FL4_SET
-#elif !defined(SBX_SET)
-#define SBX_SET
-#endif
-#endif
-
-#if defined(DECRYPTION) || defined(AES_ASM)
-#if DEC_ROUND == ONE_TABLE
-#define IT1_SET
-#elif DEC_ROUND == FOUR_TABLES
-#define IT4_SET
-#else
-#define ISB_SET
-#endif
-#if LAST_DEC_ROUND == ONE_TABLE
-#define IL1_SET
-#elif LAST_DEC_ROUND == FOUR_TABLES
-#define IL4_SET
-#elif !defined(ISB_SET)
-#define ISB_SET
-#endif
-#endif
-
-#if defined(ENCRYPTION_KEY_SCHEDULE) || defined(DECRYPTION_KEY_SCHEDULE)
-#if KEY_SCHED == ONE_TABLE
-#define LS1_SET
-#define IM1_SET
-#elif KEY_SCHED == FOUR_TABLES
-#define LS4_SET
-#define IM4_SET
-#elif !defined(SBX_SET)
-#define SBX_SET
-#endif
-#endif
-
-/* generic definitions of Rijndael macros that use tables    */
-
-#define no_table(x,box,vf,rf,c) bytes2word( \
-    box[bval(vf(x,0,c),rf(0,c))], \
-    box[bval(vf(x,1,c),rf(1,c))], \
-    box[bval(vf(x,2,c),rf(2,c))], \
-    box[bval(vf(x,3,c),rf(3,c))])
-
-#define one_table(x,op,tab,vf,rf,c) \
- (     tab[bval(vf(x,0,c),rf(0,c))] \
-  ^ op(tab[bval(vf(x,1,c),rf(1,c))],1) \
-  ^ op(tab[bval(vf(x,2,c),rf(2,c))],2) \
-  ^ op(tab[bval(vf(x,3,c),rf(3,c))],3))
-
-#define four_tables(x,tab,vf,rf,c) \
- (  tab[0][bval(vf(x,0,c),rf(0,c))] \
-  ^ tab[1][bval(vf(x,1,c),rf(1,c))] \
-  ^ tab[2][bval(vf(x,2,c),rf(2,c))] \
-  ^ tab[3][bval(vf(x,3,c),rf(3,c))])
-
-#define vf1(x,r,c)  (x)
-#define rf1(r,c)    (r)
-#define rf2(r,c)    ((8+r-c)&3)
-
-/* perform forward and inverse column mix operation on four bytes in long word x in */
-/* parallel. NOTE: x must be a simple variable, NOT an expression in these macros.  */
-
-#if defined(FM4_SET)    /* not currently used */
-#define fwd_mcol(x)     four_tables(x,t_use(f,m),vf1,rf1,0)
-#elif defined(FM1_SET)  /* not currently used */
-#define fwd_mcol(x)     one_table(x,upr,t_use(f,m),vf1,rf1,0)
-#else
-#define dec_fmvars      aes_32t g2
-#define fwd_mcol(x)     (g2 = gf_mulx(x), g2 ^ upr((x) ^ g2, 3) ^ upr((x), 2) ^ upr((x), 1))
-#endif
-
-#if defined(IM4_SET)
-#define inv_mcol(x)     four_tables(x,t_use(i,m),vf1,rf1,0)
-#elif defined(IM1_SET)
-#define inv_mcol(x)     one_table(x,upr,t_use(i,m),vf1,rf1,0)
-#else
-#define dec_imvars      aes_32t g2, g4, g9
-#define inv_mcol(x)     (g2 = gf_mulx(x), g4 = gf_mulx(g2), g9 = (x) ^ gf_mulx(g4), g4 ^= g9, \
-                        (x) ^ g2 ^ g4 ^ upr(g2 ^ g9, 3) ^ upr(g4, 2) ^ upr(g9, 1))
-#endif
-
-#if defined(FL4_SET)
-#define ls_box(x,c)     four_tables(x,t_use(f,l),vf1,rf2,c)
-#elif   defined(LS4_SET)
-#define ls_box(x,c)     four_tables(x,t_use(l,s),vf1,rf2,c)
-#elif defined(FL1_SET)
-#define ls_box(x,c)     one_table(x,upr,t_use(f,l),vf1,rf2,c)
-#elif defined(LS1_SET)
-#define ls_box(x,c)     one_table(x,upr,t_use(l,s),vf1,rf2,c)
-#else
-#define ls_box(x,c)     no_table(x,t_use(s,box),vf1,rf2,c)
-#endif
-
-#if defined(__cplusplus)
-extern "C"
-{
-#endif
-
-/*  If there are no global variables, the definitions here can be
-    used to put the AES tables in a structure so that a pointer 
-    can then be added to the AES context to pass them to the AES
-    routines that need them.  If this facility is used, the calling 
-    program has to ensure that this pointer is managed appropriately. 
-    In particular, the value of the t_dec(in,it) item in the table 
-    structure must be set to zero in order to ensure that the tables 
-    are initialised. In practice the three code sequences in aeskey.c 
-    that control the calls to gen_tabs() and the gen_tabs() routine 
-    itself will have to be changed for a specific implementation. If 
-    global variables are available it will generally be preferable to 
-    use them with the precomputed FIXED_TABLES option that uses static 
-    global tables.
-
-    The following defines can be used to control the way the tables
-    are defined, initialised and used in embedded environments that
-    require special features for these purposes
-
-    the 't_dec' construction is used to declare fixed table arrays
-    the 't_set' construction is used to set fixed table values
-    the 't_use' construction is used to access fixed table values
-
-    256 byte tables:
-
-        t_xxx(s,box)    => forward S box
-        t_xxx(i,box)    => inverse S box
-
-    256 32-bit word OR 4 x 256 32-bit word tables:
-
-        t_xxx(f,n)      => forward normal round
-        t_xxx(f,l)      => forward last round
-        t_xxx(i,n)      => inverse normal round
-        t_xxx(i,l)      => inverse last round
-        t_xxx(l,s)      => key schedule table
-        t_xxx(i,m)      => key schedule table
-
-    Other variables and tables:
-
-        t_xxx(r,c)      => the rcon table
-*/
-
-#define t_dec(m,n) t_##m##n
-#define t_set(m,n) t_##m##n
-#define t_use(m,n) t_##m##n
-
-#if defined(DO_TABLES)  /* declare and instantiate tables   */
-
-/*  finite field arithmetic operations for table generation */
-
-#if defined(FIXED_TABLES) || !defined(FF_TABLES)
-
-#define f2(x)   ((x<<1) ^ (((x>>7) & 1) * WPOLY))
-#define f4(x)   ((x<<2) ^ (((x>>6) & 1) * WPOLY) ^ (((x>>6) & 2) * WPOLY))
-#define f8(x)   ((x<<3) ^ (((x>>5) & 1) * WPOLY) ^ (((x>>5) & 2) * WPOLY) \
-                        ^ (((x>>5) & 4) * WPOLY))
-#define f3(x)   (f2(x) ^ x)
-#define f9(x)   (f8(x) ^ x)
-#define fb(x)   (f8(x) ^ f2(x) ^ x)
-#define fd(x)   (f8(x) ^ f4(x) ^ x)
-#define fe(x)   (f8(x) ^ f4(x) ^ f2(x))
-
-#else
-
-#define f2(x) ((x) ? pow[log[x] + 0x19] : 0)
-#define f3(x) ((x) ? pow[log[x] + 0x01] : 0)
-#define f9(x) ((x) ? pow[log[x] + 0xc7] : 0)
-#define fb(x) ((x) ? pow[log[x] + 0x68] : 0)
-#define fd(x) ((x) ? pow[log[x] + 0xee] : 0)
-#define fe(x) ((x) ? pow[log[x] + 0xdf] : 0)
-#define fi(x) ((x) ? pow[ 255 - log[x]] : 0)
-
-#endif
-
-#if defined(FIXED_TABLES)   /* declare and set values for static tables */
-
-#define sb_data(w) \
-    w(0x63), w(0x7c), w(0x77), w(0x7b), w(0xf2), w(0x6b), w(0x6f), w(0xc5),\
-    w(0x30), w(0x01), w(0x67), w(0x2b), w(0xfe), w(0xd7), w(0xab), w(0x76),\
-    w(0xca), w(0x82), w(0xc9), w(0x7d), w(0xfa), w(0x59), w(0x47), w(0xf0),\
-    w(0xad), w(0xd4), w(0xa2), w(0xaf), w(0x9c), w(0xa4), w(0x72), w(0xc0),\
-    w(0xb7), w(0xfd), w(0x93), w(0x26), w(0x36), w(0x3f), w(0xf7), w(0xcc),\
-    w(0x34), w(0xa5), w(0xe5), w(0xf1), w(0x71), w(0xd8), w(0x31), w(0x15),\
-    w(0x04), w(0xc7), w(0x23), w(0xc3), w(0x18), w(0x96), w(0x05), w(0x9a),\
-    w(0x07), w(0x12), w(0x80), w(0xe2), w(0xeb), w(0x27), w(0xb2), w(0x75),\
-    w(0x09), w(0x83), w(0x2c), w(0x1a), w(0x1b), w(0x6e), w(0x5a), w(0xa0),\
-    w(0x52), w(0x3b), w(0xd6), w(0xb3), w(0x29), w(0xe3), w(0x2f), w(0x84),\
-    w(0x53), w(0xd1), w(0x00), w(0xed), w(0x20), w(0xfc), w(0xb1), w(0x5b),\
-    w(0x6a), w(0xcb), w(0xbe), w(0x39), w(0x4a), w(0x4c), w(0x58), w(0xcf),\
-    w(0xd0), w(0xef), w(0xaa), w(0xfb), w(0x43), w(0x4d), w(0x33), w(0x85),\
-    w(0x45), w(0xf9), w(0x02), w(0x7f), w(0x50), w(0x3c), w(0x9f), w(0xa8),\
-    w(0x51), w(0xa3), w(0x40), w(0x8f), w(0x92), w(0x9d), w(0x38), w(0xf5),\
-    w(0xbc), w(0xb6), w(0xda), w(0x21), w(0x10), w(0xff), w(0xf3), w(0xd2),\
-    w(0xcd), w(0x0c), w(0x13), w(0xec), w(0x5f), w(0x97), w(0x44), w(0x17),\
-    w(0xc4), w(0xa7), w(0x7e), w(0x3d), w(0x64), w(0x5d), w(0x19), w(0x73),\
-    w(0x60), w(0x81), w(0x4f), w(0xdc), w(0x22), w(0x2a), w(0x90), w(0x88),\
-    w(0x46), w(0xee), w(0xb8), w(0x14), w(0xde), w(0x5e), w(0x0b), w(0xdb),\
-    w(0xe0), w(0x32), w(0x3a), w(0x0a), w(0x49), w(0x06), w(0x24), w(0x5c),\
-    w(0xc2), w(0xd3), w(0xac), w(0x62), w(0x91), w(0x95), w(0xe4), w(0x79),\
-    w(0xe7), w(0xc8), w(0x37), w(0x6d), w(0x8d), w(0xd5), w(0x4e), w(0xa9),\
-    w(0x6c), w(0x56), w(0xf4), w(0xea), w(0x65), w(0x7a), w(0xae), w(0x08),\
-    w(0xba), w(0x78), w(0x25), w(0x2e), w(0x1c), w(0xa6), w(0xb4), w(0xc6),\
-    w(0xe8), w(0xdd), w(0x74), w(0x1f), w(0x4b), w(0xbd), w(0x8b), w(0x8a),\
-    w(0x70), w(0x3e), w(0xb5), w(0x66), w(0x48), w(0x03), w(0xf6), w(0x0e),\
-    w(0x61), w(0x35), w(0x57), w(0xb9), w(0x86), w(0xc1), w(0x1d), w(0x9e),\
-    w(0xe1), w(0xf8), w(0x98), w(0x11), w(0x69), w(0xd9), w(0x8e), w(0x94),\
-    w(0x9b), w(0x1e), w(0x87), w(0xe9), w(0xce), w(0x55), w(0x28), w(0xdf),\
-    w(0x8c), w(0xa1), w(0x89), w(0x0d), w(0xbf), w(0xe6), w(0x42), w(0x68),\
-    w(0x41), w(0x99), w(0x2d), w(0x0f), w(0xb0), w(0x54), w(0xbb), w(0x16)
-
-#define isb_data(w) \
-    w(0x52), w(0x09), w(0x6a), w(0xd5), w(0x30), w(0x36), w(0xa5), w(0x38),\
-    w(0xbf), w(0x40), w(0xa3), w(0x9e), w(0x81), w(0xf3), w(0xd7), w(0xfb),\
-    w(0x7c), w(0xe3), w(0x39), w(0x82), w(0x9b), w(0x2f), w(0xff), w(0x87),\
-    w(0x34), w(0x8e), w(0x43), w(0x44), w(0xc4), w(0xde), w(0xe9), w(0xcb),\
-    w(0x54), w(0x7b), w(0x94), w(0x32), w(0xa6), w(0xc2), w(0x23), w(0x3d),\
-    w(0xee), w(0x4c), w(0x95), w(0x0b), w(0x42), w(0xfa), w(0xc3), w(0x4e),\
-    w(0x08), w(0x2e), w(0xa1), w(0x66), w(0x28), w(0xd9), w(0x24), w(0xb2),\
-    w(0x76), w(0x5b), w(0xa2), w(0x49), w(0x6d), w(0x8b), w(0xd1), w(0x25),\
-    w(0x72), w(0xf8), w(0xf6), w(0x64), w(0x86), w(0x68), w(0x98), w(0x16),\
-    w(0xd4), w(0xa4), w(0x5c), w(0xcc), w(0x5d), w(0x65), w(0xb6), w(0x92),\
-    w(0x6c), w(0x70), w(0x48), w(0x50), w(0xfd), w(0xed), w(0xb9), w(0xda),\
-    w(0x5e), w(0x15), w(0x46), w(0x57), w(0xa7), w(0x8d), w(0x9d), w(0x84),\
-    w(0x90), w(0xd8), w(0xab), w(0x00), w(0x8c), w(0xbc), w(0xd3), w(0x0a),\
-    w(0xf7), w(0xe4), w(0x58), w(0x05), w(0xb8), w(0xb3), w(0x45), w(0x06),\
-    w(0xd0), w(0x2c), w(0x1e), w(0x8f), w(0xca), w(0x3f), w(0x0f), w(0x02),\
-    w(0xc1), w(0xaf), w(0xbd), w(0x03), w(0x01), w(0x13), w(0x8a), w(0x6b),\
-    w(0x3a), w(0x91), w(0x11), w(0x41), w(0x4f), w(0x67), w(0xdc), w(0xea),\
-    w(0x97), w(0xf2), w(0xcf), w(0xce), w(0xf0), w(0xb4), w(0xe6), w(0x73),\
-    w(0x96), w(0xac), w(0x74), w(0x22), w(0xe7), w(0xad), w(0x35), w(0x85),\
-    w(0xe2), w(0xf9), w(0x37), w(0xe8), w(0x1c), w(0x75), w(0xdf), w(0x6e),\
-    w(0x47), w(0xf1), w(0x1a), w(0x71), w(0x1d), w(0x29), w(0xc5), w(0x89),\
-    w(0x6f), w(0xb7), w(0x62), w(0x0e), w(0xaa), w(0x18), w(0xbe), w(0x1b),\
-    w(0xfc), w(0x56), w(0x3e), w(0x4b), w(0xc6), w(0xd2), w(0x79), w(0x20),\
-    w(0x9a), w(0xdb), w(0xc0), w(0xfe), w(0x78), w(0xcd), w(0x5a), w(0xf4),\
-    w(0x1f), w(0xdd), w(0xa8), w(0x33), w(0x88), w(0x07), w(0xc7), w(0x31),\
-    w(0xb1), w(0x12), w(0x10), w(0x59), w(0x27), w(0x80), w(0xec), w(0x5f),\
-    w(0x60), w(0x51), w(0x7f), w(0xa9), w(0x19), w(0xb5), w(0x4a), w(0x0d),\
-    w(0x2d), w(0xe5), w(0x7a), w(0x9f), w(0x93), w(0xc9), w(0x9c), w(0xef),\
-    w(0xa0), w(0xe0), w(0x3b), w(0x4d), w(0xae), w(0x2a), w(0xf5), w(0xb0),\
-    w(0xc8), w(0xeb), w(0xbb), w(0x3c), w(0x83), w(0x53), w(0x99), w(0x61),\
-    w(0x17), w(0x2b), w(0x04), w(0x7e), w(0xba), w(0x77), w(0xd6), w(0x26),\
-    w(0xe1), w(0x69), w(0x14), w(0x63), w(0x55), w(0x21), w(0x0c), w(0x7d),
-
-#define mm_data(w) \
-    w(0x00), w(0x01), w(0x02), w(0x03), w(0x04), w(0x05), w(0x06), w(0x07),\
-    w(0x08), w(0x09), w(0x0a), w(0x0b), w(0x0c), w(0x0d), w(0x0e), w(0x0f),\
-    w(0x10), w(0x11), w(0x12), w(0x13), w(0x14), w(0x15), w(0x16), w(0x17),\
-    w(0x18), w(0x19), w(0x1a), w(0x1b), w(0x1c), w(0x1d), w(0x1e), w(0x1f),\
-    w(0x20), w(0x21), w(0x22), w(0x23), w(0x24), w(0x25), w(0x26), w(0x27),\
-    w(0x28), w(0x29), w(0x2a), w(0x2b), w(0x2c), w(0x2d), w(0x2e), w(0x2f),\
-    w(0x30), w(0x31), w(0x32), w(0x33), w(0x34), w(0x35), w(0x36), w(0x37),\
-    w(0x38), w(0x39), w(0x3a), w(0x3b), w(0x3c), w(0x3d), w(0x3e), w(0x3f),\
-    w(0x40), w(0x41), w(0x42), w(0x43), w(0x44), w(0x45), w(0x46), w(0x47),\
-    w(0x48), w(0x49), w(0x4a), w(0x4b), w(0x4c), w(0x4d), w(0x4e), w(0x4f),\
-    w(0x50), w(0x51), w(0x52), w(0x53), w(0x54), w(0x55), w(0x56), w(0x57),\
-    w(0x58), w(0x59), w(0x5a), w(0x5b), w(0x5c), w(0x5d), w(0x5e), w(0x5f),\
-    w(0x60), w(0x61), w(0x62), w(0x63), w(0x64), w(0x65), w(0x66), w(0x67),\
-    w(0x68), w(0x69), w(0x6a), w(0x6b), w(0x6c), w(0x6d), w(0x6e), w(0x6f),\
-    w(0x70), w(0x71), w(0x72), w(0x73), w(0x74), w(0x75), w(0x76), w(0x77),\
-    w(0x78), w(0x79), w(0x7a), w(0x7b), w(0x7c), w(0x7d), w(0x7e), w(0x7f),\
-    w(0x80), w(0x81), w(0x82), w(0x83), w(0x84), w(0x85), w(0x86), w(0x87),\
-    w(0x88), w(0x89), w(0x8a), w(0x8b), w(0x8c), w(0x8d), w(0x8e), w(0x8f),\
-    w(0x90), w(0x91), w(0x92), w(0x93), w(0x94), w(0x95), w(0x96), w(0x97),\
-    w(0x98), w(0x99), w(0x9a), w(0x9b), w(0x9c), w(0x9d), w(0x9e), w(0x9f),\
-    w(0xa0), w(0xa1), w(0xa2), w(0xa3), w(0xa4), w(0xa5), w(0xa6), w(0xa7),\
-    w(0xa8), w(0xa9), w(0xaa), w(0xab), w(0xac), w(0xad), w(0xae), w(0xaf),\
-    w(0xb0), w(0xb1), w(0xb2), w(0xb3), w(0xb4), w(0xb5), w(0xb6), w(0xb7),\
-    w(0xb8), w(0xb9), w(0xba), w(0xbb), w(0xbc), w(0xbd), w(0xbe), w(0xbf),\
-    w(0xc0), w(0xc1), w(0xc2), w(0xc3), w(0xc4), w(0xc5), w(0xc6), w(0xc7),\
-    w(0xc8), w(0xc9), w(0xca), w(0xcb), w(0xcc), w(0xcd), w(0xce), w(0xcf),\
-    w(0xd0), w(0xd1), w(0xd2), w(0xd3), w(0xd4), w(0xd5), w(0xd6), w(0xd7),\
-    w(0xd8), w(0xd9), w(0xda), w(0xdb), w(0xdc), w(0xdd), w(0xde), w(0xdf),\
-    w(0xe0), w(0xe1), w(0xe2), w(0xe3), w(0xe4), w(0xe5), w(0xe6), w(0xe7),\
-    w(0xe8), w(0xe9), w(0xea), w(0xeb), w(0xec), w(0xed), w(0xee), w(0xef),\
-    w(0xf0), w(0xf1), w(0xf2), w(0xf3), w(0xf4), w(0xf5), w(0xf6), w(0xf7),\
-    w(0xf8), w(0xf9), w(0xfa), w(0xfb), w(0xfc), w(0xfd), w(0xfe), w(0xff)
-
-#define h0(x)   (x)
-
-/*  These defines are used to ensure tables are generated in the
-    right format depending on the internal byte order required
-*/
-
-#define w0(p)   bytes2word(p, 0, 0, 0)
-#define w1(p)   bytes2word(0, p, 0, 0)
-#define w2(p)   bytes2word(0, 0, p, 0)
-#define w3(p)   bytes2word(0, 0, 0, p)
-
-#define u0(p)   bytes2word(f2(p), p, p, f3(p))
-#define u1(p)   bytes2word(f3(p), f2(p), p, p)
-#define u2(p)   bytes2word(p, f3(p), f2(p), p)
-#define u3(p)   bytes2word(p, p, f3(p), f2(p))
-
-#define v0(p)   bytes2word(fe(p), f9(p), fd(p), fb(p))
-#define v1(p)   bytes2word(fb(p), fe(p), f9(p), fd(p))
-#define v2(p)   bytes2word(fd(p), fb(p), fe(p), f9(p))
-#define v3(p)   bytes2word(f9(p), fd(p), fb(p), fe(p))
-
-const aes_32t t_dec(r,c)[RC_LENGTH] =
-{
-    w0(0x01), w0(0x02), w0(0x04), w0(0x08), w0(0x10),
-    w0(0x20), w0(0x40), w0(0x80), w0(0x1b), w0(0x36)
-};
-
-#define d_1(t,n,b,v) const t n[256]    =   { b(v##0) }
-#define d_4(t,n,b,v) const t n[4][256] = { { b(v##0) }, { b(v##1) }, { b(v##2) }, { b(v##3) } }
-
-#else   /* declare and instantiate tables for dynamic value generation in in tab.c  */
-
-aes_32t t_dec(r,c)[RC_LENGTH];
-
-#define d_1(t,n,b,v) t  n[256]
-#define d_4(t,n,b,v) t  n[4][256]
-
-#endif
-
-#else   /* declare tables without instantiation */
-
-#if defined(FIXED_TABLES)
-
-extern const aes_32t t_dec(r,c)[RC_LENGTH];
-
-#if defined(_MSC_VER) && defined(TABLE_ALIGN)
-#define d_1(t,n,b,v) extern __declspec(align(TABLE_ALIGN)) const t  n[256]
-#define d_4(t,n,b,v) extern __declspec(align(TABLE_ALIGN)) const t  n[4][256]
-#else
-#define d_1(t,n,b,v) extern const t  n[256]
-#define d_4(t,n,b,v) extern const t  n[4][256]
-#endif
-#else
-
-extern aes_32t t_dec(r,c)[RC_LENGTH];
-
-#if defined(_MSC_VER) && defined(TABLE_ALIGN)
-#define d_1(t,n,b,v) extern __declspec(align(TABLE_ALIGN)) t  n[256]
-#define d_4(t,n,b,v) extern __declspec(align(TABLE_ALIGN)) t  n[4][256]
-#else
-#define d_1(t,n,b,v) extern t  n[256]
-#define d_4(t,n,b,v) extern t  n[4][256]
-#endif
-#endif
-
-#endif
-
-#ifdef  SBX_SET
-    d_1(aes_08t, t_dec(s,box), sb_data, h);
-#endif
-#ifdef  ISB_SET
-    d_1(aes_08t, t_dec(i,box), isb_data, h);
-#endif
-
-#ifdef  FT1_SET
-    d_1(aes_32t, t_dec(f,n), sb_data, u);
-#endif
-#ifdef  FT4_SET
-    d_4(aes_32t, t_dec(f,n), sb_data, u);
-#endif
-
-#ifdef  FL1_SET
-    d_1(aes_32t, t_dec(f,l), sb_data, w);
-#endif
-#ifdef  FL4_SET
-    d_4(aes_32t, t_dec(f,l), sb_data, w);
-#endif
-
-#ifdef  IT1_SET
-    d_1(aes_32t, t_dec(i,n), isb_data, v);
-#endif
-#ifdef  IT4_SET
-    d_4(aes_32t, t_dec(i,n), isb_data, v);
-#endif
-
-#ifdef  IL1_SET
-    d_1(aes_32t, t_dec(i,l), isb_data, w);
-#endif
-#ifdef  IL4_SET
-    d_4(aes_32t, t_dec(i,l), isb_data, w);
-#endif
-
-#ifdef  LS1_SET
-#ifdef  FL1_SET
-#undef  LS1_SET
-#else
-    d_1(aes_32t, t_dec(l,s), sb_data, w);
-#endif
-#endif
-
-#ifdef  LS4_SET
-#ifdef  FL4_SET
-#undef  LS4_SET
-#else
-    d_4(aes_32t, t_dec(l,s), sb_data, w);
-#endif
-#endif
-
-#ifdef  IM1_SET
-    d_1(aes_32t, t_dec(i,m), mm_data, v);
-#endif
-#ifdef  IM4_SET
-    d_4(aes_32t, t_dec(i,m), mm_data, v);
-#endif
-
-#if defined(__cplusplus)
-}
-#endif
-
-#endif
diff --git a/main/aestab.c b/main/aestab.c
deleted file mode 100644
index b134d22d83d8ac2a07b6194b9710bdd48d955f52..0000000000000000000000000000000000000000
--- a/main/aestab.c
+++ /dev/null
@@ -1,236 +0,0 @@
-/*
- ---------------------------------------------------------------------------
- Copyright (c) 2003, Dr Brian Gladman <brg@gladman.me.uk>, Worcester, UK.
- All rights reserved.
-
- LICENSE TERMS
-
- The free distribution and use of this software in both source and binary
- form is allowed (with or without changes) provided that:
-
-   1. distributions of this source code include the above copyright
-      notice, this list of conditions and the following disclaimer;
-
-   2. distributions in binary form include the above copyright
-      notice, this list of conditions and the following disclaimer
-      in the documentation and/or other associated materials;
-
-   3. the copyright holder's name is not used to endorse products
-      built using this software without specific written permission.
-
- ALTERNATIVELY, provided that this notice is retained in full, this product
- may be distributed under the terms of the GNU General Public License (GPL),
- in which case the provisions of the GPL apply INSTEAD OF those given above.
-
- DISCLAIMER
-
- This software is provided 'as is' with no explicit or implied warranties
- in respect of its properties, including, but not limited to, correctness
- and/or fitness for purpose.
- ---------------------------------------------------------------------------
- Issue Date: 26/08/2003
-
-*/
-
-#if defined(__cplusplus)
-extern "C"
-{
-#endif
-
-#ifndef HAVE_CRYPTO
-
-#define DO_TABLES
-
-#include "aesopt.h"
-
-#if defined(FIXED_TABLES)
-
-/* implemented in case of wrong call for fixed tables */
-
-void gen_tabs(void)
-{
-}
-
-#else   /* dynamic table generation */
-
-#if !defined(FF_TABLES)
-
-/*  Generate the tables for the dynamic table option
-
-    It will generally be sensible to use tables to compute finite
-    field multiplies and inverses but where memory is scarse this
-    code might sometimes be better. But it only has effect during
-    initialisation so its pretty unimportant in overall terms.
-*/
-
-/*  return 2 ^ (n - 1) where n is the bit number of the highest bit
-    set in x with x in the range 1 < x < 0x00000200.   This form is
-    used so that locals within fi can be bytes rather than words
-*/
-
-static aes_08t hibit(const aes_32t x)
-{   aes_08t r = (aes_08t)((x >> 1) | (x >> 2));
-
-    r |= (r >> 2);
-    r |= (r >> 4);
-    return (r + 1) >> 1;
-}
-
-/* return the inverse of the finite field element x */
-
-static aes_08t fi(const aes_08t x)
-{   aes_08t p1 = x, p2 = BPOLY, n1 = hibit(x), n2 = 0x80, v1 = 1, v2 = 0;
-
-    if(x < 2) return x;
-
-    for(;;)
-    {
-        if(!n1) return v1;
-
-        while(n2 >= n1)
-        {
-            n2 /= n1; p2 ^= p1 * n2; v2 ^= v1 * n2; n2 = hibit(p2);
-        }
-
-        if(!n2) return v2;
-
-        while(n1 >= n2)
-        {
-            n1 /= n2; p1 ^= p2 * n1; v1 ^= v2 * n1; n1 = hibit(p1);
-        }
-    }
-}
-
-#endif
-
-/* The forward and inverse affine transformations used in the S-box */
-
-#define fwd_affine(x) \
-    (w = (aes_32t)x, w ^= (w<<1)^(w<<2)^(w<<3)^(w<<4), 0x63^(aes_08t)(w^(w>>8)))
-
-#define inv_affine(x) \
-    (w = (aes_32t)x, w = (w<<1)^(w<<3)^(w<<6), 0x05^(aes_08t)(w^(w>>8)))
-
-static int init = 0;
-
-void gen_tabs(void)
-{   aes_32t  i, w;
-
-#if defined(FF_TABLES)
-
-    aes_08t  pow[512], log[256];
-
-    if(init) return;
-    /*  log and power tables for GF(2^8) finite field with
-        WPOLY as modular polynomial - the simplest primitive
-        root is 0x03, used here to generate the tables
-    */
-
-    i = 0; w = 1;
-    do
-    {
-        pow[i] = (aes_08t)w;
-        pow[i + 255] = (aes_08t)w;
-        log[w] = (aes_08t)i++;
-        w ^=  (w << 1) ^ (w & 0x80 ? WPOLY : 0);
-    }
-    while (w != 1);
-
-#else
-    if(init) return;
-#endif
-
-    for(i = 0, w = 1; i < RC_LENGTH; ++i)
-    {
-        t_set(r,c)[i] = bytes2word(w, 0, 0, 0);
-        w = f2(w);
-    }
-
-    for(i = 0; i < 256; ++i)
-    {   aes_08t    b;
-
-        b = fwd_affine(fi((aes_08t)i));
-        w = bytes2word(f2(b), b, b, f3(b));
-
-#ifdef  SBX_SET
-        t_set(s,box)[i] = b;
-#endif
-
-#ifdef  FT1_SET                 /* tables for a normal encryption round */
-        t_set(f,n)[i] = w;
-#endif
-#ifdef  FT4_SET
-        t_set(f,n)[0][i] = w;
-        t_set(f,n)[1][i] = upr(w,1);
-        t_set(f,n)[2][i] = upr(w,2);
-        t_set(f,n)[3][i] = upr(w,3);
-#endif
-        w = bytes2word(b, 0, 0, 0);
-
-#ifdef  FL1_SET                 /* tables for last encryption round (may also   */
-        t_set(f,l)[i] = w;        /* be used in the key schedule)                 */
-#endif
-#ifdef  FL4_SET
-        t_set(f,l)[0][i] = w;
-        t_set(f,l)[1][i] = upr(w,1);
-        t_set(f,l)[2][i] = upr(w,2);
-        t_set(f,l)[3][i] = upr(w,3);
-#endif
-
-#ifdef  LS1_SET                 /* table for key schedule if t_set(f,l) above is    */
-        t_set(l,s)[i] = w;      /* not of the required form                     */
-#endif
-#ifdef  LS4_SET
-        t_set(l,s)[0][i] = w;
-        t_set(l,s)[1][i] = upr(w,1);
-        t_set(l,s)[2][i] = upr(w,2);
-        t_set(l,s)[3][i] = upr(w,3);
-#endif
-
-        b = fi(inv_affine((aes_08t)i));
-        w = bytes2word(fe(b), f9(b), fd(b), fb(b));
-
-#ifdef  IM1_SET                 /* tables for the inverse mix column operation  */
-        t_set(i,m)[b] = w;
-#endif
-#ifdef  IM4_SET
-        t_set(i,m)[0][b] = w;
-        t_set(i,m)[1][b] = upr(w,1);
-        t_set(i,m)[2][b] = upr(w,2);
-        t_set(i,m)[3][b] = upr(w,3);
-#endif
-
-#ifdef  ISB_SET
-        t_set(i,box)[i] = b;
-#endif
-#ifdef  IT1_SET                 /* tables for a normal decryption round */
-        t_set(i,n)[i] = w;
-#endif
-#ifdef  IT4_SET
-        t_set(i,n)[0][i] = w;
-        t_set(i,n)[1][i] = upr(w,1);
-        t_set(i,n)[2][i] = upr(w,2);
-        t_set(i,n)[3][i] = upr(w,3);
-#endif
-        w = bytes2word(b, 0, 0, 0);
-#ifdef  IL1_SET                 /* tables for last decryption round */
-        t_set(i,l)[i] = w;
-#endif
-#ifdef  IL4_SET
-        t_set(i,l)[0][i] = w;
-        t_set(i,l)[1][i] = upr(w,1);
-        t_set(i,l)[2][i] = upr(w,2);
-        t_set(i,l)[3][i] = upr(w,3);
-#endif
-    }
-    init = 1;
-}
-
-#endif
-
-#endif /* !HAVE_CRYPTO */
-
-#if defined(__cplusplus)
-}
-#endif
-
diff --git a/pbx/dundi-parser.h b/pbx/dundi-parser.h
index 69a717e6f2940ba6e65cddb7d773f889a0c0924f..b24d486a0e5ea0013403e5b578662a7d4f34cd2c 100644
--- a/pbx/dundi-parser.h
+++ b/pbx/dundi-parser.h
@@ -13,7 +13,7 @@
 #define _DUNDI_PARSER_H
 
 #include "asterisk/dundi.h"
-#include "asterisk/aes.h"
+#include "asterisk/crypto.h"
 
 #define DUNDI_MAX_STACK 512
 #define DUNDI_MAX_ANSWERS	100
diff --git a/pbx/pbx_dundi.c b/pbx/pbx_dundi.c
index 420af27f8a9b12ec8a6db38bf27fe1d40d20105b..aaa30da0cb10169e2e9b5984e7a30437bcc47fe3 100644
--- a/pbx/pbx_dundi.c
+++ b/pbx/pbx_dundi.c
@@ -61,7 +61,6 @@ ASTERISK_FILE_VERSION(__FILE__, "$Revision$")
 #include "asterisk/crypto.h"
 #include "asterisk/astdb.h"
 #include "asterisk/acl.h"
-#include "asterisk/aes.h"
 #include "asterisk/app.h"
 
 #include "dundi-parser.h"
@@ -1313,8 +1312,8 @@ static int update_key(struct dundi_peer *peer)
 	int res;
 	if (!peer->keyexpire || (peer->keyexpire < time(NULL))) {
 		build_iv(key);
-		ast_aes_encrypt_key(key, &peer->us_ecx);
-		ast_aes_decrypt_key(key, &peer->us_dcx);
+		ast_aes_set_encrypt_key(key, &peer->us_ecx);
+		ast_aes_set_decrypt_key(key, &peer->us_dcx);
 		ekey = ast_key_get(peer->inkey, AST_KEY_PUBLIC);
 		if (!ekey) {
 			ast_log(LOG_NOTICE, "No such key '%s' for creating RSA encrypted shared key for '%s'!\n",
@@ -1516,8 +1515,8 @@ static int check_key(struct dundi_peer *peer, unsigned char *newkey, unsigned ch
 	memcpy(peer->rxenckey, newkey, 128);
 	memcpy(peer->rxenckey + 128, newsig, 128);
 	peer->them_keycrc32 = crc32(0L, peer->rxenckey, 128);
-	ast_aes_decrypt_key(dst, &peer->them_dcx);
-	ast_aes_encrypt_key(dst, &peer->them_ecx);
+	ast_aes_set_decrypt_key(dst, &peer->them_dcx);
+	ast_aes_set_encrypt_key(dst, &peer->them_ecx);
 	return 1;
 }
 
diff --git a/res/res_crypto.c b/res/res_crypto.c
index cb87eeec3c5403d3f827a8c81a7ace9c042b078c..e7793a6aa8629f9d132f599e362212fecfe08a46 100644
--- a/res/res_crypto.c
+++ b/res/res_crypto.c
@@ -37,6 +37,7 @@ ASTERISK_FILE_VERSION(__FILE__, "$Revision$")
 #include "asterisk/paths.h"	/* use ast_config_AST_KEY_DIR */
 #include <openssl/ssl.h>
 #include <openssl/err.h>
+#include <openssl/aes.h>
 #include <dirent.h>
 
 #include "asterisk/module.h"
@@ -453,6 +454,26 @@ int AST_OPTIONAL_API_NAME(ast_crypto_loaded)(void)
 	return 1;
 }
 
+int AST_OPTIONAL_API_NAME(ast_aes_set_encrypt_key)(const unsigned char *key, ast_aes_encrypt_key *ctx)
+{
+	return AES_set_encrypt_key(key, 128, ctx);
+}
+
+int AST_OPTIONAL_API_NAME(ast_aes_set_decrypt_key)(const unsigned char *key, ast_aes_decrypt_key *ctx)
+{
+	return AES_set_decrypt_key(key, 128, ctx);
+}
+
+void AST_OPTIONAL_API_NAME(ast_aes_encrypt)(const unsigned char *in, unsigned char *out, const ast_aes_encrypt_key *ctx)
+{
+	return AES_encrypt(in, out, ctx);
+}
+
+void AST_OPTIONAL_API_NAME(ast_aes_decrypt)(const unsigned char *in, unsigned char *out, const ast_aes_decrypt_key *ctx)
+{
+	return AES_decrypt(in, out, ctx);
+}
+
 /*!
  * \brief refresh RSA keys from file
  * \param ifd file descriptor
diff --git a/res/res_crypto.exports.in b/res/res_crypto.exports.in
index 4f5832e77cbee3993493594cc19279d024f424b3..d7200b50f992b1db6958cb3ff5d480a7404c8228 100644
--- a/res/res_crypto.exports.in
+++ b/res/res_crypto.exports.in
@@ -8,6 +8,10 @@
 		LINKER_SYMBOL_PREFIX*ast_key_get;
 		LINKER_SYMBOL_PREFIX*ast_sign;
 		LINKER_SYMBOL_PREFIX*ast_sign_bin;
+		LINKER_SYMBOL_PREFIX*ast_aes_encrypt;
+		LINKER_SYMBOL_PREFIX*ast_aes_decrypt;
+		LINKER_SYMBOL_PREFIX*ast_aes_set_encrypt_key;
+		LINKER_SYMBOL_PREFIX*ast_aes_set_decrypt_key;
 	local:
 		*;
 };