Skip to content
Snippets Groups Projects
memblock.c 49.9 KiB
Newer Older
  • Learn to ignore specific revisions
  • Kenneth Johansson's avatar
    Kenneth Johansson committed
    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000
    /*
     * Procedures for maintaining information about logical memory blocks.
     *
     * Peter Bergner, IBM Corp.	June 2001.
     * Copyright (C) 2001 Peter Bergner.
     *
     *      This program is free software; you can redistribute it and/or
     *      modify it under the terms of the GNU General Public License
     *      as published by the Free Software Foundation; either version
     *      2 of the License, or (at your option) any later version.
     */
    
    #include <linux/kernel.h>
    #include <linux/slab.h>
    #include <linux/init.h>
    #include <linux/bitops.h>
    #include <linux/poison.h>
    #include <linux/pfn.h>
    #include <linux/debugfs.h>
    #include <linux/seq_file.h>
    #include <linux/memblock.h>
    
    #include <asm/sections.h>
    #include <linux/io.h>
    
    #include "internal.h"
    
    static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
    static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
    #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
    static struct memblock_region memblock_physmem_init_regions[INIT_PHYSMEM_REGIONS] __initdata_memblock;
    #endif
    
    struct memblock memblock __initdata_memblock = {
    	.memory.regions		= memblock_memory_init_regions,
    	.memory.cnt		= 1,	/* empty dummy entry */
    	.memory.max		= INIT_MEMBLOCK_REGIONS,
    
    	.reserved.regions	= memblock_reserved_init_regions,
    	.reserved.cnt		= 1,	/* empty dummy entry */
    	.reserved.max		= INIT_MEMBLOCK_REGIONS,
    
    #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
    	.physmem.regions	= memblock_physmem_init_regions,
    	.physmem.cnt		= 1,	/* empty dummy entry */
    	.physmem.max		= INIT_PHYSMEM_REGIONS,
    #endif
    
    	.bottom_up		= false,
    	.current_limit		= MEMBLOCK_ALLOC_ANYWHERE,
    };
    
    int memblock_debug __initdata_memblock;
    #ifdef CONFIG_MOVABLE_NODE
    bool movable_node_enabled __initdata_memblock = false;
    #endif
    static bool system_has_some_mirror __initdata_memblock = false;
    static int memblock_can_resize __initdata_memblock;
    static int memblock_memory_in_slab __initdata_memblock = 0;
    static int memblock_reserved_in_slab __initdata_memblock = 0;
    
    ulong __init_memblock choose_memblock_flags(void)
    {
    	return system_has_some_mirror ? MEMBLOCK_MIRROR : MEMBLOCK_NONE;
    }
    
    /* inline so we don't get a warning when pr_debug is compiled out */
    static __init_memblock const char *
    memblock_type_name(struct memblock_type *type)
    {
    	if (type == &memblock.memory)
    		return "memory";
    	else if (type == &memblock.reserved)
    		return "reserved";
    	else
    		return "unknown";
    }
    
    /* adjust *@size so that (@base + *@size) doesn't overflow, return new size */
    static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size)
    {
    	return *size = min(*size, (phys_addr_t)ULLONG_MAX - base);
    }
    
    /*
     * Address comparison utilities
     */
    static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1,
    				       phys_addr_t base2, phys_addr_t size2)
    {
    	return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
    }
    
    bool __init_memblock memblock_overlaps_region(struct memblock_type *type,
    					phys_addr_t base, phys_addr_t size)
    {
    	unsigned long i;
    
    	for (i = 0; i < type->cnt; i++)
    		if (memblock_addrs_overlap(base, size, type->regions[i].base,
    					   type->regions[i].size))
    			break;
    	return i < type->cnt;
    }
    
    /*
     * __memblock_find_range_bottom_up - find free area utility in bottom-up
     * @start: start of candidate range
     * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
     * @size: size of free area to find
     * @align: alignment of free area to find
     * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
     * @flags: pick from blocks based on memory attributes
     *
     * Utility called from memblock_find_in_range_node(), find free area bottom-up.
     *
     * RETURNS:
     * Found address on success, 0 on failure.
     */
    static phys_addr_t __init_memblock
    __memblock_find_range_bottom_up(phys_addr_t start, phys_addr_t end,
    				phys_addr_t size, phys_addr_t align, int nid,
    				ulong flags)
    {
    	phys_addr_t this_start, this_end, cand;
    	u64 i;
    
    	for_each_free_mem_range(i, nid, flags, &this_start, &this_end, NULL) {
    		this_start = clamp(this_start, start, end);
    		this_end = clamp(this_end, start, end);
    
    		cand = round_up(this_start, align);
    		if (cand < this_end && this_end - cand >= size)
    			return cand;
    	}
    
    	return 0;
    }
    
    /**
     * __memblock_find_range_top_down - find free area utility, in top-down
     * @start: start of candidate range
     * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
     * @size: size of free area to find
     * @align: alignment of free area to find
     * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
     * @flags: pick from blocks based on memory attributes
     *
     * Utility called from memblock_find_in_range_node(), find free area top-down.
     *
     * RETURNS:
     * Found address on success, 0 on failure.
     */
    static phys_addr_t __init_memblock
    __memblock_find_range_top_down(phys_addr_t start, phys_addr_t end,
    			       phys_addr_t size, phys_addr_t align, int nid,
    			       ulong flags)
    {
    	phys_addr_t this_start, this_end, cand;
    	u64 i;
    
    	for_each_free_mem_range_reverse(i, nid, flags, &this_start, &this_end,
    					NULL) {
    		this_start = clamp(this_start, start, end);
    		this_end = clamp(this_end, start, end);
    
    		if (this_end < size)
    			continue;
    
    		cand = round_down(this_end - size, align);
    		if (cand >= this_start)
    			return cand;
    	}
    
    	return 0;
    }
    
    /**
     * memblock_find_in_range_node - find free area in given range and node
     * @size: size of free area to find
     * @align: alignment of free area to find
     * @start: start of candidate range
     * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
     * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
     * @flags: pick from blocks based on memory attributes
     *
     * Find @size free area aligned to @align in the specified range and node.
     *
     * When allocation direction is bottom-up, the @start should be greater
     * than the end of the kernel image. Otherwise, it will be trimmed. The
     * reason is that we want the bottom-up allocation just near the kernel
     * image so it is highly likely that the allocated memory and the kernel
     * will reside in the same node.
     *
     * If bottom-up allocation failed, will try to allocate memory top-down.
     *
     * RETURNS:
     * Found address on success, 0 on failure.
     */
    phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t size,
    					phys_addr_t align, phys_addr_t start,
    					phys_addr_t end, int nid, ulong flags)
    {
    	phys_addr_t kernel_end, ret;
    
    	/* pump up @end */
    	if (end == MEMBLOCK_ALLOC_ACCESSIBLE)
    		end = memblock.current_limit;
    
    	/* avoid allocating the first page */
    	start = max_t(phys_addr_t, start, PAGE_SIZE);
    	end = max(start, end);
    	kernel_end = __pa_symbol(_end);
    
    	/*
    	 * try bottom-up allocation only when bottom-up mode
    	 * is set and @end is above the kernel image.
    	 */
    	if (memblock_bottom_up() && end > kernel_end) {
    		phys_addr_t bottom_up_start;
    
    		/* make sure we will allocate above the kernel */
    		bottom_up_start = max(start, kernel_end);
    
    		/* ok, try bottom-up allocation first */
    		ret = __memblock_find_range_bottom_up(bottom_up_start, end,
    						      size, align, nid, flags);
    		if (ret)
    			return ret;
    
    		/*
    		 * we always limit bottom-up allocation above the kernel,
    		 * but top-down allocation doesn't have the limit, so
    		 * retrying top-down allocation may succeed when bottom-up
    		 * allocation failed.
    		 *
    		 * bottom-up allocation is expected to be fail very rarely,
    		 * so we use WARN_ONCE() here to see the stack trace if
    		 * fail happens.
    		 */
    		WARN_ONCE(1, "memblock: bottom-up allocation failed, memory hotunplug may be affected\n");
    	}
    
    	return __memblock_find_range_top_down(start, end, size, align, nid,
    					      flags);
    }
    
    /**
     * memblock_find_in_range - find free area in given range
     * @start: start of candidate range
     * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
     * @size: size of free area to find
     * @align: alignment of free area to find
     *
     * Find @size free area aligned to @align in the specified range.
     *
     * RETURNS:
     * Found address on success, 0 on failure.
     */
    phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start,
    					phys_addr_t end, phys_addr_t size,
    					phys_addr_t align)
    {
    	phys_addr_t ret;
    	ulong flags = choose_memblock_flags();
    
    again:
    	ret = memblock_find_in_range_node(size, align, start, end,
    					    NUMA_NO_NODE, flags);
    
    	if (!ret && (flags & MEMBLOCK_MIRROR)) {
    		pr_warn("Could not allocate %pap bytes of mirrored memory\n",
    			&size);
    		flags &= ~MEMBLOCK_MIRROR;
    		goto again;
    	}
    
    	return ret;
    }
    
    static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r)
    {
    	type->total_size -= type->regions[r].size;
    	memmove(&type->regions[r], &type->regions[r + 1],
    		(type->cnt - (r + 1)) * sizeof(type->regions[r]));
    	type->cnt--;
    
    	/* Special case for empty arrays */
    	if (type->cnt == 0) {
    		WARN_ON(type->total_size != 0);
    		type->cnt = 1;
    		type->regions[0].base = 0;
    		type->regions[0].size = 0;
    		type->regions[0].flags = 0;
    		memblock_set_region_node(&type->regions[0], MAX_NUMNODES);
    	}
    }
    
    #ifdef CONFIG_ARCH_DISCARD_MEMBLOCK
    /**
     * Discard memory and reserved arrays if they were allocated
     */
    void __init memblock_discard(void)
    {
    	phys_addr_t addr, size;
    
    	if (memblock.reserved.regions != memblock_reserved_init_regions) {
    		addr = __pa(memblock.reserved.regions);
    		size = PAGE_ALIGN(sizeof(struct memblock_region) *
    				  memblock.reserved.max);
    		__memblock_free_late(addr, size);
    	}
    
    	if (memblock.memory.regions != memblock_memory_init_regions) {
    		addr = __pa(memblock.memory.regions);
    		size = PAGE_ALIGN(sizeof(struct memblock_region) *
    				  memblock.memory.max);
    		__memblock_free_late(addr, size);
    	}
    }
    #endif
    
    /**
     * memblock_double_array - double the size of the memblock regions array
     * @type: memblock type of the regions array being doubled
     * @new_area_start: starting address of memory range to avoid overlap with
     * @new_area_size: size of memory range to avoid overlap with
     *
     * Double the size of the @type regions array. If memblock is being used to
     * allocate memory for a new reserved regions array and there is a previously
     * allocated memory range [@new_area_start,@new_area_start+@new_area_size]
     * waiting to be reserved, ensure the memory used by the new array does
     * not overlap.
     *
     * RETURNS:
     * 0 on success, -1 on failure.
     */
    static int __init_memblock memblock_double_array(struct memblock_type *type,
    						phys_addr_t new_area_start,
    						phys_addr_t new_area_size)
    {
    	struct memblock_region *new_array, *old_array;
    	phys_addr_t old_alloc_size, new_alloc_size;
    	phys_addr_t old_size, new_size, addr;
    	int use_slab = slab_is_available();
    	int *in_slab;
    
    	/* We don't allow resizing until we know about the reserved regions
    	 * of memory that aren't suitable for allocation
    	 */
    	if (!memblock_can_resize)
    		return -1;
    
    	/* Calculate new doubled size */
    	old_size = type->max * sizeof(struct memblock_region);
    	new_size = old_size << 1;
    	/*
    	 * We need to allocated new one align to PAGE_SIZE,
    	 *   so we can free them completely later.
    	 */
    	old_alloc_size = PAGE_ALIGN(old_size);
    	new_alloc_size = PAGE_ALIGN(new_size);
    
    	/* Retrieve the slab flag */
    	if (type == &memblock.memory)
    		in_slab = &memblock_memory_in_slab;
    	else
    		in_slab = &memblock_reserved_in_slab;
    
    	/* Try to find some space for it.
    	 *
    	 * WARNING: We assume that either slab_is_available() and we use it or
    	 * we use MEMBLOCK for allocations. That means that this is unsafe to
    	 * use when bootmem is currently active (unless bootmem itself is
    	 * implemented on top of MEMBLOCK which isn't the case yet)
    	 *
    	 * This should however not be an issue for now, as we currently only
    	 * call into MEMBLOCK while it's still active, or much later when slab
    	 * is active for memory hotplug operations
    	 */
    	if (use_slab) {
    		new_array = kmalloc(new_size, GFP_KERNEL);
    		addr = new_array ? __pa(new_array) : 0;
    	} else {
    		/* only exclude range when trying to double reserved.regions */
    		if (type != &memblock.reserved)
    			new_area_start = new_area_size = 0;
    
    		addr = memblock_find_in_range(new_area_start + new_area_size,
    						memblock.current_limit,
    						new_alloc_size, PAGE_SIZE);
    		if (!addr && new_area_size)
    			addr = memblock_find_in_range(0,
    				min(new_area_start, memblock.current_limit),
    				new_alloc_size, PAGE_SIZE);
    
    		new_array = addr ? __va(addr) : NULL;
    	}
    	if (!addr) {
    		pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
    		       memblock_type_name(type), type->max, type->max * 2);
    		return -1;
    	}
    
    	memblock_dbg("memblock: %s is doubled to %ld at [%#010llx-%#010llx]",
    			memblock_type_name(type), type->max * 2, (u64)addr,
    			(u64)addr + new_size - 1);
    
    	/*
    	 * Found space, we now need to move the array over before we add the
    	 * reserved region since it may be our reserved array itself that is
    	 * full.
    	 */
    	memcpy(new_array, type->regions, old_size);
    	memset(new_array + type->max, 0, old_size);
    	old_array = type->regions;
    	type->regions = new_array;
    	type->max <<= 1;
    
    	/* Free old array. We needn't free it if the array is the static one */
    	if (*in_slab)
    		kfree(old_array);
    	else if (old_array != memblock_memory_init_regions &&
    		 old_array != memblock_reserved_init_regions)
    		memblock_free(__pa(old_array), old_alloc_size);
    
    	/*
    	 * Reserve the new array if that comes from the memblock.  Otherwise, we
    	 * needn't do it
    	 */
    	if (!use_slab)
    		BUG_ON(memblock_reserve(addr, new_alloc_size));
    
    	/* Update slab flag */
    	*in_slab = use_slab;
    
    	return 0;
    }
    
    /**
     * memblock_merge_regions - merge neighboring compatible regions
     * @type: memblock type to scan
     *
     * Scan @type and merge neighboring compatible regions.
     */
    static void __init_memblock memblock_merge_regions(struct memblock_type *type)
    {
    	int i = 0;
    
    	/* cnt never goes below 1 */
    	while (i < type->cnt - 1) {
    		struct memblock_region *this = &type->regions[i];
    		struct memblock_region *next = &type->regions[i + 1];
    
    		if (this->base + this->size != next->base ||
    		    memblock_get_region_node(this) !=
    		    memblock_get_region_node(next) ||
    		    this->flags != next->flags) {
    			BUG_ON(this->base + this->size > next->base);
    			i++;
    			continue;
    		}
    
    		this->size += next->size;
    		/* move forward from next + 1, index of which is i + 2 */
    		memmove(next, next + 1, (type->cnt - (i + 2)) * sizeof(*next));
    		type->cnt--;
    	}
    }
    
    /**
     * memblock_insert_region - insert new memblock region
     * @type:	memblock type to insert into
     * @idx:	index for the insertion point
     * @base:	base address of the new region
     * @size:	size of the new region
     * @nid:	node id of the new region
     * @flags:	flags of the new region
     *
     * Insert new memblock region [@base,@base+@size) into @type at @idx.
     * @type must already have extra room to accommodate the new region.
     */
    static void __init_memblock memblock_insert_region(struct memblock_type *type,
    						   int idx, phys_addr_t base,
    						   phys_addr_t size,
    						   int nid, unsigned long flags)
    {
    	struct memblock_region *rgn = &type->regions[idx];
    
    	BUG_ON(type->cnt >= type->max);
    	memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn));
    	rgn->base = base;
    	rgn->size = size;
    	rgn->flags = flags;
    	memblock_set_region_node(rgn, nid);
    	type->cnt++;
    	type->total_size += size;
    }
    
    /**
     * memblock_add_range - add new memblock region
     * @type: memblock type to add new region into
     * @base: base address of the new region
     * @size: size of the new region
     * @nid: nid of the new region
     * @flags: flags of the new region
     *
     * Add new memblock region [@base,@base+@size) into @type.  The new region
     * is allowed to overlap with existing ones - overlaps don't affect already
     * existing regions.  @type is guaranteed to be minimal (all neighbouring
     * compatible regions are merged) after the addition.
     *
     * RETURNS:
     * 0 on success, -errno on failure.
     */
    int __init_memblock memblock_add_range(struct memblock_type *type,
    				phys_addr_t base, phys_addr_t size,
    				int nid, unsigned long flags)
    {
    	bool insert = false;
    	phys_addr_t obase = base;
    	phys_addr_t end = base + memblock_cap_size(base, &size);
    	int idx, nr_new;
    	struct memblock_region *rgn;
    
    	if (!size)
    		return 0;
    
    	/* special case for empty array */
    	if (type->regions[0].size == 0) {
    		WARN_ON(type->cnt != 1 || type->total_size);
    		type->regions[0].base = base;
    		type->regions[0].size = size;
    		type->regions[0].flags = flags;
    		memblock_set_region_node(&type->regions[0], nid);
    		type->total_size = size;
    		return 0;
    	}
    repeat:
    	/*
    	 * The following is executed twice.  Once with %false @insert and
    	 * then with %true.  The first counts the number of regions needed
    	 * to accommodate the new area.  The second actually inserts them.
    	 */
    	base = obase;
    	nr_new = 0;
    
    	for_each_memblock_type(type, rgn) {
    		phys_addr_t rbase = rgn->base;
    		phys_addr_t rend = rbase + rgn->size;
    
    		if (rbase >= end)
    			break;
    		if (rend <= base)
    			continue;
    		/*
    		 * @rgn overlaps.  If it separates the lower part of new
    		 * area, insert that portion.
    		 */
    		if (rbase > base) {
    #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
    			WARN_ON(nid != memblock_get_region_node(rgn));
    #endif
    			WARN_ON(flags != rgn->flags);
    			nr_new++;
    			if (insert)
    				memblock_insert_region(type, idx++, base,
    						       rbase - base, nid,
    						       flags);
    		}
    		/* area below @rend is dealt with, forget about it */
    		base = min(rend, end);
    	}
    
    	/* insert the remaining portion */
    	if (base < end) {
    		nr_new++;
    		if (insert)
    			memblock_insert_region(type, idx, base, end - base,
    					       nid, flags);
    	}
    
    	if (!nr_new)
    		return 0;
    
    	/*
    	 * If this was the first round, resize array and repeat for actual
    	 * insertions; otherwise, merge and return.
    	 */
    	if (!insert) {
    		while (type->cnt + nr_new > type->max)
    			if (memblock_double_array(type, obase, size) < 0)
    				return -ENOMEM;
    		insert = true;
    		goto repeat;
    	} else {
    		memblock_merge_regions(type);
    		return 0;
    	}
    }
    
    int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size,
    				       int nid)
    {
    	return memblock_add_range(&memblock.memory, base, size, nid, 0);
    }
    
    int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size)
    {
    	memblock_dbg("memblock_add: [%#016llx-%#016llx] flags %#02lx %pF\n",
    		     (unsigned long long)base,
    		     (unsigned long long)base + size - 1,
    		     0UL, (void *)_RET_IP_);
    
    	return memblock_add_range(&memblock.memory, base, size, MAX_NUMNODES, 0);
    }
    
    /**
     * memblock_isolate_range - isolate given range into disjoint memblocks
     * @type: memblock type to isolate range for
     * @base: base of range to isolate
     * @size: size of range to isolate
     * @start_rgn: out parameter for the start of isolated region
     * @end_rgn: out parameter for the end of isolated region
     *
     * Walk @type and ensure that regions don't cross the boundaries defined by
     * [@base,@base+@size).  Crossing regions are split at the boundaries,
     * which may create at most two more regions.  The index of the first
     * region inside the range is returned in *@start_rgn and end in *@end_rgn.
     *
     * RETURNS:
     * 0 on success, -errno on failure.
     */
    static int __init_memblock memblock_isolate_range(struct memblock_type *type,
    					phys_addr_t base, phys_addr_t size,
    					int *start_rgn, int *end_rgn)
    {
    	phys_addr_t end = base + memblock_cap_size(base, &size);
    	int idx;
    	struct memblock_region *rgn;
    
    	*start_rgn = *end_rgn = 0;
    
    	if (!size)
    		return 0;
    
    	/* we'll create at most two more regions */
    	while (type->cnt + 2 > type->max)
    		if (memblock_double_array(type, base, size) < 0)
    			return -ENOMEM;
    
    	for_each_memblock_type(type, rgn) {
    		phys_addr_t rbase = rgn->base;
    		phys_addr_t rend = rbase + rgn->size;
    
    		if (rbase >= end)
    			break;
    		if (rend <= base)
    			continue;
    
    		if (rbase < base) {
    			/*
    			 * @rgn intersects from below.  Split and continue
    			 * to process the next region - the new top half.
    			 */
    			rgn->base = base;
    			rgn->size -= base - rbase;
    			type->total_size -= base - rbase;
    			memblock_insert_region(type, idx, rbase, base - rbase,
    					       memblock_get_region_node(rgn),
    					       rgn->flags);
    		} else if (rend > end) {
    			/*
    			 * @rgn intersects from above.  Split and redo the
    			 * current region - the new bottom half.
    			 */
    			rgn->base = end;
    			rgn->size -= end - rbase;
    			type->total_size -= end - rbase;
    			memblock_insert_region(type, idx--, rbase, end - rbase,
    					       memblock_get_region_node(rgn),
    					       rgn->flags);
    		} else {
    			/* @rgn is fully contained, record it */
    			if (!*end_rgn)
    				*start_rgn = idx;
    			*end_rgn = idx + 1;
    		}
    	}
    
    	return 0;
    }
    
    static int __init_memblock memblock_remove_range(struct memblock_type *type,
    					  phys_addr_t base, phys_addr_t size)
    {
    	int start_rgn, end_rgn;
    	int i, ret;
    
    	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
    	if (ret)
    		return ret;
    
    	for (i = end_rgn - 1; i >= start_rgn; i--)
    		memblock_remove_region(type, i);
    	return 0;
    }
    
    int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size)
    {
    	return memblock_remove_range(&memblock.memory, base, size);
    }
    
    
    int __init_memblock memblock_free(phys_addr_t base, phys_addr_t size)
    {
    	memblock_dbg("   memblock_free: [%#016llx-%#016llx] %pF\n",
    		     (unsigned long long)base,
    		     (unsigned long long)base + size - 1,
    		     (void *)_RET_IP_);
    
    	kmemleak_free_part_phys(base, size);
    	return memblock_remove_range(&memblock.reserved, base, size);
    }
    
    int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size)
    {
    	memblock_dbg("memblock_reserve: [%#016llx-%#016llx] flags %#02lx %pF\n",
    		     (unsigned long long)base,
    		     (unsigned long long)base + size - 1,
    		     0UL, (void *)_RET_IP_);
    
    	return memblock_add_range(&memblock.reserved, base, size, MAX_NUMNODES, 0);
    }
    
    /**
     *
     * This function isolates region [@base, @base + @size), and sets/clears flag
     *
     * Return 0 on success, -errno on failure.
     */
    static int __init_memblock memblock_setclr_flag(phys_addr_t base,
    				phys_addr_t size, int set, int flag)
    {
    	struct memblock_type *type = &memblock.memory;
    	int i, ret, start_rgn, end_rgn;
    
    	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
    	if (ret)
    		return ret;
    
    	for (i = start_rgn; i < end_rgn; i++)
    		if (set)
    			memblock_set_region_flags(&type->regions[i], flag);
    		else
    			memblock_clear_region_flags(&type->regions[i], flag);
    
    	memblock_merge_regions(type);
    	return 0;
    }
    
    /**
     * memblock_mark_hotplug - Mark hotpluggable memory with flag MEMBLOCK_HOTPLUG.
     * @base: the base phys addr of the region
     * @size: the size of the region
     *
     * Return 0 on success, -errno on failure.
     */
    int __init_memblock memblock_mark_hotplug(phys_addr_t base, phys_addr_t size)
    {
    	return memblock_setclr_flag(base, size, 1, MEMBLOCK_HOTPLUG);
    }
    
    /**
     * memblock_clear_hotplug - Clear flag MEMBLOCK_HOTPLUG for a specified region.
     * @base: the base phys addr of the region
     * @size: the size of the region
     *
     * Return 0 on success, -errno on failure.
     */
    int __init_memblock memblock_clear_hotplug(phys_addr_t base, phys_addr_t size)
    {
    	return memblock_setclr_flag(base, size, 0, MEMBLOCK_HOTPLUG);
    }
    
    /**
     * memblock_mark_mirror - Mark mirrored memory with flag MEMBLOCK_MIRROR.
     * @base: the base phys addr of the region
     * @size: the size of the region
     *
     * Return 0 on success, -errno on failure.
     */
    int __init_memblock memblock_mark_mirror(phys_addr_t base, phys_addr_t size)
    {
    	system_has_some_mirror = true;
    
    	return memblock_setclr_flag(base, size, 1, MEMBLOCK_MIRROR);
    }
    
    /**
     * memblock_mark_nomap - Mark a memory region with flag MEMBLOCK_NOMAP.
     * @base: the base phys addr of the region
     * @size: the size of the region
     *
     * Return 0 on success, -errno on failure.
     */
    int __init_memblock memblock_mark_nomap(phys_addr_t base, phys_addr_t size)
    {
    	return memblock_setclr_flag(base, size, 1, MEMBLOCK_NOMAP);
    }
    
    /**
     * __next_reserved_mem_region - next function for for_each_reserved_region()
     * @idx: pointer to u64 loop variable
     * @out_start: ptr to phys_addr_t for start address of the region, can be %NULL
     * @out_end: ptr to phys_addr_t for end address of the region, can be %NULL
     *
     * Iterate over all reserved memory regions.
     */
    void __init_memblock __next_reserved_mem_region(u64 *idx,
    					   phys_addr_t *out_start,
    					   phys_addr_t *out_end)
    {
    	struct memblock_type *type = &memblock.reserved;
    
    	if (*idx < type->cnt) {
    		struct memblock_region *r = &type->regions[*idx];
    		phys_addr_t base = r->base;
    		phys_addr_t size = r->size;
    
    		if (out_start)
    			*out_start = base;
    		if (out_end)
    			*out_end = base + size - 1;
    
    		*idx += 1;
    		return;
    	}
    
    	/* signal end of iteration */
    	*idx = ULLONG_MAX;
    }
    
    /**
     * __next__mem_range - next function for for_each_free_mem_range() etc.
     * @idx: pointer to u64 loop variable
     * @nid: node selector, %NUMA_NO_NODE for all nodes
     * @flags: pick from blocks based on memory attributes
     * @type_a: pointer to memblock_type from where the range is taken
     * @type_b: pointer to memblock_type which excludes memory from being taken
     * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
     * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
     * @out_nid: ptr to int for nid of the range, can be %NULL
     *
     * Find the first area from *@idx which matches @nid, fill the out
     * parameters, and update *@idx for the next iteration.  The lower 32bit of
     * *@idx contains index into type_a and the upper 32bit indexes the
     * areas before each region in type_b.	For example, if type_b regions
     * look like the following,
     *
     *	0:[0-16), 1:[32-48), 2:[128-130)
     *
     * The upper 32bit indexes the following regions.
     *
     *	0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX)
     *
     * As both region arrays are sorted, the function advances the two indices
     * in lockstep and returns each intersection.
     */
    void __init_memblock __next_mem_range(u64 *idx, int nid, ulong flags,
    				      struct memblock_type *type_a,
    				      struct memblock_type *type_b,
    				      phys_addr_t *out_start,
    				      phys_addr_t *out_end, int *out_nid)
    {
    	int idx_a = *idx & 0xffffffff;
    	int idx_b = *idx >> 32;
    
    	if (WARN_ONCE(nid == MAX_NUMNODES,
    	"Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
    		nid = NUMA_NO_NODE;
    
    	for (; idx_a < type_a->cnt; idx_a++) {
    		struct memblock_region *m = &type_a->regions[idx_a];
    
    		phys_addr_t m_start = m->base;
    		phys_addr_t m_end = m->base + m->size;
    		int	    m_nid = memblock_get_region_node(m);
    
    		/* only memory regions are associated with nodes, check it */
    		if (nid != NUMA_NO_NODE && nid != m_nid)
    			continue;
    
    		/* skip hotpluggable memory regions if needed */
    		if (movable_node_is_enabled() && memblock_is_hotpluggable(m))
    			continue;
    
    		/* if we want mirror memory skip non-mirror memory regions */
    		if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m))
    			continue;
    
    		/* skip nomap memory unless we were asked for it explicitly */
    		if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m))
    			continue;
    
    		if (!type_b) {
    			if (out_start)
    				*out_start = m_start;
    			if (out_end)
    				*out_end = m_end;
    			if (out_nid)
    				*out_nid = m_nid;
    			idx_a++;
    			*idx = (u32)idx_a | (u64)idx_b << 32;
    			return;
    		}
    
    		/* scan areas before each reservation */
    		for (; idx_b < type_b->cnt + 1; idx_b++) {
    			struct memblock_region *r;
    			phys_addr_t r_start;
    			phys_addr_t r_end;
    
    			r = &type_b->regions[idx_b];
    			r_start = idx_b ? r[-1].base + r[-1].size : 0;
    			r_end = idx_b < type_b->cnt ?
    				r->base : ULLONG_MAX;
    
    			/*
    			 * if idx_b advanced past idx_a,
    			 * break out to advance idx_a
    			 */
    			if (r_start >= m_end)
    				break;
    			/* if the two regions intersect, we're done */
    			if (m_start < r_end) {
    				if (out_start)
    					*out_start =
    						max(m_start, r_start);
    				if (out_end)
    					*out_end = min(m_end, r_end);
    				if (out_nid)
    					*out_nid = m_nid;
    				/*
    				 * The region which ends first is
    				 * advanced for the next iteration.
    				 */
    				if (m_end <= r_end)
    					idx_a++;
    				else
    					idx_b++;
    				*idx = (u32)idx_a | (u64)idx_b << 32;
    				return;
    			}
    		}
    	}
    
    	/* signal end of iteration */
    	*idx = ULLONG_MAX;
    }
    
    /**
     * __next_mem_range_rev - generic next function for for_each_*_range_rev()
     *
     * Finds the next range from type_a which is not marked as unsuitable
     * in type_b.
     *
     * @idx: pointer to u64 loop variable
     * @nid: node selector, %NUMA_NO_NODE for all nodes
     * @flags: pick from blocks based on memory attributes
     * @type_a: pointer to memblock_type from where the range is taken
     * @type_b: pointer to memblock_type which excludes memory from being taken
     * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
     * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
     * @out_nid: ptr to int for nid of the range, can be %NULL
     *
     * Reverse of __next_mem_range().
     */
    void __init_memblock __next_mem_range_rev(u64 *idx, int nid, ulong flags,
    					  struct memblock_type *type_a,
    					  struct memblock_type *type_b,
    					  phys_addr_t *out_start,
    					  phys_addr_t *out_end, int *out_nid)
    {
    	int idx_a = *idx & 0xffffffff;
    	int idx_b = *idx >> 32;
    
    	if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
    		nid = NUMA_NO_NODE;
    
    	if (*idx == (u64)ULLONG_MAX) {
    		idx_a = type_a->cnt - 1;
    		if (type_b != NULL)
    			idx_b = type_b->cnt;
    		else
    			idx_b = 0;
    	}
    
    	for (; idx_a >= 0; idx_a--) {
    		struct memblock_region *m = &type_a->regions[idx_a];