Skip to content
Snippets Groups Projects
kmemleak.c 56.1 KiB
Newer Older
  • Learn to ignore specific revisions
  • Kenneth Johansson's avatar
    Kenneth Johansson committed
    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000
    /*
     * mm/kmemleak.c
     *
     * Copyright (C) 2008 ARM Limited
     * Written by Catalin Marinas <catalin.marinas@arm.com>
     *
     * This program is free software; you can redistribute it and/or modify
     * it under the terms of the GNU General Public License version 2 as
     * published by the Free Software Foundation.
     *
     * This program is distributed in the hope that it will be useful,
     * but WITHOUT ANY WARRANTY; without even the implied warranty of
     * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
     * GNU General Public License for more details.
     *
     * You should have received a copy of the GNU General Public License
     * along with this program; if not, write to the Free Software
     * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
     *
     *
     * For more information on the algorithm and kmemleak usage, please see
     * Documentation/kmemleak.txt.
     *
     * Notes on locking
     * ----------------
     *
     * The following locks and mutexes are used by kmemleak:
     *
     * - kmemleak_lock (rwlock): protects the object_list modifications and
     *   accesses to the object_tree_root. The object_list is the main list
     *   holding the metadata (struct kmemleak_object) for the allocated memory
     *   blocks. The object_tree_root is a red black tree used to look-up
     *   metadata based on a pointer to the corresponding memory block.  The
     *   kmemleak_object structures are added to the object_list and
     *   object_tree_root in the create_object() function called from the
     *   kmemleak_alloc() callback and removed in delete_object() called from the
     *   kmemleak_free() callback
     * - kmemleak_object.lock (spinlock): protects a kmemleak_object. Accesses to
     *   the metadata (e.g. count) are protected by this lock. Note that some
     *   members of this structure may be protected by other means (atomic or
     *   kmemleak_lock). This lock is also held when scanning the corresponding
     *   memory block to avoid the kernel freeing it via the kmemleak_free()
     *   callback. This is less heavyweight than holding a global lock like
     *   kmemleak_lock during scanning
     * - scan_mutex (mutex): ensures that only one thread may scan the memory for
     *   unreferenced objects at a time. The gray_list contains the objects which
     *   are already referenced or marked as false positives and need to be
     *   scanned. This list is only modified during a scanning episode when the
     *   scan_mutex is held. At the end of a scan, the gray_list is always empty.
     *   Note that the kmemleak_object.use_count is incremented when an object is
     *   added to the gray_list and therefore cannot be freed. This mutex also
     *   prevents multiple users of the "kmemleak" debugfs file together with
     *   modifications to the memory scanning parameters including the scan_thread
     *   pointer
     *
     * Locks and mutexes are acquired/nested in the following order:
     *
     *   scan_mutex [-> object->lock] -> kmemleak_lock -> other_object->lock (SINGLE_DEPTH_NESTING)
     *
     * No kmemleak_lock and object->lock nesting is allowed outside scan_mutex
     * regions.
     *
     * The kmemleak_object structures have a use_count incremented or decremented
     * using the get_object()/put_object() functions. When the use_count becomes
     * 0, this count can no longer be incremented and put_object() schedules the
     * kmemleak_object freeing via an RCU callback. All calls to the get_object()
     * function must be protected by rcu_read_lock() to avoid accessing a freed
     * structure.
     */
    
    #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
    
    #include <linux/init.h>
    #include <linux/kernel.h>
    #include <linux/list.h>
    #include <linux/sched.h>
    #include <linux/jiffies.h>
    #include <linux/delay.h>
    #include <linux/export.h>
    #include <linux/kthread.h>
    #include <linux/rbtree.h>
    #include <linux/fs.h>
    #include <linux/debugfs.h>
    #include <linux/seq_file.h>
    #include <linux/cpumask.h>
    #include <linux/spinlock.h>
    #include <linux/mutex.h>
    #include <linux/rcupdate.h>
    #include <linux/stacktrace.h>
    #include <linux/cache.h>
    #include <linux/percpu.h>
    #include <linux/hardirq.h>
    #include <linux/bootmem.h>
    #include <linux/pfn.h>
    #include <linux/mmzone.h>
    #include <linux/slab.h>
    #include <linux/thread_info.h>
    #include <linux/err.h>
    #include <linux/uaccess.h>
    #include <linux/string.h>
    #include <linux/nodemask.h>
    #include <linux/mm.h>
    #include <linux/workqueue.h>
    #include <linux/crc32.h>
    
    #include <asm/sections.h>
    #include <asm/processor.h>
    #include <linux/atomic.h>
    
    #include <linux/kasan.h>
    #include <linux/kmemcheck.h>
    #include <linux/kmemleak.h>
    #include <linux/memory_hotplug.h>
    
    /*
     * Kmemleak configuration and common defines.
     */
    #define MAX_TRACE		16	/* stack trace length */
    #define MSECS_MIN_AGE		5000	/* minimum object age for reporting */
    #define SECS_FIRST_SCAN		60	/* delay before the first scan */
    #define SECS_SCAN_WAIT		600	/* subsequent auto scanning delay */
    #define MAX_SCAN_SIZE		4096	/* maximum size of a scanned block */
    
    #define BYTES_PER_POINTER	sizeof(void *)
    
    /* GFP bitmask for kmemleak internal allocations */
    #define gfp_kmemleak_mask(gfp)	(((gfp) & (GFP_KERNEL | GFP_ATOMIC)) | \
    				 __GFP_NORETRY | __GFP_NOMEMALLOC | \
    				 __GFP_NOWARN)
    
    /* scanning area inside a memory block */
    struct kmemleak_scan_area {
    	struct hlist_node node;
    	unsigned long start;
    	size_t size;
    };
    
    #define KMEMLEAK_GREY	0
    #define KMEMLEAK_BLACK	-1
    
    /*
     * Structure holding the metadata for each allocated memory block.
     * Modifications to such objects should be made while holding the
     * object->lock. Insertions or deletions from object_list, gray_list or
     * rb_node are already protected by the corresponding locks or mutex (see
     * the notes on locking above). These objects are reference-counted
     * (use_count) and freed using the RCU mechanism.
     */
    struct kmemleak_object {
    	spinlock_t lock;
    	unsigned long flags;		/* object status flags */
    	struct list_head object_list;
    	struct list_head gray_list;
    	struct rb_node rb_node;
    	struct rcu_head rcu;		/* object_list lockless traversal */
    	/* object usage count; object freed when use_count == 0 */
    	atomic_t use_count;
    	unsigned long pointer;
    	size_t size;
    	/* minimum number of a pointers found before it is considered leak */
    	int min_count;
    	/* the total number of pointers found pointing to this object */
    	int count;
    	/* checksum for detecting modified objects */
    	u32 checksum;
    	/* memory ranges to be scanned inside an object (empty for all) */
    	struct hlist_head area_list;
    	unsigned long trace[MAX_TRACE];
    	unsigned int trace_len;
    	unsigned long jiffies;		/* creation timestamp */
    	pid_t pid;			/* pid of the current task */
    	char comm[TASK_COMM_LEN];	/* executable name */
    };
    
    /* flag representing the memory block allocation status */
    #define OBJECT_ALLOCATED	(1 << 0)
    /* flag set after the first reporting of an unreference object */
    #define OBJECT_REPORTED		(1 << 1)
    /* flag set to not scan the object */
    #define OBJECT_NO_SCAN		(1 << 2)
    
    /* number of bytes to print per line; must be 16 or 32 */
    #define HEX_ROW_SIZE		16
    /* number of bytes to print at a time (1, 2, 4, 8) */
    #define HEX_GROUP_SIZE		1
    /* include ASCII after the hex output */
    #define HEX_ASCII		1
    /* max number of lines to be printed */
    #define HEX_MAX_LINES		2
    
    /* the list of all allocated objects */
    static LIST_HEAD(object_list);
    /* the list of gray-colored objects (see color_gray comment below) */
    static LIST_HEAD(gray_list);
    /* search tree for object boundaries */
    static struct rb_root object_tree_root = RB_ROOT;
    /* rw_lock protecting the access to object_list and object_tree_root */
    static DEFINE_RWLOCK(kmemleak_lock);
    
    /* allocation caches for kmemleak internal data */
    static struct kmem_cache *object_cache;
    static struct kmem_cache *scan_area_cache;
    
    /* set if tracing memory operations is enabled */
    static int kmemleak_enabled;
    /* same as above but only for the kmemleak_free() callback */
    static int kmemleak_free_enabled;
    /* set in the late_initcall if there were no errors */
    static int kmemleak_initialized;
    /* enables or disables early logging of the memory operations */
    static int kmemleak_early_log = 1;
    /* set if a kmemleak warning was issued */
    static int kmemleak_warning;
    /* set if a fatal kmemleak error has occurred */
    static int kmemleak_error;
    
    /* minimum and maximum address that may be valid pointers */
    static unsigned long min_addr = ULONG_MAX;
    static unsigned long max_addr;
    
    static struct task_struct *scan_thread;
    /* used to avoid reporting of recently allocated objects */
    static unsigned long jiffies_min_age;
    static unsigned long jiffies_last_scan;
    /* delay between automatic memory scannings */
    static signed long jiffies_scan_wait;
    /* enables or disables the task stacks scanning */
    static int kmemleak_stack_scan = 1;
    /* protects the memory scanning, parameters and debug/kmemleak file access */
    static DEFINE_MUTEX(scan_mutex);
    /* setting kmemleak=on, will set this var, skipping the disable */
    static int kmemleak_skip_disable;
    /* If there are leaks that can be reported */
    static bool kmemleak_found_leaks;
    
    /*
     * Early object allocation/freeing logging. Kmemleak is initialized after the
     * kernel allocator. However, both the kernel allocator and kmemleak may
     * allocate memory blocks which need to be tracked. Kmemleak defines an
     * arbitrary buffer to hold the allocation/freeing information before it is
     * fully initialized.
     */
    
    /* kmemleak operation type for early logging */
    enum {
    	KMEMLEAK_ALLOC,
    	KMEMLEAK_ALLOC_PERCPU,
    	KMEMLEAK_FREE,
    	KMEMLEAK_FREE_PART,
    	KMEMLEAK_FREE_PERCPU,
    	KMEMLEAK_NOT_LEAK,
    	KMEMLEAK_IGNORE,
    	KMEMLEAK_SCAN_AREA,
    	KMEMLEAK_NO_SCAN
    };
    
    /*
     * Structure holding the information passed to kmemleak callbacks during the
     * early logging.
     */
    struct early_log {
    	int op_type;			/* kmemleak operation type */
    	const void *ptr;		/* allocated/freed memory block */
    	size_t size;			/* memory block size */
    	int min_count;			/* minimum reference count */
    	unsigned long trace[MAX_TRACE];	/* stack trace */
    	unsigned int trace_len;		/* stack trace length */
    };
    
    /* early logging buffer and current position */
    static struct early_log
    	early_log[CONFIG_DEBUG_KMEMLEAK_EARLY_LOG_SIZE] __initdata;
    static int crt_early_log __initdata;
    
    static void kmemleak_disable(void);
    
    /*
     * Print a warning and dump the stack trace.
     */
    #define kmemleak_warn(x...)	do {		\
    	pr_warn(x);				\
    	dump_stack();				\
    	kmemleak_warning = 1;			\
    } while (0)
    
    /*
     * Macro invoked when a serious kmemleak condition occurred and cannot be
     * recovered from. Kmemleak will be disabled and further allocation/freeing
     * tracing no longer available.
     */
    #define kmemleak_stop(x...)	do {	\
    	kmemleak_warn(x);		\
    	kmemleak_disable();		\
    } while (0)
    
    /*
     * Printing of the objects hex dump to the seq file. The number of lines to be
     * printed is limited to HEX_MAX_LINES to prevent seq file spamming. The
     * actual number of printed bytes depends on HEX_ROW_SIZE. It must be called
     * with the object->lock held.
     */
    static void hex_dump_object(struct seq_file *seq,
    			    struct kmemleak_object *object)
    {
    	const u8 *ptr = (const u8 *)object->pointer;
    	size_t len;
    
    	/* limit the number of lines to HEX_MAX_LINES */
    	len = min_t(size_t, object->size, HEX_MAX_LINES * HEX_ROW_SIZE);
    
    	seq_printf(seq, "  hex dump (first %zu bytes):\n", len);
    	kasan_disable_current();
    	seq_hex_dump(seq, "    ", DUMP_PREFIX_NONE, HEX_ROW_SIZE,
    		     HEX_GROUP_SIZE, ptr, len, HEX_ASCII);
    	kasan_enable_current();
    }
    
    /*
     * Object colors, encoded with count and min_count:
     * - white - orphan object, not enough references to it (count < min_count)
     * - gray  - not orphan, not marked as false positive (min_count == 0) or
     *		sufficient references to it (count >= min_count)
     * - black - ignore, it doesn't contain references (e.g. text section)
     *		(min_count == -1). No function defined for this color.
     * Newly created objects don't have any color assigned (object->count == -1)
     * before the next memory scan when they become white.
     */
    static bool color_white(const struct kmemleak_object *object)
    {
    	return object->count != KMEMLEAK_BLACK &&
    		object->count < object->min_count;
    }
    
    static bool color_gray(const struct kmemleak_object *object)
    {
    	return object->min_count != KMEMLEAK_BLACK &&
    		object->count >= object->min_count;
    }
    
    /*
     * Objects are considered unreferenced only if their color is white, they have
     * not be deleted and have a minimum age to avoid false positives caused by
     * pointers temporarily stored in CPU registers.
     */
    static bool unreferenced_object(struct kmemleak_object *object)
    {
    	return (color_white(object) && object->flags & OBJECT_ALLOCATED) &&
    		time_before_eq(object->jiffies + jiffies_min_age,
    			       jiffies_last_scan);
    }
    
    /*
     * Printing of the unreferenced objects information to the seq file. The
     * print_unreferenced function must be called with the object->lock held.
     */
    static void print_unreferenced(struct seq_file *seq,
    			       struct kmemleak_object *object)
    {
    	int i;
    	unsigned int msecs_age = jiffies_to_msecs(jiffies - object->jiffies);
    
    	seq_printf(seq, "unreferenced object 0x%08lx (size %zu):\n",
    		   object->pointer, object->size);
    	seq_printf(seq, "  comm \"%s\", pid %d, jiffies %lu (age %d.%03ds)\n",
    		   object->comm, object->pid, object->jiffies,
    		   msecs_age / 1000, msecs_age % 1000);
    	hex_dump_object(seq, object);
    	seq_printf(seq, "  backtrace:\n");
    
    	for (i = 0; i < object->trace_len; i++) {
    		void *ptr = (void *)object->trace[i];
    		seq_printf(seq, "    [<%p>] %pS\n", ptr, ptr);
    	}
    }
    
    /*
     * Print the kmemleak_object information. This function is used mainly for
     * debugging special cases when kmemleak operations. It must be called with
     * the object->lock held.
     */
    static void dump_object_info(struct kmemleak_object *object)
    {
    	struct stack_trace trace;
    
    	trace.nr_entries = object->trace_len;
    	trace.entries = object->trace;
    
    	pr_notice("Object 0x%08lx (size %zu):\n",
    		  object->pointer, object->size);
    	pr_notice("  comm \"%s\", pid %d, jiffies %lu\n",
    		  object->comm, object->pid, object->jiffies);
    	pr_notice("  min_count = %d\n", object->min_count);
    	pr_notice("  count = %d\n", object->count);
    	pr_notice("  flags = 0x%lx\n", object->flags);
    	pr_notice("  checksum = %u\n", object->checksum);
    	pr_notice("  backtrace:\n");
    	print_stack_trace(&trace, 4);
    }
    
    /*
     * Look-up a memory block metadata (kmemleak_object) in the object search
     * tree based on a pointer value. If alias is 0, only values pointing to the
     * beginning of the memory block are allowed. The kmemleak_lock must be held
     * when calling this function.
     */
    static struct kmemleak_object *lookup_object(unsigned long ptr, int alias)
    {
    	struct rb_node *rb = object_tree_root.rb_node;
    
    	while (rb) {
    		struct kmemleak_object *object =
    			rb_entry(rb, struct kmemleak_object, rb_node);
    		if (ptr < object->pointer)
    			rb = object->rb_node.rb_left;
    		else if (object->pointer + object->size <= ptr)
    			rb = object->rb_node.rb_right;
    		else if (object->pointer == ptr || alias)
    			return object;
    		else {
    			kmemleak_warn("Found object by alias at 0x%08lx\n",
    				      ptr);
    			dump_object_info(object);
    			break;
    		}
    	}
    	return NULL;
    }
    
    /*
     * Increment the object use_count. Return 1 if successful or 0 otherwise. Note
     * that once an object's use_count reached 0, the RCU freeing was already
     * registered and the object should no longer be used. This function must be
     * called under the protection of rcu_read_lock().
     */
    static int get_object(struct kmemleak_object *object)
    {
    	return atomic_inc_not_zero(&object->use_count);
    }
    
    /*
     * RCU callback to free a kmemleak_object.
     */
    static void free_object_rcu(struct rcu_head *rcu)
    {
    	struct hlist_node *tmp;
    	struct kmemleak_scan_area *area;
    	struct kmemleak_object *object =
    		container_of(rcu, struct kmemleak_object, rcu);
    
    	/*
    	 * Once use_count is 0 (guaranteed by put_object), there is no other
    	 * code accessing this object, hence no need for locking.
    	 */
    	hlist_for_each_entry_safe(area, tmp, &object->area_list, node) {
    		hlist_del(&area->node);
    		kmem_cache_free(scan_area_cache, area);
    	}
    	kmem_cache_free(object_cache, object);
    }
    
    /*
     * Decrement the object use_count. Once the count is 0, free the object using
     * an RCU callback. Since put_object() may be called via the kmemleak_free() ->
     * delete_object() path, the delayed RCU freeing ensures that there is no
     * recursive call to the kernel allocator. Lock-less RCU object_list traversal
     * is also possible.
     */
    static void put_object(struct kmemleak_object *object)
    {
    	if (!atomic_dec_and_test(&object->use_count))
    		return;
    
    	/* should only get here after delete_object was called */
    	WARN_ON(object->flags & OBJECT_ALLOCATED);
    
    	call_rcu(&object->rcu, free_object_rcu);
    }
    
    /*
     * Look up an object in the object search tree and increase its use_count.
     */
    static struct kmemleak_object *find_and_get_object(unsigned long ptr, int alias)
    {
    	unsigned long flags;
    	struct kmemleak_object *object;
    
    	rcu_read_lock();
    	read_lock_irqsave(&kmemleak_lock, flags);
    	object = lookup_object(ptr, alias);
    	read_unlock_irqrestore(&kmemleak_lock, flags);
    
    	/* check whether the object is still available */
    	if (object && !get_object(object))
    		object = NULL;
    	rcu_read_unlock();
    
    	return object;
    }
    
    /*
     * Look up an object in the object search tree and remove it from both
     * object_tree_root and object_list. The returned object's use_count should be
     * at least 1, as initially set by create_object().
     */
    static struct kmemleak_object *find_and_remove_object(unsigned long ptr, int alias)
    {
    	unsigned long flags;
    	struct kmemleak_object *object;
    
    	write_lock_irqsave(&kmemleak_lock, flags);
    	object = lookup_object(ptr, alias);
    	if (object) {
    		rb_erase(&object->rb_node, &object_tree_root);
    		list_del_rcu(&object->object_list);
    	}
    	write_unlock_irqrestore(&kmemleak_lock, flags);
    
    	return object;
    }
    
    /*
     * Save stack trace to the given array of MAX_TRACE size.
     */
    static int __save_stack_trace(unsigned long *trace)
    {
    	struct stack_trace stack_trace;
    
    	stack_trace.max_entries = MAX_TRACE;
    	stack_trace.nr_entries = 0;
    	stack_trace.entries = trace;
    	stack_trace.skip = 2;
    	save_stack_trace(&stack_trace);
    
    	return stack_trace.nr_entries;
    }
    
    /*
     * Create the metadata (struct kmemleak_object) corresponding to an allocated
     * memory block and add it to the object_list and object_tree_root.
     */
    static struct kmemleak_object *create_object(unsigned long ptr, size_t size,
    					     int min_count, gfp_t gfp)
    {
    	unsigned long flags;
    	struct kmemleak_object *object, *parent;
    	struct rb_node **link, *rb_parent;
    
    	object = kmem_cache_alloc(object_cache, gfp_kmemleak_mask(gfp));
    	if (!object) {
    		pr_warn("Cannot allocate a kmemleak_object structure\n");
    		kmemleak_disable();
    		return NULL;
    	}
    
    	INIT_LIST_HEAD(&object->object_list);
    	INIT_LIST_HEAD(&object->gray_list);
    	INIT_HLIST_HEAD(&object->area_list);
    	spin_lock_init(&object->lock);
    	atomic_set(&object->use_count, 1);
    	object->flags = OBJECT_ALLOCATED;
    	object->pointer = ptr;
    	object->size = size;
    	object->min_count = min_count;
    	object->count = 0;			/* white color initially */
    	object->jiffies = jiffies;
    	object->checksum = 0;
    
    	/* task information */
    	if (in_irq()) {
    		object->pid = 0;
    		strncpy(object->comm, "hardirq", sizeof(object->comm));
    	} else if (in_softirq()) {
    		object->pid = 0;
    		strncpy(object->comm, "softirq", sizeof(object->comm));
    	} else {
    		object->pid = current->pid;
    		/*
    		 * There is a small chance of a race with set_task_comm(),
    		 * however using get_task_comm() here may cause locking
    		 * dependency issues with current->alloc_lock. In the worst
    		 * case, the command line is not correct.
    		 */
    		strncpy(object->comm, current->comm, sizeof(object->comm));
    	}
    
    	/* kernel backtrace */
    	object->trace_len = __save_stack_trace(object->trace);
    
    	write_lock_irqsave(&kmemleak_lock, flags);
    
    	min_addr = min(min_addr, ptr);
    	max_addr = max(max_addr, ptr + size);
    	link = &object_tree_root.rb_node;
    	rb_parent = NULL;
    	while (*link) {
    		rb_parent = *link;
    		parent = rb_entry(rb_parent, struct kmemleak_object, rb_node);
    		if (ptr + size <= parent->pointer)
    			link = &parent->rb_node.rb_left;
    		else if (parent->pointer + parent->size <= ptr)
    			link = &parent->rb_node.rb_right;
    		else {
    			kmemleak_stop("Cannot insert 0x%lx into the object search tree (overlaps existing)\n",
    				      ptr);
    			/*
    			 * No need for parent->lock here since "parent" cannot
    			 * be freed while the kmemleak_lock is held.
    			 */
    			dump_object_info(parent);
    			kmem_cache_free(object_cache, object);
    			object = NULL;
    			goto out;
    		}
    	}
    	rb_link_node(&object->rb_node, rb_parent, link);
    	rb_insert_color(&object->rb_node, &object_tree_root);
    
    	list_add_tail_rcu(&object->object_list, &object_list);
    out:
    	write_unlock_irqrestore(&kmemleak_lock, flags);
    	return object;
    }
    
    /*
     * Mark the object as not allocated and schedule RCU freeing via put_object().
     */
    static void __delete_object(struct kmemleak_object *object)
    {
    	unsigned long flags;
    
    	WARN_ON(!(object->flags & OBJECT_ALLOCATED));
    	WARN_ON(atomic_read(&object->use_count) < 1);
    
    	/*
    	 * Locking here also ensures that the corresponding memory block
    	 * cannot be freed when it is being scanned.
    	 */
    	spin_lock_irqsave(&object->lock, flags);
    	object->flags &= ~OBJECT_ALLOCATED;
    	spin_unlock_irqrestore(&object->lock, flags);
    	put_object(object);
    }
    
    /*
     * Look up the metadata (struct kmemleak_object) corresponding to ptr and
     * delete it.
     */
    static void delete_object_full(unsigned long ptr)
    {
    	struct kmemleak_object *object;
    
    	object = find_and_remove_object(ptr, 0);
    	if (!object) {
    #ifdef DEBUG
    		kmemleak_warn("Freeing unknown object at 0x%08lx\n",
    			      ptr);
    #endif
    		return;
    	}
    	__delete_object(object);
    }
    
    /*
     * Look up the metadata (struct kmemleak_object) corresponding to ptr and
     * delete it. If the memory block is partially freed, the function may create
     * additional metadata for the remaining parts of the block.
     */
    static void delete_object_part(unsigned long ptr, size_t size)
    {
    	struct kmemleak_object *object;
    	unsigned long start, end;
    
    	object = find_and_remove_object(ptr, 1);
    	if (!object) {
    #ifdef DEBUG
    		kmemleak_warn("Partially freeing unknown object at 0x%08lx (size %zu)\n",
    			      ptr, size);
    #endif
    		return;
    	}
    
    	/*
    	 * Create one or two objects that may result from the memory block
    	 * split. Note that partial freeing is only done by free_bootmem() and
    	 * this happens before kmemleak_init() is called. The path below is
    	 * only executed during early log recording in kmemleak_init(), so
    	 * GFP_KERNEL is enough.
    	 */
    	start = object->pointer;
    	end = object->pointer + object->size;
    	if (ptr > start)
    		create_object(start, ptr - start, object->min_count,
    			      GFP_KERNEL);
    	if (ptr + size < end)
    		create_object(ptr + size, end - ptr - size, object->min_count,
    			      GFP_KERNEL);
    
    	__delete_object(object);
    }
    
    static void __paint_it(struct kmemleak_object *object, int color)
    {
    	object->min_count = color;
    	if (color == KMEMLEAK_BLACK)
    		object->flags |= OBJECT_NO_SCAN;
    }
    
    static void paint_it(struct kmemleak_object *object, int color)
    {
    	unsigned long flags;
    
    	spin_lock_irqsave(&object->lock, flags);
    	__paint_it(object, color);
    	spin_unlock_irqrestore(&object->lock, flags);
    }
    
    static void paint_ptr(unsigned long ptr, int color)
    {
    	struct kmemleak_object *object;
    
    	object = find_and_get_object(ptr, 0);
    	if (!object) {
    		kmemleak_warn("Trying to color unknown object at 0x%08lx as %s\n",
    			      ptr,
    			      (color == KMEMLEAK_GREY) ? "Grey" :
    			      (color == KMEMLEAK_BLACK) ? "Black" : "Unknown");
    		return;
    	}
    	paint_it(object, color);
    	put_object(object);
    }
    
    /*
     * Mark an object permanently as gray-colored so that it can no longer be
     * reported as a leak. This is used in general to mark a false positive.
     */
    static void make_gray_object(unsigned long ptr)
    {
    	paint_ptr(ptr, KMEMLEAK_GREY);
    }
    
    /*
     * Mark the object as black-colored so that it is ignored from scans and
     * reporting.
     */
    static void make_black_object(unsigned long ptr)
    {
    	paint_ptr(ptr, KMEMLEAK_BLACK);
    }
    
    /*
     * Add a scanning area to the object. If at least one such area is added,
     * kmemleak will only scan these ranges rather than the whole memory block.
     */
    static void add_scan_area(unsigned long ptr, size_t size, gfp_t gfp)
    {
    	unsigned long flags;
    	struct kmemleak_object *object;
    	struct kmemleak_scan_area *area;
    
    	object = find_and_get_object(ptr, 1);
    	if (!object) {
    		kmemleak_warn("Adding scan area to unknown object at 0x%08lx\n",
    			      ptr);
    		return;
    	}
    
    	area = kmem_cache_alloc(scan_area_cache, gfp_kmemleak_mask(gfp));
    	if (!area) {
    		pr_warn("Cannot allocate a scan area\n");
    		goto out;
    	}
    
    	spin_lock_irqsave(&object->lock, flags);
    	if (size == SIZE_MAX) {
    		size = object->pointer + object->size - ptr;
    	} else if (ptr + size > object->pointer + object->size) {
    		kmemleak_warn("Scan area larger than object 0x%08lx\n", ptr);
    		dump_object_info(object);
    		kmem_cache_free(scan_area_cache, area);
    		goto out_unlock;
    	}
    
    	INIT_HLIST_NODE(&area->node);
    	area->start = ptr;
    	area->size = size;
    
    	hlist_add_head(&area->node, &object->area_list);
    out_unlock:
    	spin_unlock_irqrestore(&object->lock, flags);
    out:
    	put_object(object);
    }
    
    /*
     * Set the OBJECT_NO_SCAN flag for the object corresponding to the give
     * pointer. Such object will not be scanned by kmemleak but references to it
     * are searched.
     */
    static void object_no_scan(unsigned long ptr)
    {
    	unsigned long flags;
    	struct kmemleak_object *object;
    
    	object = find_and_get_object(ptr, 0);
    	if (!object) {
    		kmemleak_warn("Not scanning unknown object at 0x%08lx\n", ptr);
    		return;
    	}
    
    	spin_lock_irqsave(&object->lock, flags);
    	object->flags |= OBJECT_NO_SCAN;
    	spin_unlock_irqrestore(&object->lock, flags);
    	put_object(object);
    }
    
    /*
     * Log an early kmemleak_* call to the early_log buffer. These calls will be
     * processed later once kmemleak is fully initialized.
     */
    static void __init log_early(int op_type, const void *ptr, size_t size,
    			     int min_count)
    {
    	unsigned long flags;
    	struct early_log *log;
    
    	if (kmemleak_error) {
    		/* kmemleak stopped recording, just count the requests */
    		crt_early_log++;
    		return;
    	}
    
    	if (crt_early_log >= ARRAY_SIZE(early_log)) {
    		crt_early_log++;
    		kmemleak_disable();
    		return;
    	}
    
    	/*
    	 * There is no need for locking since the kernel is still in UP mode
    	 * at this stage. Disabling the IRQs is enough.
    	 */
    	local_irq_save(flags);
    	log = &early_log[crt_early_log];
    	log->op_type = op_type;
    	log->ptr = ptr;
    	log->size = size;
    	log->min_count = min_count;
    	log->trace_len = __save_stack_trace(log->trace);
    	crt_early_log++;
    	local_irq_restore(flags);
    }
    
    /*
     * Log an early allocated block and populate the stack trace.
     */
    static void early_alloc(struct early_log *log)
    {
    	struct kmemleak_object *object;
    	unsigned long flags;
    	int i;
    
    	if (!kmemleak_enabled || !log->ptr || IS_ERR(log->ptr))
    		return;
    
    	/*
    	 * RCU locking needed to ensure object is not freed via put_object().
    	 */
    	rcu_read_lock();
    	object = create_object((unsigned long)log->ptr, log->size,
    			       log->min_count, GFP_ATOMIC);
    	if (!object)
    		goto out;
    	spin_lock_irqsave(&object->lock, flags);
    	for (i = 0; i < log->trace_len; i++)
    		object->trace[i] = log->trace[i];
    	object->trace_len = log->trace_len;
    	spin_unlock_irqrestore(&object->lock, flags);
    out:
    	rcu_read_unlock();
    }
    
    /*
     * Log an early allocated block and populate the stack trace.
     */
    static void early_alloc_percpu(struct early_log *log)
    {
    	unsigned int cpu;
    	const void __percpu *ptr = log->ptr;
    
    	for_each_possible_cpu(cpu) {
    		log->ptr = per_cpu_ptr(ptr, cpu);
    		early_alloc(log);
    	}
    }
    
    /**
     * kmemleak_alloc - register a newly allocated object
     * @ptr:	pointer to beginning of the object
     * @size:	size of the object
     * @min_count:	minimum number of references to this object. If during memory
     *		scanning a number of references less than @min_count is found,
     *		the object is reported as a memory leak. If @min_count is 0,
     *		the object is never reported as a leak. If @min_count is -1,
     *		the object is ignored (not scanned and not reported as a leak)
     * @gfp:	kmalloc() flags used for kmemleak internal memory allocations
     *
     * This function is called from the kernel allocators when a new object
     * (memory block) is allocated (kmem_cache_alloc, kmalloc, vmalloc etc.).
     */
    void __ref kmemleak_alloc(const void *ptr, size_t size, int min_count,
    			  gfp_t gfp)
    {
    	pr_debug("%s(0x%p, %zu, %d)\n", __func__, ptr, size, min_count);
    
    	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
    		create_object((unsigned long)ptr, size, min_count, gfp);
    	else if (kmemleak_early_log)
    		log_early(KMEMLEAK_ALLOC, ptr, size, min_count);
    }
    EXPORT_SYMBOL_GPL(kmemleak_alloc);
    
    /**
     * kmemleak_alloc_percpu - register a newly allocated __percpu object
     * @ptr:	__percpu pointer to beginning of the object
     * @size:	size of the object
     * @gfp:	flags used for kmemleak internal memory allocations
     *
     * This function is called from the kernel percpu allocator when a new object
     * (memory block) is allocated (alloc_percpu).
     */
    void __ref kmemleak_alloc_percpu(const void __percpu *ptr, size_t size,
    				 gfp_t gfp)
    {
    	unsigned int cpu;
    
    	pr_debug("%s(0x%p, %zu)\n", __func__, ptr, size);
    
    	/*
    	 * Percpu allocations are only scanned and not reported as leaks
    	 * (min_count is set to 0).
    	 */
    	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
    		for_each_possible_cpu(cpu)
    			create_object((unsigned long)per_cpu_ptr(ptr, cpu),
    				      size, 0, gfp);
    	else if (kmemleak_early_log)
    		log_early(KMEMLEAK_ALLOC_PERCPU, ptr, size, 0);
    }
    EXPORT_SYMBOL_GPL(kmemleak_alloc_percpu);
    
    /**
     * kmemleak_free - unregister a previously registered object
     * @ptr:	pointer to beginning of the object
     *
     * This function is called from the kernel allocators when an object (memory
     * block) is freed (kmem_cache_free, kfree, vfree etc.).
     */
    void __ref kmemleak_free(const void *ptr)
    {
    	pr_debug("%s(0x%p)\n", __func__, ptr);
    
    	if (kmemleak_free_enabled && ptr && !IS_ERR(ptr))
    		delete_object_full((unsigned long)ptr);
    	else if (kmemleak_early_log)
    		log_early(KMEMLEAK_FREE, ptr, 0, 0);
    }
    EXPORT_SYMBOL_GPL(kmemleak_free);
    
    /**
     * kmemleak_free_part - partially unregister a previously registered object
     * @ptr:	pointer to the beginning or inside the object. This also
     *		represents the start of the range to be freed
     * @size:	size to be unregistered
     *
     * This function is called when only a part of a memory block is freed
     * (usually from the bootmem allocator).
     */
    void __ref kmemleak_free_part(const void *ptr, size_t size)
    {
    	pr_debug("%s(0x%p)\n", __func__, ptr);
    
    	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
    		delete_object_part((unsigned long)ptr, size);
    	else if (kmemleak_early_log)
    		log_early(KMEMLEAK_FREE_PART, ptr, size, 0);
    }
    EXPORT_SYMBOL_GPL(kmemleak_free_part);
    
    /**
     * kmemleak_free_percpu - unregister a previously registered __percpu object
     * @ptr:	__percpu pointer to beginning of the object
     *
     * This function is called from the kernel percpu allocator when an object
     * (memory block) is freed (free_percpu).
     */
    void __ref kmemleak_free_percpu(const void __percpu *ptr)
    {
    	unsigned int cpu;