Skip to content
Snippets Groups Projects
compaction.c 56.2 KiB
Newer Older
  • Learn to ignore specific revisions
  • Kenneth Johansson's avatar
    Kenneth Johansson committed
    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000
    /*
     * linux/mm/compaction.c
     *
     * Memory compaction for the reduction of external fragmentation. Note that
     * this heavily depends upon page migration to do all the real heavy
     * lifting
     *
     * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
     */
    #include <linux/cpu.h>
    #include <linux/swap.h>
    #include <linux/migrate.h>
    #include <linux/compaction.h>
    #include <linux/mm_inline.h>
    #include <linux/backing-dev.h>
    #include <linux/sysctl.h>
    #include <linux/sysfs.h>
    #include <linux/page-isolation.h>
    #include <linux/kasan.h>
    #include <linux/kthread.h>
    #include <linux/freezer.h>
    #include <linux/page_owner.h>
    #include "internal.h"
    
    #ifdef CONFIG_COMPACTION
    static inline void count_compact_event(enum vm_event_item item)
    {
    	count_vm_event(item);
    }
    
    static inline void count_compact_events(enum vm_event_item item, long delta)
    {
    	count_vm_events(item, delta);
    }
    #else
    #define count_compact_event(item) do { } while (0)
    #define count_compact_events(item, delta) do { } while (0)
    #endif
    
    #if defined CONFIG_COMPACTION || defined CONFIG_CMA
    
    #define CREATE_TRACE_POINTS
    #include <trace/events/compaction.h>
    
    #define block_start_pfn(pfn, order)	round_down(pfn, 1UL << (order))
    #define block_end_pfn(pfn, order)	ALIGN((pfn) + 1, 1UL << (order))
    #define pageblock_start_pfn(pfn)	block_start_pfn(pfn, pageblock_order)
    #define pageblock_end_pfn(pfn)		block_end_pfn(pfn, pageblock_order)
    
    static unsigned long release_freepages(struct list_head *freelist)
    {
    	struct page *page, *next;
    	unsigned long high_pfn = 0;
    
    	list_for_each_entry_safe(page, next, freelist, lru) {
    		unsigned long pfn = page_to_pfn(page);
    		list_del(&page->lru);
    		__free_page(page);
    		if (pfn > high_pfn)
    			high_pfn = pfn;
    	}
    
    	return high_pfn;
    }
    
    static void map_pages(struct list_head *list)
    {
    	unsigned int i, order, nr_pages;
    	struct page *page, *next;
    	LIST_HEAD(tmp_list);
    
    	list_for_each_entry_safe(page, next, list, lru) {
    		list_del(&page->lru);
    
    		order = page_private(page);
    		nr_pages = 1 << order;
    
    		post_alloc_hook(page, order, __GFP_MOVABLE);
    		if (order)
    			split_page(page, order);
    
    		for (i = 0; i < nr_pages; i++) {
    			list_add(&page->lru, &tmp_list);
    			page++;
    		}
    	}
    
    	list_splice(&tmp_list, list);
    }
    
    static inline bool migrate_async_suitable(int migratetype)
    {
    	return is_migrate_cma(migratetype) || migratetype == MIGRATE_MOVABLE;
    }
    
    #ifdef CONFIG_COMPACTION
    
    int PageMovable(struct page *page)
    {
    	struct address_space *mapping;
    
    	VM_BUG_ON_PAGE(!PageLocked(page), page);
    	if (!__PageMovable(page))
    		return 0;
    
    	mapping = page_mapping(page);
    	if (mapping && mapping->a_ops && mapping->a_ops->isolate_page)
    		return 1;
    
    	return 0;
    }
    EXPORT_SYMBOL(PageMovable);
    
    void __SetPageMovable(struct page *page, struct address_space *mapping)
    {
    	VM_BUG_ON_PAGE(!PageLocked(page), page);
    	VM_BUG_ON_PAGE((unsigned long)mapping & PAGE_MAPPING_MOVABLE, page);
    	page->mapping = (void *)((unsigned long)mapping | PAGE_MAPPING_MOVABLE);
    }
    EXPORT_SYMBOL(__SetPageMovable);
    
    void __ClearPageMovable(struct page *page)
    {
    	VM_BUG_ON_PAGE(!PageLocked(page), page);
    	VM_BUG_ON_PAGE(!PageMovable(page), page);
    	/*
    	 * Clear registered address_space val with keeping PAGE_MAPPING_MOVABLE
    	 * flag so that VM can catch up released page by driver after isolation.
    	 * With it, VM migration doesn't try to put it back.
    	 */
    	page->mapping = (void *)((unsigned long)page->mapping &
    				PAGE_MAPPING_MOVABLE);
    }
    EXPORT_SYMBOL(__ClearPageMovable);
    
    /* Do not skip compaction more than 64 times */
    #define COMPACT_MAX_DEFER_SHIFT 6
    
    /*
     * Compaction is deferred when compaction fails to result in a page
     * allocation success. 1 << compact_defer_limit compactions are skipped up
     * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
     */
    void defer_compaction(struct zone *zone, int order)
    {
    	zone->compact_considered = 0;
    	zone->compact_defer_shift++;
    
    	if (order < zone->compact_order_failed)
    		zone->compact_order_failed = order;
    
    	if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
    		zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;
    
    	trace_mm_compaction_defer_compaction(zone, order);
    }
    
    /* Returns true if compaction should be skipped this time */
    bool compaction_deferred(struct zone *zone, int order)
    {
    	unsigned long defer_limit = 1UL << zone->compact_defer_shift;
    
    	if (order < zone->compact_order_failed)
    		return false;
    
    	/* Avoid possible overflow */
    	if (++zone->compact_considered > defer_limit)
    		zone->compact_considered = defer_limit;
    
    	if (zone->compact_considered >= defer_limit)
    		return false;
    
    	trace_mm_compaction_deferred(zone, order);
    
    	return true;
    }
    
    /*
     * Update defer tracking counters after successful compaction of given order,
     * which means an allocation either succeeded (alloc_success == true) or is
     * expected to succeed.
     */
    void compaction_defer_reset(struct zone *zone, int order,
    		bool alloc_success)
    {
    	if (alloc_success) {
    		zone->compact_considered = 0;
    		zone->compact_defer_shift = 0;
    	}
    	if (order >= zone->compact_order_failed)
    		zone->compact_order_failed = order + 1;
    
    	trace_mm_compaction_defer_reset(zone, order);
    }
    
    /* Returns true if restarting compaction after many failures */
    bool compaction_restarting(struct zone *zone, int order)
    {
    	if (order < zone->compact_order_failed)
    		return false;
    
    	return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
    		zone->compact_considered >= 1UL << zone->compact_defer_shift;
    }
    
    /* Returns true if the pageblock should be scanned for pages to isolate. */
    static inline bool isolation_suitable(struct compact_control *cc,
    					struct page *page)
    {
    	if (cc->ignore_skip_hint)
    		return true;
    
    	return !get_pageblock_skip(page);
    }
    
    static void reset_cached_positions(struct zone *zone)
    {
    	zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
    	zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
    	zone->compact_cached_free_pfn =
    				pageblock_start_pfn(zone_end_pfn(zone) - 1);
    }
    
    /*
     * This function is called to clear all cached information on pageblocks that
     * should be skipped for page isolation when the migrate and free page scanner
     * meet.
     */
    static void __reset_isolation_suitable(struct zone *zone)
    {
    	unsigned long start_pfn = zone->zone_start_pfn;
    	unsigned long end_pfn = zone_end_pfn(zone);
    	unsigned long pfn;
    
    	zone->compact_blockskip_flush = false;
    
    	/* Walk the zone and mark every pageblock as suitable for isolation */
    	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
    		struct page *page;
    
    		cond_resched();
    
    		if (!pfn_valid(pfn))
    			continue;
    
    		page = pfn_to_page(pfn);
    		if (zone != page_zone(page))
    			continue;
    
    		clear_pageblock_skip(page);
    	}
    
    	reset_cached_positions(zone);
    }
    
    void reset_isolation_suitable(pg_data_t *pgdat)
    {
    	int zoneid;
    
    	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
    		struct zone *zone = &pgdat->node_zones[zoneid];
    		if (!populated_zone(zone))
    			continue;
    
    		/* Only flush if a full compaction finished recently */
    		if (zone->compact_blockskip_flush)
    			__reset_isolation_suitable(zone);
    	}
    }
    
    /*
     * If no pages were isolated then mark this pageblock to be skipped in the
     * future. The information is later cleared by __reset_isolation_suitable().
     */
    static void update_pageblock_skip(struct compact_control *cc,
    			struct page *page, unsigned long nr_isolated,
    			bool migrate_scanner)
    {
    	struct zone *zone = cc->zone;
    	unsigned long pfn;
    
    	if (cc->ignore_skip_hint)
    		return;
    
    	if (!page)
    		return;
    
    	if (nr_isolated)
    		return;
    
    	set_pageblock_skip(page);
    
    	pfn = page_to_pfn(page);
    
    	/* Update where async and sync compaction should restart */
    	if (migrate_scanner) {
    		if (pfn > zone->compact_cached_migrate_pfn[0])
    			zone->compact_cached_migrate_pfn[0] = pfn;
    		if (cc->mode != MIGRATE_ASYNC &&
    		    pfn > zone->compact_cached_migrate_pfn[1])
    			zone->compact_cached_migrate_pfn[1] = pfn;
    	} else {
    		if (pfn < zone->compact_cached_free_pfn)
    			zone->compact_cached_free_pfn = pfn;
    	}
    }
    #else
    static inline bool isolation_suitable(struct compact_control *cc,
    					struct page *page)
    {
    	return true;
    }
    
    static void update_pageblock_skip(struct compact_control *cc,
    			struct page *page, unsigned long nr_isolated,
    			bool migrate_scanner)
    {
    }
    #endif /* CONFIG_COMPACTION */
    
    /*
     * Compaction requires the taking of some coarse locks that are potentially
     * very heavily contended. For async compaction, back out if the lock cannot
     * be taken immediately. For sync compaction, spin on the lock if needed.
     *
     * Returns true if the lock is held
     * Returns false if the lock is not held and compaction should abort
     */
    static bool compact_trylock_irqsave(spinlock_t *lock, unsigned long *flags,
    						struct compact_control *cc)
    {
    	if (cc->mode == MIGRATE_ASYNC) {
    		if (!spin_trylock_irqsave(lock, *flags)) {
    			cc->contended = true;
    			return false;
    		}
    	} else {
    		spin_lock_irqsave(lock, *flags);
    	}
    
    	return true;
    }
    
    /*
     * Compaction requires the taking of some coarse locks that are potentially
     * very heavily contended. The lock should be periodically unlocked to avoid
     * having disabled IRQs for a long time, even when there is nobody waiting on
     * the lock. It might also be that allowing the IRQs will result in
     * need_resched() becoming true. If scheduling is needed, async compaction
     * aborts. Sync compaction schedules.
     * Either compaction type will also abort if a fatal signal is pending.
     * In either case if the lock was locked, it is dropped and not regained.
     *
     * Returns true if compaction should abort due to fatal signal pending, or
     *		async compaction due to need_resched()
     * Returns false when compaction can continue (sync compaction might have
     *		scheduled)
     */
    static bool compact_unlock_should_abort(spinlock_t *lock,
    		unsigned long flags, bool *locked, struct compact_control *cc)
    {
    	if (*locked) {
    		spin_unlock_irqrestore(lock, flags);
    		*locked = false;
    	}
    
    	if (fatal_signal_pending(current)) {
    		cc->contended = true;
    		return true;
    	}
    
    	if (need_resched()) {
    		if (cc->mode == MIGRATE_ASYNC) {
    			cc->contended = true;
    			return true;
    		}
    		cond_resched();
    	}
    
    	return false;
    }
    
    /*
     * Aside from avoiding lock contention, compaction also periodically checks
     * need_resched() and either schedules in sync compaction or aborts async
     * compaction. This is similar to what compact_unlock_should_abort() does, but
     * is used where no lock is concerned.
     *
     * Returns false when no scheduling was needed, or sync compaction scheduled.
     * Returns true when async compaction should abort.
     */
    static inline bool compact_should_abort(struct compact_control *cc)
    {
    	/* async compaction aborts if contended */
    	if (need_resched()) {
    		if (cc->mode == MIGRATE_ASYNC) {
    			cc->contended = true;
    			return true;
    		}
    
    		cond_resched();
    	}
    
    	return false;
    }
    
    /*
     * Isolate free pages onto a private freelist. If @strict is true, will abort
     * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
     * (even though it may still end up isolating some pages).
     */
    static unsigned long isolate_freepages_block(struct compact_control *cc,
    				unsigned long *start_pfn,
    				unsigned long end_pfn,
    				struct list_head *freelist,
    				bool strict)
    {
    	int nr_scanned = 0, total_isolated = 0;
    	struct page *cursor, *valid_page = NULL;
    	unsigned long flags = 0;
    	bool locked = false;
    	unsigned long blockpfn = *start_pfn;
    	unsigned int order;
    
    	cursor = pfn_to_page(blockpfn);
    
    	/* Isolate free pages. */
    	for (; blockpfn < end_pfn; blockpfn++, cursor++) {
    		int isolated;
    		struct page *page = cursor;
    
    		/*
    		 * Periodically drop the lock (if held) regardless of its
    		 * contention, to give chance to IRQs. Abort if fatal signal
    		 * pending or async compaction detects need_resched()
    		 */
    		if (!(blockpfn % SWAP_CLUSTER_MAX)
    		    && compact_unlock_should_abort(&cc->zone->lock, flags,
    								&locked, cc))
    			break;
    
    		nr_scanned++;
    		if (!pfn_valid_within(blockpfn))
    			goto isolate_fail;
    
    		if (!valid_page)
    			valid_page = page;
    
    		/*
    		 * For compound pages such as THP and hugetlbfs, we can save
    		 * potentially a lot of iterations if we skip them at once.
    		 * The check is racy, but we can consider only valid values
    		 * and the only danger is skipping too much.
    		 */
    		if (PageCompound(page)) {
    			unsigned int comp_order = compound_order(page);
    
    			if (likely(comp_order < MAX_ORDER)) {
    				blockpfn += (1UL << comp_order) - 1;
    				cursor += (1UL << comp_order) - 1;
    			}
    
    			goto isolate_fail;
    		}
    
    		if (!PageBuddy(page))
    			goto isolate_fail;
    
    		/*
    		 * If we already hold the lock, we can skip some rechecking.
    		 * Note that if we hold the lock now, checked_pageblock was
    		 * already set in some previous iteration (or strict is true),
    		 * so it is correct to skip the suitable migration target
    		 * recheck as well.
    		 */
    		if (!locked) {
    			/*
    			 * The zone lock must be held to isolate freepages.
    			 * Unfortunately this is a very coarse lock and can be
    			 * heavily contended if there are parallel allocations
    			 * or parallel compactions. For async compaction do not
    			 * spin on the lock and we acquire the lock as late as
    			 * possible.
    			 */
    			locked = compact_trylock_irqsave(&cc->zone->lock,
    								&flags, cc);
    			if (!locked)
    				break;
    
    			/* Recheck this is a buddy page under lock */
    			if (!PageBuddy(page))
    				goto isolate_fail;
    		}
    
    		/* Found a free page, will break it into order-0 pages */
    		order = page_order(page);
    		isolated = __isolate_free_page(page, order);
    		if (!isolated)
    			break;
    		set_page_private(page, order);
    
    		total_isolated += isolated;
    		cc->nr_freepages += isolated;
    		list_add_tail(&page->lru, freelist);
    
    		if (!strict && cc->nr_migratepages <= cc->nr_freepages) {
    			blockpfn += isolated;
    			break;
    		}
    		/* Advance to the end of split page */
    		blockpfn += isolated - 1;
    		cursor += isolated - 1;
    		continue;
    
    isolate_fail:
    		if (strict)
    			break;
    		else
    			continue;
    
    	}
    
    	if (locked)
    		spin_unlock_irqrestore(&cc->zone->lock, flags);
    
    	/*
    	 * There is a tiny chance that we have read bogus compound_order(),
    	 * so be careful to not go outside of the pageblock.
    	 */
    	if (unlikely(blockpfn > end_pfn))
    		blockpfn = end_pfn;
    
    	trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
    					nr_scanned, total_isolated);
    
    	/* Record how far we have got within the block */
    	*start_pfn = blockpfn;
    
    	/*
    	 * If strict isolation is requested by CMA then check that all the
    	 * pages requested were isolated. If there were any failures, 0 is
    	 * returned and CMA will fail.
    	 */
    	if (strict && blockpfn < end_pfn)
    		total_isolated = 0;
    
    	/* Update the pageblock-skip if the whole pageblock was scanned */
    	if (blockpfn == end_pfn)
    		update_pageblock_skip(cc, valid_page, total_isolated, false);
    
    	count_compact_events(COMPACTFREE_SCANNED, nr_scanned);
    	if (total_isolated)
    		count_compact_events(COMPACTISOLATED, total_isolated);
    	return total_isolated;
    }
    
    /**
     * isolate_freepages_range() - isolate free pages.
     * @start_pfn: The first PFN to start isolating.
     * @end_pfn:   The one-past-last PFN.
     *
     * Non-free pages, invalid PFNs, or zone boundaries within the
     * [start_pfn, end_pfn) range are considered errors, cause function to
     * undo its actions and return zero.
     *
     * Otherwise, function returns one-past-the-last PFN of isolated page
     * (which may be greater then end_pfn if end fell in a middle of
     * a free page).
     */
    unsigned long
    isolate_freepages_range(struct compact_control *cc,
    			unsigned long start_pfn, unsigned long end_pfn)
    {
    	unsigned long isolated, pfn, block_start_pfn, block_end_pfn;
    	LIST_HEAD(freelist);
    
    	pfn = start_pfn;
    	block_start_pfn = pageblock_start_pfn(pfn);
    	if (block_start_pfn < cc->zone->zone_start_pfn)
    		block_start_pfn = cc->zone->zone_start_pfn;
    	block_end_pfn = pageblock_end_pfn(pfn);
    
    	for (; pfn < end_pfn; pfn += isolated,
    				block_start_pfn = block_end_pfn,
    				block_end_pfn += pageblock_nr_pages) {
    		/* Protect pfn from changing by isolate_freepages_block */
    		unsigned long isolate_start_pfn = pfn;
    
    		block_end_pfn = min(block_end_pfn, end_pfn);
    
    		/*
    		 * pfn could pass the block_end_pfn if isolated freepage
    		 * is more than pageblock order. In this case, we adjust
    		 * scanning range to right one.
    		 */
    		if (pfn >= block_end_pfn) {
    			block_start_pfn = pageblock_start_pfn(pfn);
    			block_end_pfn = pageblock_end_pfn(pfn);
    			block_end_pfn = min(block_end_pfn, end_pfn);
    		}
    
    		if (!pageblock_pfn_to_page(block_start_pfn,
    					block_end_pfn, cc->zone))
    			break;
    
    		isolated = isolate_freepages_block(cc, &isolate_start_pfn,
    						block_end_pfn, &freelist, true);
    
    		/*
    		 * In strict mode, isolate_freepages_block() returns 0 if
    		 * there are any holes in the block (ie. invalid PFNs or
    		 * non-free pages).
    		 */
    		if (!isolated)
    			break;
    
    		/*
    		 * If we managed to isolate pages, it is always (1 << n) *
    		 * pageblock_nr_pages for some non-negative n.  (Max order
    		 * page may span two pageblocks).
    		 */
    	}
    
    	/* __isolate_free_page() does not map the pages */
    	map_pages(&freelist);
    
    	if (pfn < end_pfn) {
    		/* Loop terminated early, cleanup. */
    		release_freepages(&freelist);
    		return 0;
    	}
    
    	/* We don't use freelists for anything. */
    	return pfn;
    }
    
    /* Similar to reclaim, but different enough that they don't share logic */
    static bool too_many_isolated(struct zone *zone)
    {
    	unsigned long active, inactive, isolated;
    
    	inactive = node_page_state(zone->zone_pgdat, NR_INACTIVE_FILE) +
    			node_page_state(zone->zone_pgdat, NR_INACTIVE_ANON);
    	active = node_page_state(zone->zone_pgdat, NR_ACTIVE_FILE) +
    			node_page_state(zone->zone_pgdat, NR_ACTIVE_ANON);
    	isolated = node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE) +
    			node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON);
    
    	return isolated > (inactive + active) / 2;
    }
    
    /**
     * isolate_migratepages_block() - isolate all migrate-able pages within
     *				  a single pageblock
     * @cc:		Compaction control structure.
     * @low_pfn:	The first PFN to isolate
     * @end_pfn:	The one-past-the-last PFN to isolate, within same pageblock
     * @isolate_mode: Isolation mode to be used.
     *
     * Isolate all pages that can be migrated from the range specified by
     * [low_pfn, end_pfn). The range is expected to be within same pageblock.
     * Returns zero if there is a fatal signal pending, otherwise PFN of the
     * first page that was not scanned (which may be both less, equal to or more
     * than end_pfn).
     *
     * The pages are isolated on cc->migratepages list (not required to be empty),
     * and cc->nr_migratepages is updated accordingly. The cc->migrate_pfn field
     * is neither read nor updated.
     */
    static unsigned long
    isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
    			unsigned long end_pfn, isolate_mode_t isolate_mode)
    {
    	struct zone *zone = cc->zone;
    	unsigned long nr_scanned = 0, nr_isolated = 0;
    	struct lruvec *lruvec;
    	unsigned long flags = 0;
    	bool locked = false;
    	struct page *page = NULL, *valid_page = NULL;
    	unsigned long start_pfn = low_pfn;
    	bool skip_on_failure = false;
    	unsigned long next_skip_pfn = 0;
    
    	/*
    	 * Ensure that there are not too many pages isolated from the LRU
    	 * list by either parallel reclaimers or compaction. If there are,
    	 * delay for some time until fewer pages are isolated
    	 */
    	while (unlikely(too_many_isolated(zone))) {
    		/* async migration should just abort */
    		if (cc->mode == MIGRATE_ASYNC)
    			return 0;
    
    		congestion_wait(BLK_RW_ASYNC, HZ/10);
    
    		if (fatal_signal_pending(current))
    			return 0;
    	}
    
    	if (compact_should_abort(cc))
    		return 0;
    
    	if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) {
    		skip_on_failure = true;
    		next_skip_pfn = block_end_pfn(low_pfn, cc->order);
    	}
    
    	/* Time to isolate some pages for migration */
    	for (; low_pfn < end_pfn; low_pfn++) {
    
    		if (skip_on_failure && low_pfn >= next_skip_pfn) {
    			/*
    			 * We have isolated all migration candidates in the
    			 * previous order-aligned block, and did not skip it due
    			 * to failure. We should migrate the pages now and
    			 * hopefully succeed compaction.
    			 */
    			if (nr_isolated)
    				break;
    
    			/*
    			 * We failed to isolate in the previous order-aligned
    			 * block. Set the new boundary to the end of the
    			 * current block. Note we can't simply increase
    			 * next_skip_pfn by 1 << order, as low_pfn might have
    			 * been incremented by a higher number due to skipping
    			 * a compound or a high-order buddy page in the
    			 * previous loop iteration.
    			 */
    			next_skip_pfn = block_end_pfn(low_pfn, cc->order);
    		}
    
    		/*
    		 * Periodically drop the lock (if held) regardless of its
    		 * contention, to give chance to IRQs. Abort async compaction
    		 * if contended.
    		 */
    		if (!(low_pfn % SWAP_CLUSTER_MAX)
    		    && compact_unlock_should_abort(zone_lru_lock(zone), flags,
    								&locked, cc))
    			break;
    
    		if (!pfn_valid_within(low_pfn))
    			goto isolate_fail;
    		nr_scanned++;
    
    		page = pfn_to_page(low_pfn);
    
    		if (!valid_page)
    			valid_page = page;
    
    		/*
    		 * Skip if free. We read page order here without zone lock
    		 * which is generally unsafe, but the race window is small and
    		 * the worst thing that can happen is that we skip some
    		 * potential isolation targets.
    		 */
    		if (PageBuddy(page)) {
    			unsigned long freepage_order = page_order_unsafe(page);
    
    			/*
    			 * Without lock, we cannot be sure that what we got is
    			 * a valid page order. Consider only values in the
    			 * valid order range to prevent low_pfn overflow.
    			 */
    			if (freepage_order > 0 && freepage_order < MAX_ORDER)
    				low_pfn += (1UL << freepage_order) - 1;
    			continue;
    		}
    
    		/*
    		 * Regardless of being on LRU, compound pages such as THP and
    		 * hugetlbfs are not to be compacted. We can potentially save
    		 * a lot of iterations if we skip them at once. The check is
    		 * racy, but we can consider only valid values and the only
    		 * danger is skipping too much.
    		 */
    		if (PageCompound(page)) {
    			unsigned int comp_order = compound_order(page);
    
    			if (likely(comp_order < MAX_ORDER))
    				low_pfn += (1UL << comp_order) - 1;
    
    			goto isolate_fail;
    		}
    
    		/*
    		 * Check may be lockless but that's ok as we recheck later.
    		 * It's possible to migrate LRU and non-lru movable pages.
    		 * Skip any other type of page
    		 */
    		if (!PageLRU(page)) {
    			/*
    			 * __PageMovable can return false positive so we need
    			 * to verify it under page_lock.
    			 */
    			if (unlikely(__PageMovable(page)) &&
    					!PageIsolated(page)) {
    				if (locked) {
    					spin_unlock_irqrestore(zone_lru_lock(zone),
    									flags);
    					locked = false;
    				}
    
    				if (isolate_movable_page(page, isolate_mode))
    					goto isolate_success;
    			}
    
    			goto isolate_fail;
    		}
    
    		/*
    		 * Migration will fail if an anonymous page is pinned in memory,
    		 * so avoid taking lru_lock and isolating it unnecessarily in an
    		 * admittedly racy check.
    		 */
    		if (!page_mapping(page) &&
    		    page_count(page) > page_mapcount(page))
    			goto isolate_fail;
    
    		/* If we already hold the lock, we can skip some rechecking */
    		if (!locked) {
    			locked = compact_trylock_irqsave(zone_lru_lock(zone),
    								&flags, cc);
    			if (!locked)
    				break;
    
    			/* Recheck PageLRU and PageCompound under lock */
    			if (!PageLRU(page))
    				goto isolate_fail;
    
    			/*
    			 * Page become compound since the non-locked check,
    			 * and it's on LRU. It can only be a THP so the order
    			 * is safe to read and it's 0 for tail pages.
    			 */
    			if (unlikely(PageCompound(page))) {
    				low_pfn += (1UL << compound_order(page)) - 1;
    				goto isolate_fail;
    			}
    		}
    
    		lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
    
    		/* Try isolate the page */
    		if (__isolate_lru_page(page, isolate_mode) != 0)
    			goto isolate_fail;
    
    		VM_BUG_ON_PAGE(PageCompound(page), page);
    
    		/* Successfully isolated */
    		del_page_from_lru_list(page, lruvec, page_lru(page));
    		inc_node_page_state(page,
    				NR_ISOLATED_ANON + page_is_file_cache(page));
    
    isolate_success:
    		list_add(&page->lru, &cc->migratepages);
    		cc->nr_migratepages++;
    		nr_isolated++;
    
    		/*
    		 * Record where we could have freed pages by migration and not
    		 * yet flushed them to buddy allocator.
    		 * - this is the lowest page that was isolated and likely be
    		 * then freed by migration.
    		 */
    		if (!cc->last_migrated_pfn)
    			cc->last_migrated_pfn = low_pfn;
    
    		/* Avoid isolating too much */
    		if (cc->nr_migratepages == COMPACT_CLUSTER_MAX) {
    			++low_pfn;
    			break;
    		}
    
    		continue;
    isolate_fail:
    		if (!skip_on_failure)
    			continue;
    
    		/*
    		 * We have isolated some pages, but then failed. Release them
    		 * instead of migrating, as we cannot form the cc->order buddy
    		 * page anyway.
    		 */
    		if (nr_isolated) {
    			if (locked) {
    				spin_unlock_irqrestore(zone_lru_lock(zone), flags);
    				locked = false;
    			}
    			putback_movable_pages(&cc->migratepages);
    			cc->nr_migratepages = 0;
    			cc->last_migrated_pfn = 0;
    			nr_isolated = 0;
    		}
    
    		if (low_pfn < next_skip_pfn) {
    			low_pfn = next_skip_pfn - 1;
    			/*
    			 * The check near the loop beginning would have updated
    			 * next_skip_pfn too, but this is a bit simpler.
    			 */
    			next_skip_pfn += 1UL << cc->order;
    		}
    	}
    
    	/*
    	 * The PageBuddy() check could have potentially brought us outside
    	 * the range to be scanned.
    	 */
    	if (unlikely(low_pfn > end_pfn))
    		low_pfn = end_pfn;
    
    	if (locked)
    		spin_unlock_irqrestore(zone_lru_lock(zone), flags);
    
    	/*
    	 * Update the pageblock-skip information and cached scanner pfn,
    	 * if the whole pageblock was scanned without isolating any page.
    	 */
    	if (low_pfn == end_pfn)
    		update_pageblock_skip(cc, valid_page, nr_isolated, true);
    
    	trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
    						nr_scanned, nr_isolated);
    
    	count_compact_events(COMPACTMIGRATE_SCANNED, nr_scanned);
    	if (nr_isolated)
    		count_compact_events(COMPACTISOLATED, nr_isolated);
    
    	return low_pfn;
    }
    
    /**
     * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
     * @cc:        Compaction control structure.
     * @start_pfn: The first PFN to start isolating.
     * @end_pfn:   The one-past-last PFN.
     *
     * Returns zero if isolation fails fatally due to e.g. pending signal.
     * Otherwise, function returns one-past-the-last PFN of isolated page
     * (which may be greater than end_pfn if end fell in a middle of a THP page).
     */
    unsigned long
    isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
    							unsigned long end_pfn)
    {
    	unsigned long pfn, block_start_pfn, block_end_pfn;
    
    	/* Scan block by block. First and last block may be incomplete */
    	pfn = start_pfn;
    	block_start_pfn = pageblock_start_pfn(pfn);
    	if (block_start_pfn < cc->zone->zone_start_pfn)
    		block_start_pfn = cc->zone->zone_start_pfn;
    	block_end_pfn = pageblock_end_pfn(pfn);
    
    	for (; pfn < end_pfn; pfn = block_end_pfn,
    				block_start_pfn = block_end_pfn,
    				block_end_pfn += pageblock_nr_pages) {
    
    		block_end_pfn = min(block_end_pfn, end_pfn);
    
    		if (!pageblock_pfn_to_page(block_start_pfn,
    					block_end_pfn, cc->zone))
    			continue;
    
    		pfn = isolate_migratepages_block(cc, pfn, block_end_pfn,
    							ISOLATE_UNEVICTABLE);
    
    		if (!pfn)
    			break;
    
    		if (cc->nr_migratepages == COMPACT_CLUSTER_MAX)
    			break;
    	}
    
    	return pfn;
    }
    
    #endif /* CONFIG_COMPACTION || CONFIG_CMA */
    #ifdef CONFIG_COMPACTION
    
    /* Returns true if the page is within a block suitable for migration to */
    static bool suitable_migration_target(struct compact_control *cc,
    							struct page *page)
    {
    	if (cc->ignore_block_suitable)
    		return true;
    
    	/* If the page is a large free page, then disallow migration */
    	if (PageBuddy(page)) {
    		/*
    		 * We are checking page_order without zone->lock taken. But
    		 * the only small danger is that we skip a potentially suitable
    		 * pageblock, so it's not worth to check order for valid range.
    		 */
    		if (page_order_unsafe(page) >= pageblock_order)
    			return false;
    	}