Skip to content
Snippets Groups Projects
filemap.c 77.6 KiB
Newer Older
  • Learn to ignore specific revisions
  • Kenneth Johansson's avatar
    Kenneth Johansson committed
    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000
    /*
     *	linux/mm/filemap.c
     *
     * Copyright (C) 1994-1999  Linus Torvalds
     */
    
    /*
     * This file handles the generic file mmap semantics used by
     * most "normal" filesystems (but you don't /have/ to use this:
     * the NFS filesystem used to do this differently, for example)
     */
    #include <linux/export.h>
    #include <linux/compiler.h>
    #include <linux/dax.h>
    #include <linux/fs.h>
    #include <linux/uaccess.h>
    #include <linux/capability.h>
    #include <linux/kernel_stat.h>
    #include <linux/gfp.h>
    #include <linux/mm.h>
    #include <linux/swap.h>
    #include <linux/mman.h>
    #include <linux/pagemap.h>
    #include <linux/file.h>
    #include <linux/uio.h>
    #include <linux/hash.h>
    #include <linux/writeback.h>
    #include <linux/backing-dev.h>
    #include <linux/pagevec.h>
    #include <linux/blkdev.h>
    #include <linux/security.h>
    #include <linux/cpuset.h>
    #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
    #include <linux/hugetlb.h>
    #include <linux/memcontrol.h>
    #include <linux/cleancache.h>
    #include <linux/rmap.h>
    #include "internal.h"
    
    #define CREATE_TRACE_POINTS
    #include <trace/events/filemap.h>
    
    /*
     * FIXME: remove all knowledge of the buffer layer from the core VM
     */
    #include <linux/buffer_head.h> /* for try_to_free_buffers */
    
    #include <asm/mman.h>
    
    /*
     * Shared mappings implemented 30.11.1994. It's not fully working yet,
     * though.
     *
     * Shared mappings now work. 15.8.1995  Bruno.
     *
     * finished 'unifying' the page and buffer cache and SMP-threaded the
     * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
     *
     * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
     */
    
    /*
     * Lock ordering:
     *
     *  ->i_mmap_rwsem		(truncate_pagecache)
     *    ->private_lock		(__free_pte->__set_page_dirty_buffers)
     *      ->swap_lock		(exclusive_swap_page, others)
     *        ->mapping->tree_lock
     *
     *  ->i_mutex
     *    ->i_mmap_rwsem		(truncate->unmap_mapping_range)
     *
     *  ->mmap_sem
     *    ->i_mmap_rwsem
     *      ->page_table_lock or pte_lock	(various, mainly in memory.c)
     *        ->mapping->tree_lock	(arch-dependent flush_dcache_mmap_lock)
     *
     *  ->mmap_sem
     *    ->lock_page		(access_process_vm)
     *
     *  ->i_mutex			(generic_perform_write)
     *    ->mmap_sem		(fault_in_pages_readable->do_page_fault)
     *
     *  bdi->wb.list_lock
     *    sb_lock			(fs/fs-writeback.c)
     *    ->mapping->tree_lock	(__sync_single_inode)
     *
     *  ->i_mmap_rwsem
     *    ->anon_vma.lock		(vma_adjust)
     *
     *  ->anon_vma.lock
     *    ->page_table_lock or pte_lock	(anon_vma_prepare and various)
     *
     *  ->page_table_lock or pte_lock
     *    ->swap_lock		(try_to_unmap_one)
     *    ->private_lock		(try_to_unmap_one)
     *    ->tree_lock		(try_to_unmap_one)
     *    ->zone_lru_lock(zone)	(follow_page->mark_page_accessed)
     *    ->zone_lru_lock(zone)	(check_pte_range->isolate_lru_page)
     *    ->private_lock		(page_remove_rmap->set_page_dirty)
     *    ->tree_lock		(page_remove_rmap->set_page_dirty)
     *    bdi.wb->list_lock		(page_remove_rmap->set_page_dirty)
     *    ->inode->i_lock		(page_remove_rmap->set_page_dirty)
     *    ->memcg->move_lock	(page_remove_rmap->lock_page_memcg)
     *    bdi.wb->list_lock		(zap_pte_range->set_page_dirty)
     *    ->inode->i_lock		(zap_pte_range->set_page_dirty)
     *    ->private_lock		(zap_pte_range->__set_page_dirty_buffers)
     *
     * ->i_mmap_rwsem
     *   ->tasklist_lock            (memory_failure, collect_procs_ao)
     */
    
    static int page_cache_tree_insert(struct address_space *mapping,
    				  struct page *page, void **shadowp)
    {
    	struct radix_tree_node *node;
    	void **slot;
    	int error;
    
    	error = __radix_tree_create(&mapping->page_tree, page->index, 0,
    				    &node, &slot);
    	if (error)
    		return error;
    	if (*slot) {
    		void *p;
    
    		p = radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
    		if (!radix_tree_exceptional_entry(p))
    			return -EEXIST;
    
    		mapping->nrexceptional--;
    		if (!dax_mapping(mapping)) {
    			if (shadowp)
    				*shadowp = p;
    			if (node)
    				workingset_node_shadows_dec(node);
    		} else {
    			/* DAX can replace empty locked entry with a hole */
    			WARN_ON_ONCE(p !=
    				(void *)(RADIX_TREE_EXCEPTIONAL_ENTRY |
    					 RADIX_DAX_ENTRY_LOCK));
    			/* DAX accounts exceptional entries as normal pages */
    			if (node)
    				workingset_node_pages_dec(node);
    			/* Wakeup waiters for exceptional entry lock */
    			dax_wake_mapping_entry_waiter(mapping, page->index,
    						      true);
    		}
    	}
    	radix_tree_replace_slot(slot, page);
    	mapping->nrpages++;
    	if (node) {
    		workingset_node_pages_inc(node);
    		/*
    		 * Don't track node that contains actual pages.
    		 *
    		 * Avoid acquiring the list_lru lock if already
    		 * untracked.  The list_empty() test is safe as
    		 * node->private_list is protected by
    		 * mapping->tree_lock.
    		 */
    		if (!list_empty(&node->private_list))
    			list_lru_del(&workingset_shadow_nodes,
    				     &node->private_list);
    	}
    	return 0;
    }
    
    static void page_cache_tree_delete(struct address_space *mapping,
    				   struct page *page, void *shadow)
    {
    	int i, nr = PageHuge(page) ? 1 : hpage_nr_pages(page);
    
    	VM_BUG_ON_PAGE(!PageLocked(page), page);
    	VM_BUG_ON_PAGE(PageTail(page), page);
    	VM_BUG_ON_PAGE(nr != 1 && shadow, page);
    
    	for (i = 0; i < nr; i++) {
    		struct radix_tree_node *node;
    		void **slot;
    
    		__radix_tree_lookup(&mapping->page_tree, page->index + i,
    				    &node, &slot);
    
    		radix_tree_clear_tags(&mapping->page_tree, node, slot);
    
    		if (!node) {
    			VM_BUG_ON_PAGE(nr != 1, page);
    			/*
    			 * We need a node to properly account shadow
    			 * entries. Don't plant any without. XXX
    			 */
    			shadow = NULL;
    		}
    
    		radix_tree_replace_slot(slot, shadow);
    
    		if (!node)
    			break;
    
    		workingset_node_pages_dec(node);
    		if (shadow)
    			workingset_node_shadows_inc(node);
    		else
    			if (__radix_tree_delete_node(&mapping->page_tree, node))
    				continue;
    
    		/*
    		 * Track node that only contains shadow entries. DAX mappings
    		 * contain no shadow entries and may contain other exceptional
    		 * entries so skip those.
    		 *
    		 * Avoid acquiring the list_lru lock if already tracked.
    		 * The list_empty() test is safe as node->private_list is
    		 * protected by mapping->tree_lock.
    		 */
    		if (!dax_mapping(mapping) && !workingset_node_pages(node) &&
    				list_empty(&node->private_list)) {
    			node->private_data = mapping;
    			list_lru_add(&workingset_shadow_nodes,
    					&node->private_list);
    		}
    	}
    
    	if (shadow) {
    		mapping->nrexceptional += nr;
    		/*
    		 * Make sure the nrexceptional update is committed before
    		 * the nrpages update so that final truncate racing
    		 * with reclaim does not see both counters 0 at the
    		 * same time and miss a shadow entry.
    		 */
    		smp_wmb();
    	}
    	mapping->nrpages -= nr;
    }
    
    /*
     * Delete a page from the page cache and free it. Caller has to make
     * sure the page is locked and that nobody else uses it - or that usage
     * is safe.  The caller must hold the mapping's tree_lock.
     */
    void __delete_from_page_cache(struct page *page, void *shadow)
    {
    	struct address_space *mapping = page->mapping;
    	int nr = hpage_nr_pages(page);
    
    	trace_mm_filemap_delete_from_page_cache(page);
    	/*
    	 * if we're uptodate, flush out into the cleancache, otherwise
    	 * invalidate any existing cleancache entries.  We can't leave
    	 * stale data around in the cleancache once our page is gone
    	 */
    	if (PageUptodate(page) && PageMappedToDisk(page))
    		cleancache_put_page(page);
    	else
    		cleancache_invalidate_page(mapping, page);
    
    	VM_BUG_ON_PAGE(PageTail(page), page);
    	VM_BUG_ON_PAGE(page_mapped(page), page);
    	if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) {
    		int mapcount;
    
    		pr_alert("BUG: Bad page cache in process %s  pfn:%05lx\n",
    			 current->comm, page_to_pfn(page));
    		dump_page(page, "still mapped when deleted");
    		dump_stack();
    		add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
    
    		mapcount = page_mapcount(page);
    		if (mapping_exiting(mapping) &&
    		    page_count(page) >= mapcount + 2) {
    			/*
    			 * All vmas have already been torn down, so it's
    			 * a good bet that actually the page is unmapped,
    			 * and we'd prefer not to leak it: if we're wrong,
    			 * some other bad page check should catch it later.
    			 */
    			page_mapcount_reset(page);
    			page_ref_sub(page, mapcount);
    		}
    	}
    
    	page_cache_tree_delete(mapping, page, shadow);
    
    	page->mapping = NULL;
    	/* Leave page->index set: truncation lookup relies upon it */
    
    	/* hugetlb pages do not participate in page cache accounting. */
    	if (!PageHuge(page))
    		__mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr);
    	if (PageSwapBacked(page)) {
    		__mod_node_page_state(page_pgdat(page), NR_SHMEM, -nr);
    		if (PageTransHuge(page))
    			__dec_node_page_state(page, NR_SHMEM_THPS);
    	} else {
    		VM_BUG_ON_PAGE(PageTransHuge(page) && !PageHuge(page), page);
    	}
    
    	/*
    	 * At this point page must be either written or cleaned by truncate.
    	 * Dirty page here signals a bug and loss of unwritten data.
    	 *
    	 * This fixes dirty accounting after removing the page entirely but
    	 * leaves PageDirty set: it has no effect for truncated page and
    	 * anyway will be cleared before returning page into buddy allocator.
    	 */
    	if (WARN_ON_ONCE(PageDirty(page)))
    		account_page_cleaned(page, mapping, inode_to_wb(mapping->host));
    }
    
    /**
     * delete_from_page_cache - delete page from page cache
     * @page: the page which the kernel is trying to remove from page cache
     *
     * This must be called only on pages that have been verified to be in the page
     * cache and locked.  It will never put the page into the free list, the caller
     * has a reference on the page.
     */
    void delete_from_page_cache(struct page *page)
    {
    	struct address_space *mapping = page_mapping(page);
    	unsigned long flags;
    	void (*freepage)(struct page *);
    
    	BUG_ON(!PageLocked(page));
    
    	freepage = mapping->a_ops->freepage;
    
    	spin_lock_irqsave(&mapping->tree_lock, flags);
    	__delete_from_page_cache(page, NULL);
    	spin_unlock_irqrestore(&mapping->tree_lock, flags);
    
    	if (freepage)
    		freepage(page);
    
    	if (PageTransHuge(page) && !PageHuge(page)) {
    		page_ref_sub(page, HPAGE_PMD_NR);
    		VM_BUG_ON_PAGE(page_count(page) <= 0, page);
    	} else {
    		put_page(page);
    	}
    }
    EXPORT_SYMBOL(delete_from_page_cache);
    
    int filemap_check_errors(struct address_space *mapping)
    {
    	int ret = 0;
    	/* Check for outstanding write errors */
    	if (test_bit(AS_ENOSPC, &mapping->flags) &&
    	    test_and_clear_bit(AS_ENOSPC, &mapping->flags))
    		ret = -ENOSPC;
    	if (test_bit(AS_EIO, &mapping->flags) &&
    	    test_and_clear_bit(AS_EIO, &mapping->flags))
    		ret = -EIO;
    	return ret;
    }
    EXPORT_SYMBOL(filemap_check_errors);
    
    /**
     * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
     * @mapping:	address space structure to write
     * @start:	offset in bytes where the range starts
     * @end:	offset in bytes where the range ends (inclusive)
     * @sync_mode:	enable synchronous operation
     *
     * Start writeback against all of a mapping's dirty pages that lie
     * within the byte offsets <start, end> inclusive.
     *
     * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
     * opposed to a regular memory cleansing writeback.  The difference between
     * these two operations is that if a dirty page/buffer is encountered, it must
     * be waited upon, and not just skipped over.
     */
    int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
    				loff_t end, int sync_mode)
    {
    	int ret;
    	struct writeback_control wbc = {
    		.sync_mode = sync_mode,
    		.nr_to_write = LONG_MAX,
    		.range_start = start,
    		.range_end = end,
    	};
    
    	if (!mapping_cap_writeback_dirty(mapping))
    		return 0;
    
    	wbc_attach_fdatawrite_inode(&wbc, mapping->host);
    	ret = do_writepages(mapping, &wbc);
    	wbc_detach_inode(&wbc);
    	return ret;
    }
    
    static inline int __filemap_fdatawrite(struct address_space *mapping,
    	int sync_mode)
    {
    	return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
    }
    
    int filemap_fdatawrite(struct address_space *mapping)
    {
    	return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
    }
    EXPORT_SYMBOL(filemap_fdatawrite);
    
    int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
    				loff_t end)
    {
    	return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
    }
    EXPORT_SYMBOL(filemap_fdatawrite_range);
    
    /**
     * filemap_flush - mostly a non-blocking flush
     * @mapping:	target address_space
     *
     * This is a mostly non-blocking flush.  Not suitable for data-integrity
     * purposes - I/O may not be started against all dirty pages.
     */
    int filemap_flush(struct address_space *mapping)
    {
    	return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
    }
    EXPORT_SYMBOL(filemap_flush);
    
    static int __filemap_fdatawait_range(struct address_space *mapping,
    				     loff_t start_byte, loff_t end_byte)
    {
    	pgoff_t index = start_byte >> PAGE_SHIFT;
    	pgoff_t end = end_byte >> PAGE_SHIFT;
    	struct pagevec pvec;
    	int nr_pages;
    	int ret = 0;
    
    	if (end_byte < start_byte)
    		goto out;
    
    	pagevec_init(&pvec, 0);
    	while ((index <= end) &&
    			(nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
    			PAGECACHE_TAG_WRITEBACK,
    			min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
    		unsigned i;
    
    		for (i = 0; i < nr_pages; i++) {
    			struct page *page = pvec.pages[i];
    
    			/* until radix tree lookup accepts end_index */
    			if (page->index > end)
    				continue;
    
    			wait_on_page_writeback(page);
    			if (TestClearPageError(page))
    				ret = -EIO;
    		}
    		pagevec_release(&pvec);
    		cond_resched();
    	}
    out:
    	return ret;
    }
    
    /**
     * filemap_fdatawait_range - wait for writeback to complete
     * @mapping:		address space structure to wait for
     * @start_byte:		offset in bytes where the range starts
     * @end_byte:		offset in bytes where the range ends (inclusive)
     *
     * Walk the list of under-writeback pages of the given address space
     * in the given range and wait for all of them.  Check error status of
     * the address space and return it.
     *
     * Since the error status of the address space is cleared by this function,
     * callers are responsible for checking the return value and handling and/or
     * reporting the error.
     */
    int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
    			    loff_t end_byte)
    {
    	int ret, ret2;
    
    	ret = __filemap_fdatawait_range(mapping, start_byte, end_byte);
    	ret2 = filemap_check_errors(mapping);
    	if (!ret)
    		ret = ret2;
    
    	return ret;
    }
    EXPORT_SYMBOL(filemap_fdatawait_range);
    
    /**
     * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
     * @mapping: address space structure to wait for
     *
     * Walk the list of under-writeback pages of the given address space
     * and wait for all of them.  Unlike filemap_fdatawait(), this function
     * does not clear error status of the address space.
     *
     * Use this function if callers don't handle errors themselves.  Expected
     * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
     * fsfreeze(8)
     */
    void filemap_fdatawait_keep_errors(struct address_space *mapping)
    {
    	loff_t i_size = i_size_read(mapping->host);
    
    	if (i_size == 0)
    		return;
    
    	__filemap_fdatawait_range(mapping, 0, i_size - 1);
    }
    
    /**
     * filemap_fdatawait - wait for all under-writeback pages to complete
     * @mapping: address space structure to wait for
     *
     * Walk the list of under-writeback pages of the given address space
     * and wait for all of them.  Check error status of the address space
     * and return it.
     *
     * Since the error status of the address space is cleared by this function,
     * callers are responsible for checking the return value and handling and/or
     * reporting the error.
     */
    int filemap_fdatawait(struct address_space *mapping)
    {
    	loff_t i_size = i_size_read(mapping->host);
    
    	if (i_size == 0)
    		return 0;
    
    	return filemap_fdatawait_range(mapping, 0, i_size - 1);
    }
    EXPORT_SYMBOL(filemap_fdatawait);
    
    int filemap_write_and_wait(struct address_space *mapping)
    {
    	int err = 0;
    
    	if ((!dax_mapping(mapping) && mapping->nrpages) ||
    	    (dax_mapping(mapping) && mapping->nrexceptional)) {
    		err = filemap_fdatawrite(mapping);
    		/*
    		 * Even if the above returned error, the pages may be
    		 * written partially (e.g. -ENOSPC), so we wait for it.
    		 * But the -EIO is special case, it may indicate the worst
    		 * thing (e.g. bug) happened, so we avoid waiting for it.
    		 */
    		if (err != -EIO) {
    			int err2 = filemap_fdatawait(mapping);
    			if (!err)
    				err = err2;
    		}
    	} else {
    		err = filemap_check_errors(mapping);
    	}
    	return err;
    }
    EXPORT_SYMBOL(filemap_write_and_wait);
    
    /**
     * filemap_write_and_wait_range - write out & wait on a file range
     * @mapping:	the address_space for the pages
     * @lstart:	offset in bytes where the range starts
     * @lend:	offset in bytes where the range ends (inclusive)
     *
     * Write out and wait upon file offsets lstart->lend, inclusive.
     *
     * Note that `lend' is inclusive (describes the last byte to be written) so
     * that this function can be used to write to the very end-of-file (end = -1).
     */
    int filemap_write_and_wait_range(struct address_space *mapping,
    				 loff_t lstart, loff_t lend)
    {
    	int err = 0;
    
    	if ((!dax_mapping(mapping) && mapping->nrpages) ||
    	    (dax_mapping(mapping) && mapping->nrexceptional)) {
    		err = __filemap_fdatawrite_range(mapping, lstart, lend,
    						 WB_SYNC_ALL);
    		/* See comment of filemap_write_and_wait() */
    		if (err != -EIO) {
    			int err2 = filemap_fdatawait_range(mapping,
    						lstart, lend);
    			if (!err)
    				err = err2;
    		}
    	} else {
    		err = filemap_check_errors(mapping);
    	}
    	return err;
    }
    EXPORT_SYMBOL(filemap_write_and_wait_range);
    
    /**
     * replace_page_cache_page - replace a pagecache page with a new one
     * @old:	page to be replaced
     * @new:	page to replace with
     * @gfp_mask:	allocation mode
     *
     * This function replaces a page in the pagecache with a new one.  On
     * success it acquires the pagecache reference for the new page and
     * drops it for the old page.  Both the old and new pages must be
     * locked.  This function does not add the new page to the LRU, the
     * caller must do that.
     *
     * The remove + add is atomic.  The only way this function can fail is
     * memory allocation failure.
     */
    int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
    {
    	int error;
    
    	VM_BUG_ON_PAGE(!PageLocked(old), old);
    	VM_BUG_ON_PAGE(!PageLocked(new), new);
    	VM_BUG_ON_PAGE(new->mapping, new);
    
    	error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
    	if (!error) {
    		struct address_space *mapping = old->mapping;
    		void (*freepage)(struct page *);
    		unsigned long flags;
    
    		pgoff_t offset = old->index;
    		freepage = mapping->a_ops->freepage;
    
    		get_page(new);
    		new->mapping = mapping;
    		new->index = offset;
    
    		spin_lock_irqsave(&mapping->tree_lock, flags);
    		__delete_from_page_cache(old, NULL);
    		error = page_cache_tree_insert(mapping, new, NULL);
    		BUG_ON(error);
    
    		/*
    		 * hugetlb pages do not participate in page cache accounting.
    		 */
    		if (!PageHuge(new))
    			__inc_node_page_state(new, NR_FILE_PAGES);
    		if (PageSwapBacked(new))
    			__inc_node_page_state(new, NR_SHMEM);
    		spin_unlock_irqrestore(&mapping->tree_lock, flags);
    		mem_cgroup_migrate(old, new);
    		radix_tree_preload_end();
    		if (freepage)
    			freepage(old);
    		put_page(old);
    	}
    
    	return error;
    }
    EXPORT_SYMBOL_GPL(replace_page_cache_page);
    
    static int __add_to_page_cache_locked(struct page *page,
    				      struct address_space *mapping,
    				      pgoff_t offset, gfp_t gfp_mask,
    				      void **shadowp)
    {
    	int huge = PageHuge(page);
    	struct mem_cgroup *memcg;
    	int error;
    
    	VM_BUG_ON_PAGE(!PageLocked(page), page);
    	VM_BUG_ON_PAGE(PageSwapBacked(page), page);
    
    	if (!huge) {
    		error = mem_cgroup_try_charge(page, current->mm,
    					      gfp_mask, &memcg, false);
    		if (error)
    			return error;
    	}
    
    	error = radix_tree_maybe_preload(gfp_mask & ~__GFP_HIGHMEM);
    	if (error) {
    		if (!huge)
    			mem_cgroup_cancel_charge(page, memcg, false);
    		return error;
    	}
    
    	get_page(page);
    	page->mapping = mapping;
    	page->index = offset;
    
    	spin_lock_irq(&mapping->tree_lock);
    	error = page_cache_tree_insert(mapping, page, shadowp);
    	radix_tree_preload_end();
    	if (unlikely(error))
    		goto err_insert;
    
    	/* hugetlb pages do not participate in page cache accounting. */
    	if (!huge)
    		__inc_node_page_state(page, NR_FILE_PAGES);
    	spin_unlock_irq(&mapping->tree_lock);
    	if (!huge)
    		mem_cgroup_commit_charge(page, memcg, false, false);
    	trace_mm_filemap_add_to_page_cache(page);
    	return 0;
    err_insert:
    	page->mapping = NULL;
    	/* Leave page->index set: truncation relies upon it */
    	spin_unlock_irq(&mapping->tree_lock);
    	if (!huge)
    		mem_cgroup_cancel_charge(page, memcg, false);
    	put_page(page);
    	return error;
    }
    
    /**
     * add_to_page_cache_locked - add a locked page to the pagecache
     * @page:	page to add
     * @mapping:	the page's address_space
     * @offset:	page index
     * @gfp_mask:	page allocation mode
     *
     * This function is used to add a page to the pagecache. It must be locked.
     * This function does not add the page to the LRU.  The caller must do that.
     */
    int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
    		pgoff_t offset, gfp_t gfp_mask)
    {
    	return __add_to_page_cache_locked(page, mapping, offset,
    					  gfp_mask, NULL);
    }
    EXPORT_SYMBOL(add_to_page_cache_locked);
    
    int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
    				pgoff_t offset, gfp_t gfp_mask)
    {
    	void *shadow = NULL;
    	int ret;
    
    	__SetPageLocked(page);
    	ret = __add_to_page_cache_locked(page, mapping, offset,
    					 gfp_mask, &shadow);
    	if (unlikely(ret))
    		__ClearPageLocked(page);
    	else {
    		/*
    		 * The page might have been evicted from cache only
    		 * recently, in which case it should be activated like
    		 * any other repeatedly accessed page.
    		 * The exception is pages getting rewritten; evicting other
    		 * data from the working set, only to cache data that will
    		 * get overwritten with something else, is a waste of memory.
    		 */
    		if (!(gfp_mask & __GFP_WRITE) &&
    		    shadow && workingset_refault(shadow)) {
    			SetPageActive(page);
    			workingset_activation(page);
    		} else
    			ClearPageActive(page);
    		lru_cache_add(page);
    	}
    	return ret;
    }
    EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
    
    #ifdef CONFIG_NUMA
    struct page *__page_cache_alloc(gfp_t gfp)
    {
    	int n;
    	struct page *page;
    
    	if (cpuset_do_page_mem_spread()) {
    		unsigned int cpuset_mems_cookie;
    		do {
    			cpuset_mems_cookie = read_mems_allowed_begin();
    			n = cpuset_mem_spread_node();
    			page = __alloc_pages_node(n, gfp, 0);
    		} while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
    
    		return page;
    	}
    	return alloc_pages(gfp, 0);
    }
    EXPORT_SYMBOL(__page_cache_alloc);
    #endif
    
    /*
     * In order to wait for pages to become available there must be
     * waitqueues associated with pages. By using a hash table of
     * waitqueues where the bucket discipline is to maintain all
     * waiters on the same queue and wake all when any of the pages
     * become available, and for the woken contexts to check to be
     * sure the appropriate page became available, this saves space
     * at a cost of "thundering herd" phenomena during rare hash
     * collisions.
     */
    wait_queue_head_t *page_waitqueue(struct page *page)
    {
    	return bit_waitqueue(page, 0);
    }
    EXPORT_SYMBOL(page_waitqueue);
    
    void wait_on_page_bit(struct page *page, int bit_nr)
    {
    	DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
    
    	if (test_bit(bit_nr, &page->flags))
    		__wait_on_bit(page_waitqueue(page), &wait, bit_wait_io,
    							TASK_UNINTERRUPTIBLE);
    }
    EXPORT_SYMBOL(wait_on_page_bit);
    
    int wait_on_page_bit_killable(struct page *page, int bit_nr)
    {
    	DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
    
    	if (!test_bit(bit_nr, &page->flags))
    		return 0;
    
    	return __wait_on_bit(page_waitqueue(page), &wait,
    			     bit_wait_io, TASK_KILLABLE);
    }
    
    int wait_on_page_bit_killable_timeout(struct page *page,
    				       int bit_nr, unsigned long timeout)
    {
    	DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
    
    	wait.key.timeout = jiffies + timeout;
    	if (!test_bit(bit_nr, &page->flags))
    		return 0;
    	return __wait_on_bit(page_waitqueue(page), &wait,
    			     bit_wait_io_timeout, TASK_KILLABLE);
    }
    EXPORT_SYMBOL_GPL(wait_on_page_bit_killable_timeout);
    
    /**
     * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
     * @page: Page defining the wait queue of interest
     * @waiter: Waiter to add to the queue
     *
     * Add an arbitrary @waiter to the wait queue for the nominated @page.
     */
    void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
    {
    	wait_queue_head_t *q = page_waitqueue(page);
    	unsigned long flags;
    
    	spin_lock_irqsave(&q->lock, flags);
    	__add_wait_queue(q, waiter);
    	spin_unlock_irqrestore(&q->lock, flags);
    }
    EXPORT_SYMBOL_GPL(add_page_wait_queue);
    
    /**
     * unlock_page - unlock a locked page
     * @page: the page
     *
     * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
     * Also wakes sleepers in wait_on_page_writeback() because the wakeup
     * mechanism between PageLocked pages and PageWriteback pages is shared.
     * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
     *
     * The mb is necessary to enforce ordering between the clear_bit and the read
     * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
     */
    void unlock_page(struct page *page)
    {
    	page = compound_head(page);
    	VM_BUG_ON_PAGE(!PageLocked(page), page);
    	clear_bit_unlock(PG_locked, &page->flags);
    	smp_mb__after_atomic();
    	wake_up_page(page, PG_locked);
    }
    EXPORT_SYMBOL(unlock_page);
    
    /**
     * end_page_writeback - end writeback against a page
     * @page: the page
     */
    void end_page_writeback(struct page *page)
    {
    	/*
    	 * TestClearPageReclaim could be used here but it is an atomic
    	 * operation and overkill in this particular case. Failing to
    	 * shuffle a page marked for immediate reclaim is too mild to
    	 * justify taking an atomic operation penalty at the end of
    	 * ever page writeback.
    	 */
    	if (PageReclaim(page)) {
    		ClearPageReclaim(page);
    		rotate_reclaimable_page(page);
    	}
    
    	if (!test_clear_page_writeback(page))
    		BUG();
    
    	smp_mb__after_atomic();
    	wake_up_page(page, PG_writeback);
    }
    EXPORT_SYMBOL(end_page_writeback);
    
    /*
     * After completing I/O on a page, call this routine to update the page
     * flags appropriately
     */
    void page_endio(struct page *page, bool is_write, int err)
    {
    	if (!is_write) {
    		if (!err) {
    			SetPageUptodate(page);
    		} else {
    			ClearPageUptodate(page);
    			SetPageError(page);
    		}
    		unlock_page(page);
    	} else {
    		if (err) {
    			struct address_space *mapping;
    
    			SetPageError(page);
    			mapping = page_mapping(page);
    			if (mapping)
    				mapping_set_error(mapping, err);
    		}
    		end_page_writeback(page);
    	}
    }
    EXPORT_SYMBOL_GPL(page_endio);
    
    /**
     * __lock_page - get a lock on the page, assuming we need to sleep to get it
     * @page: the page to lock
     */
    void __lock_page(struct page *page)
    {
    	struct page *page_head = compound_head(page);
    	DEFINE_WAIT_BIT(wait, &page_head->flags, PG_locked);
    
    	__wait_on_bit_lock(page_waitqueue(page_head), &wait, bit_wait_io,
    							TASK_UNINTERRUPTIBLE);
    }
    EXPORT_SYMBOL(__lock_page);
    
    int __lock_page_killable(struct page *page)
    {
    	struct page *page_head = compound_head(page);
    	DEFINE_WAIT_BIT(wait, &page_head->flags, PG_locked);
    
    	return __wait_on_bit_lock(page_waitqueue(page_head), &wait,
    					bit_wait_io, TASK_KILLABLE);
    }
    EXPORT_SYMBOL_GPL(__lock_page_killable);
    
    /*
     * Return values:
     * 1 - page is locked; mmap_sem is still held.
     * 0 - page is not locked.
     *     mmap_sem has been released (up_read()), unless flags had both
     *     FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
     *     which case mmap_sem is still held.
     *
     * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
     * with the page locked and the mmap_sem unperturbed.
     */
    int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
    			 unsigned int flags)
    {
    	if (flags & FAULT_FLAG_ALLOW_RETRY) {
    		/*
    		 * CAUTION! In this case, mmap_sem is not released
    		 * even though return 0.
    		 */
    		if (flags & FAULT_FLAG_RETRY_NOWAIT)
    			return 0;
    
    		up_read(&mm->mmap_sem);
    		if (flags & FAULT_FLAG_KILLABLE)
    			wait_on_page_locked_killable(page);
    		else
    			wait_on_page_locked(page);
    		return 0;
    	} else {
    		if (flags & FAULT_FLAG_KILLABLE) {
    			int ret;
    
    			ret = __lock_page_killable(page);
    			if (ret) {
    				up_read(&mm->mmap_sem);
    				return 0;
    			}
    		} else
    			__lock_page(page);
    		return 1;
    	}
    }
    
    /**
     * page_cache_next_hole - find the next hole (not-present entry)
     * @mapping: mapping
     * @index: index
     * @max_scan: maximum range to search
     *
     * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the
     * lowest indexed hole.
     *