Skip to content
Snippets Groups Projects
memory.c 110 KiB
Newer Older
  • Learn to ignore specific revisions
  • Kenneth Johansson's avatar
    Kenneth Johansson committed
    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000
    /*
     *  linux/mm/memory.c
     *
     *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
     */
    
    /*
     * demand-loading started 01.12.91 - seems it is high on the list of
     * things wanted, and it should be easy to implement. - Linus
     */
    
    /*
     * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
     * pages started 02.12.91, seems to work. - Linus.
     *
     * Tested sharing by executing about 30 /bin/sh: under the old kernel it
     * would have taken more than the 6M I have free, but it worked well as
     * far as I could see.
     *
     * Also corrected some "invalidate()"s - I wasn't doing enough of them.
     */
    
    /*
     * Real VM (paging to/from disk) started 18.12.91. Much more work and
     * thought has to go into this. Oh, well..
     * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
     *		Found it. Everything seems to work now.
     * 20.12.91  -  Ok, making the swap-device changeable like the root.
     */
    
    /*
     * 05.04.94  -  Multi-page memory management added for v1.1.
     * 		Idea by Alex Bligh (alex@cconcepts.co.uk)
     *
     * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
     *		(Gerhard.Wichert@pdb.siemens.de)
     *
     * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
     */
    
    #include <linux/kernel_stat.h>
    #include <linux/mm.h>
    #include <linux/hugetlb.h>
    #include <linux/mman.h>
    #include <linux/swap.h>
    #include <linux/highmem.h>
    #include <linux/pagemap.h>
    #include <linux/ksm.h>
    #include <linux/rmap.h>
    #include <linux/export.h>
    #include <linux/delayacct.h>
    #include <linux/init.h>
    #include <linux/pfn_t.h>
    #include <linux/writeback.h>
    #include <linux/memcontrol.h>
    #include <linux/mmu_notifier.h>
    #include <linux/kallsyms.h>
    #include <linux/swapops.h>
    #include <linux/elf.h>
    #include <linux/gfp.h>
    #include <linux/migrate.h>
    #include <linux/string.h>
    #include <linux/dma-debug.h>
    #include <linux/debugfs.h>
    #include <linux/userfaultfd_k.h>
    #include <linux/dax.h>
    
    #include <asm/io.h>
    #include <asm/mmu_context.h>
    #include <asm/pgalloc.h>
    #include <asm/uaccess.h>
    #include <asm/tlb.h>
    #include <asm/tlbflush.h>
    #include <asm/pgtable.h>
    
    #include "internal.h"
    
    #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
    #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
    #endif
    
    #ifndef CONFIG_NEED_MULTIPLE_NODES
    /* use the per-pgdat data instead for discontigmem - mbligh */
    unsigned long max_mapnr;
    struct page *mem_map;
    
    EXPORT_SYMBOL(max_mapnr);
    EXPORT_SYMBOL(mem_map);
    #endif
    
    /*
     * A number of key systems in x86 including ioremap() rely on the assumption
     * that high_memory defines the upper bound on direct map memory, then end
     * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
     * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
     * and ZONE_HIGHMEM.
     */
    void * high_memory;
    
    EXPORT_SYMBOL(high_memory);
    
    /*
     * Randomize the address space (stacks, mmaps, brk, etc.).
     *
     * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
     *   as ancient (libc5 based) binaries can segfault. )
     */
    int randomize_va_space __read_mostly =
    #ifdef CONFIG_COMPAT_BRK
    					1;
    #else
    					2;
    #endif
    
    static int __init disable_randmaps(char *s)
    {
    	randomize_va_space = 0;
    	return 1;
    }
    __setup("norandmaps", disable_randmaps);
    
    unsigned long zero_pfn __read_mostly;
    unsigned long highest_memmap_pfn __read_mostly;
    
    EXPORT_SYMBOL(zero_pfn);
    
    /*
     * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
     */
    static int __init init_zero_pfn(void)
    {
    	zero_pfn = page_to_pfn(ZERO_PAGE(0));
    	return 0;
    }
    core_initcall(init_zero_pfn);
    
    
    #if defined(SPLIT_RSS_COUNTING)
    
    void sync_mm_rss(struct mm_struct *mm)
    {
    	int i;
    
    	for (i = 0; i < NR_MM_COUNTERS; i++) {
    		if (current->rss_stat.count[i]) {
    			add_mm_counter(mm, i, current->rss_stat.count[i]);
    			current->rss_stat.count[i] = 0;
    		}
    	}
    	current->rss_stat.events = 0;
    }
    
    static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
    {
    	struct task_struct *task = current;
    
    	if (likely(task->mm == mm))
    		task->rss_stat.count[member] += val;
    	else
    		add_mm_counter(mm, member, val);
    }
    #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
    #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
    
    /* sync counter once per 64 page faults */
    #define TASK_RSS_EVENTS_THRESH	(64)
    static void check_sync_rss_stat(struct task_struct *task)
    {
    	if (unlikely(task != current))
    		return;
    	if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
    		sync_mm_rss(task->mm);
    }
    #else /* SPLIT_RSS_COUNTING */
    
    #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
    #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
    
    static void check_sync_rss_stat(struct task_struct *task)
    {
    }
    
    #endif /* SPLIT_RSS_COUNTING */
    
    #ifdef HAVE_GENERIC_MMU_GATHER
    
    static bool tlb_next_batch(struct mmu_gather *tlb)
    {
    	struct mmu_gather_batch *batch;
    
    	batch = tlb->active;
    	if (batch->next) {
    		tlb->active = batch->next;
    		return true;
    	}
    
    	if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
    		return false;
    
    	batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
    	if (!batch)
    		return false;
    
    	tlb->batch_count++;
    	batch->next = NULL;
    	batch->nr   = 0;
    	batch->max  = MAX_GATHER_BATCH;
    
    	tlb->active->next = batch;
    	tlb->active = batch;
    
    	return true;
    }
    
    /* tlb_gather_mmu
     *	Called to initialize an (on-stack) mmu_gather structure for page-table
     *	tear-down from @mm. The @fullmm argument is used when @mm is without
     *	users and we're going to destroy the full address space (exit/execve).
     */
    void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, unsigned long start, unsigned long end)
    {
    	tlb->mm = mm;
    
    	/* Is it from 0 to ~0? */
    	tlb->fullmm     = !(start | (end+1));
    	tlb->need_flush_all = 0;
    	tlb->local.next = NULL;
    	tlb->local.nr   = 0;
    	tlb->local.max  = ARRAY_SIZE(tlb->__pages);
    	tlb->active     = &tlb->local;
    	tlb->batch_count = 0;
    
    #ifdef CONFIG_HAVE_RCU_TABLE_FREE
    	tlb->batch = NULL;
    #endif
    	tlb->page_size = 0;
    
    	__tlb_reset_range(tlb);
    }
    
    static void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb)
    {
    	if (!tlb->end)
    		return;
    
    	tlb_flush(tlb);
    	mmu_notifier_invalidate_range(tlb->mm, tlb->start, tlb->end);
    #ifdef CONFIG_HAVE_RCU_TABLE_FREE
    	tlb_table_flush(tlb);
    #endif
    	__tlb_reset_range(tlb);
    }
    
    static void tlb_flush_mmu_free(struct mmu_gather *tlb)
    {
    	struct mmu_gather_batch *batch;
    
    	for (batch = &tlb->local; batch && batch->nr; batch = batch->next) {
    		free_pages_and_swap_cache(batch->pages, batch->nr);
    		batch->nr = 0;
    	}
    	tlb->active = &tlb->local;
    }
    
    void tlb_flush_mmu(struct mmu_gather *tlb)
    {
    	tlb_flush_mmu_tlbonly(tlb);
    	tlb_flush_mmu_free(tlb);
    }
    
    /* tlb_finish_mmu
     *	Called at the end of the shootdown operation to free up any resources
     *	that were required.
     */
    void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
    {
    	struct mmu_gather_batch *batch, *next;
    
    	tlb_flush_mmu(tlb);
    
    	/* keep the page table cache within bounds */
    	check_pgt_cache();
    
    	for (batch = tlb->local.next; batch; batch = next) {
    		next = batch->next;
    		free_pages((unsigned long)batch, 0);
    	}
    	tlb->local.next = NULL;
    }
    
    /* __tlb_remove_page
     *	Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
     *	handling the additional races in SMP caused by other CPUs caching valid
     *	mappings in their TLBs. Returns the number of free page slots left.
     *	When out of page slots we must call tlb_flush_mmu().
     *returns true if the caller should flush.
     */
    bool __tlb_remove_page_size(struct mmu_gather *tlb, struct page *page, int page_size)
    {
    	struct mmu_gather_batch *batch;
    
    	VM_BUG_ON(!tlb->end);
    
    	if (!tlb->page_size)
    		tlb->page_size = page_size;
    	else {
    		if (page_size != tlb->page_size)
    			return true;
    	}
    
    	batch = tlb->active;
    	if (batch->nr == batch->max) {
    		if (!tlb_next_batch(tlb))
    			return true;
    		batch = tlb->active;
    	}
    	VM_BUG_ON_PAGE(batch->nr > batch->max, page);
    
    	batch->pages[batch->nr++] = page;
    	return false;
    }
    
    #endif /* HAVE_GENERIC_MMU_GATHER */
    
    #ifdef CONFIG_HAVE_RCU_TABLE_FREE
    
    /*
     * See the comment near struct mmu_table_batch.
     */
    
    static void tlb_remove_table_smp_sync(void *arg)
    {
    	/* Simply deliver the interrupt */
    }
    
    static void tlb_remove_table_one(void *table)
    {
    	/*
    	 * This isn't an RCU grace period and hence the page-tables cannot be
    	 * assumed to be actually RCU-freed.
    	 *
    	 * It is however sufficient for software page-table walkers that rely on
    	 * IRQ disabling. See the comment near struct mmu_table_batch.
    	 */
    	smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
    	__tlb_remove_table(table);
    }
    
    static void tlb_remove_table_rcu(struct rcu_head *head)
    {
    	struct mmu_table_batch *batch;
    	int i;
    
    	batch = container_of(head, struct mmu_table_batch, rcu);
    
    	for (i = 0; i < batch->nr; i++)
    		__tlb_remove_table(batch->tables[i]);
    
    	free_page((unsigned long)batch);
    }
    
    void tlb_table_flush(struct mmu_gather *tlb)
    {
    	struct mmu_table_batch **batch = &tlb->batch;
    
    	if (*batch) {
    		call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
    		*batch = NULL;
    	}
    }
    
    void tlb_remove_table(struct mmu_gather *tlb, void *table)
    {
    	struct mmu_table_batch **batch = &tlb->batch;
    
    	/*
    	 * When there's less then two users of this mm there cannot be a
    	 * concurrent page-table walk.
    	 */
    	if (atomic_read(&tlb->mm->mm_users) < 2) {
    		__tlb_remove_table(table);
    		return;
    	}
    
    	if (*batch == NULL) {
    		*batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
    		if (*batch == NULL) {
    			tlb_remove_table_one(table);
    			return;
    		}
    		(*batch)->nr = 0;
    	}
    	(*batch)->tables[(*batch)->nr++] = table;
    	if ((*batch)->nr == MAX_TABLE_BATCH)
    		tlb_table_flush(tlb);
    }
    
    #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
    
    /*
     * Note: this doesn't free the actual pages themselves. That
     * has been handled earlier when unmapping all the memory regions.
     */
    static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
    			   unsigned long addr)
    {
    	pgtable_t token = pmd_pgtable(*pmd);
    	pmd_clear(pmd);
    	pte_free_tlb(tlb, token, addr);
    	atomic_long_dec(&tlb->mm->nr_ptes);
    }
    
    static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
    				unsigned long addr, unsigned long end,
    				unsigned long floor, unsigned long ceiling)
    {
    	pmd_t *pmd;
    	unsigned long next;
    	unsigned long start;
    
    	start = addr;
    	pmd = pmd_offset(pud, addr);
    	do {
    		next = pmd_addr_end(addr, end);
    		if (pmd_none_or_clear_bad(pmd))
    			continue;
    		free_pte_range(tlb, pmd, addr);
    	} while (pmd++, addr = next, addr != end);
    
    	start &= PUD_MASK;
    	if (start < floor)
    		return;
    	if (ceiling) {
    		ceiling &= PUD_MASK;
    		if (!ceiling)
    			return;
    	}
    	if (end - 1 > ceiling - 1)
    		return;
    
    	pmd = pmd_offset(pud, start);
    	pud_clear(pud);
    	pmd_free_tlb(tlb, pmd, start);
    	mm_dec_nr_pmds(tlb->mm);
    }
    
    static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
    				unsigned long addr, unsigned long end,
    				unsigned long floor, unsigned long ceiling)
    {
    	pud_t *pud;
    	unsigned long next;
    	unsigned long start;
    
    	start = addr;
    	pud = pud_offset(pgd, addr);
    	do {
    		next = pud_addr_end(addr, end);
    		if (pud_none_or_clear_bad(pud))
    			continue;
    		free_pmd_range(tlb, pud, addr, next, floor, ceiling);
    	} while (pud++, addr = next, addr != end);
    
    	start &= PGDIR_MASK;
    	if (start < floor)
    		return;
    	if (ceiling) {
    		ceiling &= PGDIR_MASK;
    		if (!ceiling)
    			return;
    	}
    	if (end - 1 > ceiling - 1)
    		return;
    
    	pud = pud_offset(pgd, start);
    	pgd_clear(pgd);
    	pud_free_tlb(tlb, pud, start);
    }
    
    /*
     * This function frees user-level page tables of a process.
     */
    void free_pgd_range(struct mmu_gather *tlb,
    			unsigned long addr, unsigned long end,
    			unsigned long floor, unsigned long ceiling)
    {
    	pgd_t *pgd;
    	unsigned long next;
    
    	/*
    	 * The next few lines have given us lots of grief...
    	 *
    	 * Why are we testing PMD* at this top level?  Because often
    	 * there will be no work to do at all, and we'd prefer not to
    	 * go all the way down to the bottom just to discover that.
    	 *
    	 * Why all these "- 1"s?  Because 0 represents both the bottom
    	 * of the address space and the top of it (using -1 for the
    	 * top wouldn't help much: the masks would do the wrong thing).
    	 * The rule is that addr 0 and floor 0 refer to the bottom of
    	 * the address space, but end 0 and ceiling 0 refer to the top
    	 * Comparisons need to use "end - 1" and "ceiling - 1" (though
    	 * that end 0 case should be mythical).
    	 *
    	 * Wherever addr is brought up or ceiling brought down, we must
    	 * be careful to reject "the opposite 0" before it confuses the
    	 * subsequent tests.  But what about where end is brought down
    	 * by PMD_SIZE below? no, end can't go down to 0 there.
    	 *
    	 * Whereas we round start (addr) and ceiling down, by different
    	 * masks at different levels, in order to test whether a table
    	 * now has no other vmas using it, so can be freed, we don't
    	 * bother to round floor or end up - the tests don't need that.
    	 */
    
    	addr &= PMD_MASK;
    	if (addr < floor) {
    		addr += PMD_SIZE;
    		if (!addr)
    			return;
    	}
    	if (ceiling) {
    		ceiling &= PMD_MASK;
    		if (!ceiling)
    			return;
    	}
    	if (end - 1 > ceiling - 1)
    		end -= PMD_SIZE;
    	if (addr > end - 1)
    		return;
    
    	pgd = pgd_offset(tlb->mm, addr);
    	do {
    		next = pgd_addr_end(addr, end);
    		if (pgd_none_or_clear_bad(pgd))
    			continue;
    		free_pud_range(tlb, pgd, addr, next, floor, ceiling);
    	} while (pgd++, addr = next, addr != end);
    }
    
    void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
    		unsigned long floor, unsigned long ceiling)
    {
    	while (vma) {
    		struct vm_area_struct *next = vma->vm_next;
    		unsigned long addr = vma->vm_start;
    
    		/*
    		 * Hide vma from rmap and truncate_pagecache before freeing
    		 * pgtables
    		 */
    		unlink_anon_vmas(vma);
    		unlink_file_vma(vma);
    
    		if (is_vm_hugetlb_page(vma)) {
    			hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
    				floor, next? next->vm_start: ceiling);
    		} else {
    			/*
    			 * Optimization: gather nearby vmas into one call down
    			 */
    			while (next && next->vm_start <= vma->vm_end + PMD_SIZE
    			       && !is_vm_hugetlb_page(next)) {
    				vma = next;
    				next = vma->vm_next;
    				unlink_anon_vmas(vma);
    				unlink_file_vma(vma);
    			}
    			free_pgd_range(tlb, addr, vma->vm_end,
    				floor, next? next->vm_start: ceiling);
    		}
    		vma = next;
    	}
    }
    
    int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
    {
    	spinlock_t *ptl;
    	pgtable_t new = pte_alloc_one(mm, address);
    	if (!new)
    		return -ENOMEM;
    
    	/*
    	 * Ensure all pte setup (eg. pte page lock and page clearing) are
    	 * visible before the pte is made visible to other CPUs by being
    	 * put into page tables.
    	 *
    	 * The other side of the story is the pointer chasing in the page
    	 * table walking code (when walking the page table without locking;
    	 * ie. most of the time). Fortunately, these data accesses consist
    	 * of a chain of data-dependent loads, meaning most CPUs (alpha
    	 * being the notable exception) will already guarantee loads are
    	 * seen in-order. See the alpha page table accessors for the
    	 * smp_read_barrier_depends() barriers in page table walking code.
    	 */
    	smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
    
    	ptl = pmd_lock(mm, pmd);
    	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
    		atomic_long_inc(&mm->nr_ptes);
    		pmd_populate(mm, pmd, new);
    		new = NULL;
    	}
    	spin_unlock(ptl);
    	if (new)
    		pte_free(mm, new);
    	return 0;
    }
    
    int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
    {
    	pte_t *new = pte_alloc_one_kernel(&init_mm, address);
    	if (!new)
    		return -ENOMEM;
    
    	smp_wmb(); /* See comment in __pte_alloc */
    
    	spin_lock(&init_mm.page_table_lock);
    	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
    		pmd_populate_kernel(&init_mm, pmd, new);
    		new = NULL;
    	}
    	spin_unlock(&init_mm.page_table_lock);
    	if (new)
    		pte_free_kernel(&init_mm, new);
    	return 0;
    }
    
    static inline void init_rss_vec(int *rss)
    {
    	memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
    }
    
    static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
    {
    	int i;
    
    	if (current->mm == mm)
    		sync_mm_rss(mm);
    	for (i = 0; i < NR_MM_COUNTERS; i++)
    		if (rss[i])
    			add_mm_counter(mm, i, rss[i]);
    }
    
    /*
     * This function is called to print an error when a bad pte
     * is found. For example, we might have a PFN-mapped pte in
     * a region that doesn't allow it.
     *
     * The calling function must still handle the error.
     */
    static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
    			  pte_t pte, struct page *page)
    {
    	pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
    	pud_t *pud = pud_offset(pgd, addr);
    	pmd_t *pmd = pmd_offset(pud, addr);
    	struct address_space *mapping;
    	pgoff_t index;
    	static unsigned long resume;
    	static unsigned long nr_shown;
    	static unsigned long nr_unshown;
    
    	/*
    	 * Allow a burst of 60 reports, then keep quiet for that minute;
    	 * or allow a steady drip of one report per second.
    	 */
    	if (nr_shown == 60) {
    		if (time_before(jiffies, resume)) {
    			nr_unshown++;
    			return;
    		}
    		if (nr_unshown) {
    			pr_alert("BUG: Bad page map: %lu messages suppressed\n",
    				 nr_unshown);
    			nr_unshown = 0;
    		}
    		nr_shown = 0;
    	}
    	if (nr_shown++ == 0)
    		resume = jiffies + 60 * HZ;
    
    	mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
    	index = linear_page_index(vma, addr);
    
    	pr_alert("BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
    		 current->comm,
    		 (long long)pte_val(pte), (long long)pmd_val(*pmd));
    	if (page)
    		dump_page(page, "bad pte");
    	pr_alert("addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
    		 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
    	/*
    	 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
    	 */
    	pr_alert("file:%pD fault:%pf mmap:%pf readpage:%pf\n",
    		 vma->vm_file,
    		 vma->vm_ops ? vma->vm_ops->fault : NULL,
    		 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
    		 mapping ? mapping->a_ops->readpage : NULL);
    	dump_stack();
    	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
    }
    
    /*
     * vm_normal_page -- This function gets the "struct page" associated with a pte.
     *
     * "Special" mappings do not wish to be associated with a "struct page" (either
     * it doesn't exist, or it exists but they don't want to touch it). In this
     * case, NULL is returned here. "Normal" mappings do have a struct page.
     *
     * There are 2 broad cases. Firstly, an architecture may define a pte_special()
     * pte bit, in which case this function is trivial. Secondly, an architecture
     * may not have a spare pte bit, which requires a more complicated scheme,
     * described below.
     *
     * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
     * special mapping (even if there are underlying and valid "struct pages").
     * COWed pages of a VM_PFNMAP are always normal.
     *
     * The way we recognize COWed pages within VM_PFNMAP mappings is through the
     * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
     * set, and the vm_pgoff will point to the first PFN mapped: thus every special
     * mapping will always honor the rule
     *
     *	pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
     *
     * And for normal mappings this is false.
     *
     * This restricts such mappings to be a linear translation from virtual address
     * to pfn. To get around this restriction, we allow arbitrary mappings so long
     * as the vma is not a COW mapping; in that case, we know that all ptes are
     * special (because none can have been COWed).
     *
     *
     * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
     *
     * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
     * page" backing, however the difference is that _all_ pages with a struct
     * page (that is, those where pfn_valid is true) are refcounted and considered
     * normal pages by the VM. The disadvantage is that pages are refcounted
     * (which can be slower and simply not an option for some PFNMAP users). The
     * advantage is that we don't have to follow the strict linearity rule of
     * PFNMAP mappings in order to support COWable mappings.
     *
     */
    #ifdef __HAVE_ARCH_PTE_SPECIAL
    # define HAVE_PTE_SPECIAL 1
    #else
    # define HAVE_PTE_SPECIAL 0
    #endif
    struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
    				pte_t pte)
    {
    	unsigned long pfn = pte_pfn(pte);
    
    	if (HAVE_PTE_SPECIAL) {
    		if (likely(!pte_special(pte)))
    			goto check_pfn;
    		if (vma->vm_ops && vma->vm_ops->find_special_page)
    			return vma->vm_ops->find_special_page(vma, addr);
    		if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
    			return NULL;
    		if (!is_zero_pfn(pfn))
    			print_bad_pte(vma, addr, pte, NULL);
    		return NULL;
    	}
    
    	/* !HAVE_PTE_SPECIAL case follows: */
    
    	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
    		if (vma->vm_flags & VM_MIXEDMAP) {
    			if (!pfn_valid(pfn))
    				return NULL;
    			goto out;
    		} else {
    			unsigned long off;
    			off = (addr - vma->vm_start) >> PAGE_SHIFT;
    			if (pfn == vma->vm_pgoff + off)
    				return NULL;
    			if (!is_cow_mapping(vma->vm_flags))
    				return NULL;
    		}
    	}
    
    	if (is_zero_pfn(pfn))
    		return NULL;
    check_pfn:
    	if (unlikely(pfn > highest_memmap_pfn)) {
    		print_bad_pte(vma, addr, pte, NULL);
    		return NULL;
    	}
    
    	/*
    	 * NOTE! We still have PageReserved() pages in the page tables.
    	 * eg. VDSO mappings can cause them to exist.
    	 */
    out:
    	return pfn_to_page(pfn);
    }
    
    #ifdef CONFIG_TRANSPARENT_HUGEPAGE
    struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
    				pmd_t pmd)
    {
    	unsigned long pfn = pmd_pfn(pmd);
    
    	/*
    	 * There is no pmd_special() but there may be special pmds, e.g.
    	 * in a direct-access (dax) mapping, so let's just replicate the
    	 * !HAVE_PTE_SPECIAL case from vm_normal_page() here.
    	 */
    	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
    		if (vma->vm_flags & VM_MIXEDMAP) {
    			if (!pfn_valid(pfn))
    				return NULL;
    			goto out;
    		} else {
    			unsigned long off;
    			off = (addr - vma->vm_start) >> PAGE_SHIFT;
    			if (pfn == vma->vm_pgoff + off)
    				return NULL;
    			if (!is_cow_mapping(vma->vm_flags))
    				return NULL;
    		}
    	}
    
    	if (is_zero_pfn(pfn))
    		return NULL;
    	if (unlikely(pfn > highest_memmap_pfn))
    		return NULL;
    
    	/*
    	 * NOTE! We still have PageReserved() pages in the page tables.
    	 * eg. VDSO mappings can cause them to exist.
    	 */
    out:
    	return pfn_to_page(pfn);
    }
    #endif
    
    /*
     * copy one vm_area from one task to the other. Assumes the page tables
     * already present in the new task to be cleared in the whole range
     * covered by this vma.
     */
    
    static inline unsigned long
    copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
    		pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
    		unsigned long addr, int *rss)
    {
    	unsigned long vm_flags = vma->vm_flags;
    	pte_t pte = *src_pte;
    	struct page *page;
    
    	/* pte contains position in swap or file, so copy. */
    	if (unlikely(!pte_present(pte))) {
    		swp_entry_t entry = pte_to_swp_entry(pte);
    
    		if (likely(!non_swap_entry(entry))) {
    			if (swap_duplicate(entry) < 0)
    				return entry.val;
    
    			/* make sure dst_mm is on swapoff's mmlist. */
    			if (unlikely(list_empty(&dst_mm->mmlist))) {
    				spin_lock(&mmlist_lock);
    				if (list_empty(&dst_mm->mmlist))
    					list_add(&dst_mm->mmlist,
    							&src_mm->mmlist);
    				spin_unlock(&mmlist_lock);
    			}
    			rss[MM_SWAPENTS]++;
    		} else if (is_migration_entry(entry)) {
    			page = migration_entry_to_page(entry);
    
    			rss[mm_counter(page)]++;
    
    			if (is_write_migration_entry(entry) &&
    					is_cow_mapping(vm_flags)) {
    				/*
    				 * COW mappings require pages in both
    				 * parent and child to be set to read.
    				 */
    				make_migration_entry_read(&entry);
    				pte = swp_entry_to_pte(entry);
    				if (pte_swp_soft_dirty(*src_pte))
    					pte = pte_swp_mksoft_dirty(pte);
    				set_pte_at(src_mm, addr, src_pte, pte);
    			}
    		}
    		goto out_set_pte;
    	}
    
    	/*
    	 * If it's a COW mapping, write protect it both
    	 * in the parent and the child
    	 */
    	if (is_cow_mapping(vm_flags)) {
    		ptep_set_wrprotect(src_mm, addr, src_pte);
    		pte = pte_wrprotect(pte);
    	}
    
    	/*
    	 * If it's a shared mapping, mark it clean in
    	 * the child
    	 */
    	if (vm_flags & VM_SHARED)
    		pte = pte_mkclean(pte);
    	pte = pte_mkold(pte);
    
    	page = vm_normal_page(vma, addr, pte);
    	if (page) {
    		get_page(page);
    		page_dup_rmap(page, false);
    		rss[mm_counter(page)]++;
    	}
    
    out_set_pte:
    	set_pte_at(dst_mm, addr, dst_pte, pte);
    	return 0;
    }
    
    static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
    		   pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
    		   unsigned long addr, unsigned long end)
    {
    	pte_t *orig_src_pte, *orig_dst_pte;
    	pte_t *src_pte, *dst_pte;
    	spinlock_t *src_ptl, *dst_ptl;
    	int progress = 0;
    	int rss[NR_MM_COUNTERS];
    	swp_entry_t entry = (swp_entry_t){0};
    
    again:
    	init_rss_vec(rss);
    
    	dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
    	if (!dst_pte)
    		return -ENOMEM;
    	src_pte = pte_offset_map(src_pmd, addr);
    	src_ptl = pte_lockptr(src_mm, src_pmd);
    	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
    	orig_src_pte = src_pte;
    	orig_dst_pte = dst_pte;
    	arch_enter_lazy_mmu_mode();
    
    	do {
    		/*
    		 * We are holding two locks at this point - either of them
    		 * could generate latencies in another task on another CPU.
    		 */
    		if (progress >= 32) {
    			progress = 0;
    			if (need_resched() ||
    			    spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
    				break;
    		}
    		if (pte_none(*src_pte)) {
    			progress++;
    			continue;
    		}
    		entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
    							vma, addr, rss);
    		if (entry.val)
    			break;
    		progress += 8;
    	} while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
    
    	arch_leave_lazy_mmu_mode();
    	spin_unlock(src_ptl);
    	pte_unmap(orig_src_pte);
    	add_mm_rss_vec(dst_mm, rss);
    	pte_unmap_unlock(orig_dst_pte, dst_ptl);
    	cond_resched();
    
    	if (entry.val) {
    		if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
    			return -ENOMEM;
    		progress = 0;
    	}
    	if (addr != end)
    		goto again;
    	return 0;
    }
    
    static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
    		pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
    		unsigned long addr, unsigned long end)
    {
    	pmd_t *src_pmd, *dst_pmd;
    	unsigned long next;
    
    	dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
    	if (!dst_pmd)
    		return -ENOMEM;
    	src_pmd = pmd_offset(src_pud, addr);
    	do {
    		next = pmd_addr_end(addr, end);
    		if (pmd_trans_huge(*src_pmd) || pmd_devmap(*src_pmd)) {