Skip to content
Snippets Groups Projects
mempolicy.c 71.2 KiB
Newer Older
  • Learn to ignore specific revisions
  • Kenneth Johansson's avatar
    Kenneth Johansson committed
    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000
    /*
     * Simple NUMA memory policy for the Linux kernel.
     *
     * Copyright 2003,2004 Andi Kleen, SuSE Labs.
     * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
     * Subject to the GNU Public License, version 2.
     *
     * NUMA policy allows the user to give hints in which node(s) memory should
     * be allocated.
     *
     * Support four policies per VMA and per process:
     *
     * The VMA policy has priority over the process policy for a page fault.
     *
     * interleave     Allocate memory interleaved over a set of nodes,
     *                with normal fallback if it fails.
     *                For VMA based allocations this interleaves based on the
     *                offset into the backing object or offset into the mapping
     *                for anonymous memory. For process policy an process counter
     *                is used.
     *
     * bind           Only allocate memory on a specific set of nodes,
     *                no fallback.
     *                FIXME: memory is allocated starting with the first node
     *                to the last. It would be better if bind would truly restrict
     *                the allocation to memory nodes instead
     *
     * preferred       Try a specific node first before normal fallback.
     *                As a special case NUMA_NO_NODE here means do the allocation
     *                on the local CPU. This is normally identical to default,
     *                but useful to set in a VMA when you have a non default
     *                process policy.
     *
     * default        Allocate on the local node first, or when on a VMA
     *                use the process policy. This is what Linux always did
     *		  in a NUMA aware kernel and still does by, ahem, default.
     *
     * The process policy is applied for most non interrupt memory allocations
     * in that process' context. Interrupts ignore the policies and always
     * try to allocate on the local CPU. The VMA policy is only applied for memory
     * allocations for a VMA in the VM.
     *
     * Currently there are a few corner cases in swapping where the policy
     * is not applied, but the majority should be handled. When process policy
     * is used it is not remembered over swap outs/swap ins.
     *
     * Only the highest zone in the zone hierarchy gets policied. Allocations
     * requesting a lower zone just use default policy. This implies that
     * on systems with highmem kernel lowmem allocation don't get policied.
     * Same with GFP_DMA allocations.
     *
     * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
     * all users and remembered even when nobody has memory mapped.
     */
    
    /* Notebook:
       fix mmap readahead to honour policy and enable policy for any page cache
       object
       statistics for bigpages
       global policy for page cache? currently it uses process policy. Requires
       first item above.
       handle mremap for shared memory (currently ignored for the policy)
       grows down?
       make bind policy root only? It can trigger oom much faster and the
       kernel is not always grateful with that.
    */
    
    #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
    
    #include <linux/mempolicy.h>
    #include <linux/mm.h>
    #include <linux/highmem.h>
    #include <linux/hugetlb.h>
    #include <linux/kernel.h>
    #include <linux/sched.h>
    #include <linux/nodemask.h>
    #include <linux/cpuset.h>
    #include <linux/slab.h>
    #include <linux/string.h>
    #include <linux/export.h>
    #include <linux/nsproxy.h>
    #include <linux/interrupt.h>
    #include <linux/init.h>
    #include <linux/compat.h>
    #include <linux/swap.h>
    #include <linux/seq_file.h>
    #include <linux/proc_fs.h>
    #include <linux/migrate.h>
    #include <linux/ksm.h>
    #include <linux/rmap.h>
    #include <linux/security.h>
    #include <linux/syscalls.h>
    #include <linux/ctype.h>
    #include <linux/mm_inline.h>
    #include <linux/mmu_notifier.h>
    #include <linux/printk.h>
    
    #include <asm/tlbflush.h>
    #include <asm/uaccess.h>
    
    #include "internal.h"
    
    /* Internal flags */
    #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0)	/* Skip checks for continuous vmas */
    #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1)		/* Invert check for nodemask */
    
    static struct kmem_cache *policy_cache;
    static struct kmem_cache *sn_cache;
    
    /* Highest zone. An specific allocation for a zone below that is not
       policied. */
    enum zone_type policy_zone = 0;
    
    /*
     * run-time system-wide default policy => local allocation
     */
    static struct mempolicy default_policy = {
    	.refcnt = ATOMIC_INIT(1), /* never free it */
    	.mode = MPOL_PREFERRED,
    	.flags = MPOL_F_LOCAL,
    };
    
    static struct mempolicy preferred_node_policy[MAX_NUMNODES];
    
    struct mempolicy *get_task_policy(struct task_struct *p)
    {
    	struct mempolicy *pol = p->mempolicy;
    	int node;
    
    	if (pol)
    		return pol;
    
    	node = numa_node_id();
    	if (node != NUMA_NO_NODE) {
    		pol = &preferred_node_policy[node];
    		/* preferred_node_policy is not initialised early in boot */
    		if (pol->mode)
    			return pol;
    	}
    
    	return &default_policy;
    }
    
    static const struct mempolicy_operations {
    	int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
    	/*
    	 * If read-side task has no lock to protect task->mempolicy, write-side
    	 * task will rebind the task->mempolicy by two step. The first step is
    	 * setting all the newly nodes, and the second step is cleaning all the
    	 * disallowed nodes. In this way, we can avoid finding no node to alloc
    	 * page.
    	 * If we have a lock to protect task->mempolicy in read-side, we do
    	 * rebind directly.
    	 *
    	 * step:
    	 * 	MPOL_REBIND_ONCE - do rebind work at once
    	 * 	MPOL_REBIND_STEP1 - set all the newly nodes
    	 * 	MPOL_REBIND_STEP2 - clean all the disallowed nodes
    	 */
    	void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes,
    			enum mpol_rebind_step step);
    } mpol_ops[MPOL_MAX];
    
    static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
    {
    	return pol->flags & MPOL_MODE_FLAGS;
    }
    
    static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
    				   const nodemask_t *rel)
    {
    	nodemask_t tmp;
    	nodes_fold(tmp, *orig, nodes_weight(*rel));
    	nodes_onto(*ret, tmp, *rel);
    }
    
    static int mpol_new_interleave(struct mempolicy *pol, const nodemask_t *nodes)
    {
    	if (nodes_empty(*nodes))
    		return -EINVAL;
    	pol->v.nodes = *nodes;
    	return 0;
    }
    
    static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
    {
    	if (!nodes)
    		pol->flags |= MPOL_F_LOCAL;	/* local allocation */
    	else if (nodes_empty(*nodes))
    		return -EINVAL;			/*  no allowed nodes */
    	else
    		pol->v.preferred_node = first_node(*nodes);
    	return 0;
    }
    
    static int mpol_new_bind(struct mempolicy *pol, const nodemask_t *nodes)
    {
    	if (nodes_empty(*nodes))
    		return -EINVAL;
    	pol->v.nodes = *nodes;
    	return 0;
    }
    
    /*
     * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
     * any, for the new policy.  mpol_new() has already validated the nodes
     * parameter with respect to the policy mode and flags.  But, we need to
     * handle an empty nodemask with MPOL_PREFERRED here.
     *
     * Must be called holding task's alloc_lock to protect task's mems_allowed
     * and mempolicy.  May also be called holding the mmap_semaphore for write.
     */
    static int mpol_set_nodemask(struct mempolicy *pol,
    		     const nodemask_t *nodes, struct nodemask_scratch *nsc)
    {
    	int ret;
    
    	/* if mode is MPOL_DEFAULT, pol is NULL. This is right. */
    	if (pol == NULL)
    		return 0;
    	/* Check N_MEMORY */
    	nodes_and(nsc->mask1,
    		  cpuset_current_mems_allowed, node_states[N_MEMORY]);
    
    	VM_BUG_ON(!nodes);
    	if (pol->mode == MPOL_PREFERRED && nodes_empty(*nodes))
    		nodes = NULL;	/* explicit local allocation */
    	else {
    		if (pol->flags & MPOL_F_RELATIVE_NODES)
    			mpol_relative_nodemask(&nsc->mask2, nodes, &nsc->mask1);
    		else
    			nodes_and(nsc->mask2, *nodes, nsc->mask1);
    
    		if (mpol_store_user_nodemask(pol))
    			pol->w.user_nodemask = *nodes;
    		else
    			pol->w.cpuset_mems_allowed =
    						cpuset_current_mems_allowed;
    	}
    
    	if (nodes)
    		ret = mpol_ops[pol->mode].create(pol, &nsc->mask2);
    	else
    		ret = mpol_ops[pol->mode].create(pol, NULL);
    	return ret;
    }
    
    /*
     * This function just creates a new policy, does some check and simple
     * initialization. You must invoke mpol_set_nodemask() to set nodes.
     */
    static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
    				  nodemask_t *nodes)
    {
    	struct mempolicy *policy;
    
    	pr_debug("setting mode %d flags %d nodes[0] %lx\n",
    		 mode, flags, nodes ? nodes_addr(*nodes)[0] : NUMA_NO_NODE);
    
    	if (mode == MPOL_DEFAULT) {
    		if (nodes && !nodes_empty(*nodes))
    			return ERR_PTR(-EINVAL);
    		return NULL;
    	}
    	VM_BUG_ON(!nodes);
    
    	/*
    	 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
    	 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
    	 * All other modes require a valid pointer to a non-empty nodemask.
    	 */
    	if (mode == MPOL_PREFERRED) {
    		if (nodes_empty(*nodes)) {
    			if (((flags & MPOL_F_STATIC_NODES) ||
    			     (flags & MPOL_F_RELATIVE_NODES)))
    				return ERR_PTR(-EINVAL);
    		}
    	} else if (mode == MPOL_LOCAL) {
    		if (!nodes_empty(*nodes))
    			return ERR_PTR(-EINVAL);
    		mode = MPOL_PREFERRED;
    	} else if (nodes_empty(*nodes))
    		return ERR_PTR(-EINVAL);
    	policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
    	if (!policy)
    		return ERR_PTR(-ENOMEM);
    	atomic_set(&policy->refcnt, 1);
    	policy->mode = mode;
    	policy->flags = flags;
    
    	return policy;
    }
    
    /* Slow path of a mpol destructor. */
    void __mpol_put(struct mempolicy *p)
    {
    	if (!atomic_dec_and_test(&p->refcnt))
    		return;
    	kmem_cache_free(policy_cache, p);
    }
    
    static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes,
    				enum mpol_rebind_step step)
    {
    }
    
    /*
     * step:
     * 	MPOL_REBIND_ONCE  - do rebind work at once
     * 	MPOL_REBIND_STEP1 - set all the newly nodes
     * 	MPOL_REBIND_STEP2 - clean all the disallowed nodes
     */
    static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes,
    				 enum mpol_rebind_step step)
    {
    	nodemask_t tmp;
    
    	if (pol->flags & MPOL_F_STATIC_NODES)
    		nodes_and(tmp, pol->w.user_nodemask, *nodes);
    	else if (pol->flags & MPOL_F_RELATIVE_NODES)
    		mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
    	else {
    		/*
    		 * if step == 1, we use ->w.cpuset_mems_allowed to cache the
    		 * result
    		 */
    		if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP1) {
    			nodes_remap(tmp, pol->v.nodes,
    					pol->w.cpuset_mems_allowed, *nodes);
    			pol->w.cpuset_mems_allowed = step ? tmp : *nodes;
    		} else if (step == MPOL_REBIND_STEP2) {
    			tmp = pol->w.cpuset_mems_allowed;
    			pol->w.cpuset_mems_allowed = *nodes;
    		} else
    			BUG();
    	}
    
    	if (nodes_empty(tmp))
    		tmp = *nodes;
    
    	if (step == MPOL_REBIND_STEP1)
    		nodes_or(pol->v.nodes, pol->v.nodes, tmp);
    	else if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP2)
    		pol->v.nodes = tmp;
    	else
    		BUG();
    
    	if (!node_isset(current->il_next, tmp)) {
    		current->il_next = next_node_in(current->il_next, tmp);
    		if (current->il_next >= MAX_NUMNODES)
    			current->il_next = numa_node_id();
    	}
    }
    
    static void mpol_rebind_preferred(struct mempolicy *pol,
    				  const nodemask_t *nodes,
    				  enum mpol_rebind_step step)
    {
    	nodemask_t tmp;
    
    	if (pol->flags & MPOL_F_STATIC_NODES) {
    		int node = first_node(pol->w.user_nodemask);
    
    		if (node_isset(node, *nodes)) {
    			pol->v.preferred_node = node;
    			pol->flags &= ~MPOL_F_LOCAL;
    		} else
    			pol->flags |= MPOL_F_LOCAL;
    	} else if (pol->flags & MPOL_F_RELATIVE_NODES) {
    		mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
    		pol->v.preferred_node = first_node(tmp);
    	} else if (!(pol->flags & MPOL_F_LOCAL)) {
    		pol->v.preferred_node = node_remap(pol->v.preferred_node,
    						   pol->w.cpuset_mems_allowed,
    						   *nodes);
    		pol->w.cpuset_mems_allowed = *nodes;
    	}
    }
    
    /*
     * mpol_rebind_policy - Migrate a policy to a different set of nodes
     *
     * If read-side task has no lock to protect task->mempolicy, write-side
     * task will rebind the task->mempolicy by two step. The first step is
     * setting all the newly nodes, and the second step is cleaning all the
     * disallowed nodes. In this way, we can avoid finding no node to alloc
     * page.
     * If we have a lock to protect task->mempolicy in read-side, we do
     * rebind directly.
     *
     * step:
     * 	MPOL_REBIND_ONCE  - do rebind work at once
     * 	MPOL_REBIND_STEP1 - set all the newly nodes
     * 	MPOL_REBIND_STEP2 - clean all the disallowed nodes
     */
    static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask,
    				enum mpol_rebind_step step)
    {
    	if (!pol)
    		return;
    	if (!mpol_store_user_nodemask(pol) && step == MPOL_REBIND_ONCE &&
    	    nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
    		return;
    
    	if (step == MPOL_REBIND_STEP1 && (pol->flags & MPOL_F_REBINDING))
    		return;
    
    	if (step == MPOL_REBIND_STEP2 && !(pol->flags & MPOL_F_REBINDING))
    		BUG();
    
    	if (step == MPOL_REBIND_STEP1)
    		pol->flags |= MPOL_F_REBINDING;
    	else if (step == MPOL_REBIND_STEP2)
    		pol->flags &= ~MPOL_F_REBINDING;
    	else if (step >= MPOL_REBIND_NSTEP)
    		BUG();
    
    	mpol_ops[pol->mode].rebind(pol, newmask, step);
    }
    
    /*
     * Wrapper for mpol_rebind_policy() that just requires task
     * pointer, and updates task mempolicy.
     *
     * Called with task's alloc_lock held.
     */
    
    void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new,
    			enum mpol_rebind_step step)
    {
    	mpol_rebind_policy(tsk->mempolicy, new, step);
    }
    
    /*
     * Rebind each vma in mm to new nodemask.
     *
     * Call holding a reference to mm.  Takes mm->mmap_sem during call.
     */
    
    void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
    {
    	struct vm_area_struct *vma;
    
    	down_write(&mm->mmap_sem);
    	for (vma = mm->mmap; vma; vma = vma->vm_next)
    		mpol_rebind_policy(vma->vm_policy, new, MPOL_REBIND_ONCE);
    	up_write(&mm->mmap_sem);
    }
    
    static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
    	[MPOL_DEFAULT] = {
    		.rebind = mpol_rebind_default,
    	},
    	[MPOL_INTERLEAVE] = {
    		.create = mpol_new_interleave,
    		.rebind = mpol_rebind_nodemask,
    	},
    	[MPOL_PREFERRED] = {
    		.create = mpol_new_preferred,
    		.rebind = mpol_rebind_preferred,
    	},
    	[MPOL_BIND] = {
    		.create = mpol_new_bind,
    		.rebind = mpol_rebind_nodemask,
    	},
    };
    
    static void migrate_page_add(struct page *page, struct list_head *pagelist,
    				unsigned long flags);
    
    struct queue_pages {
    	struct list_head *pagelist;
    	unsigned long flags;
    	nodemask_t *nmask;
    	struct vm_area_struct *prev;
    };
    
    /*
     * Scan through pages checking if pages follow certain conditions,
     * and move them to the pagelist if they do.
     */
    static int queue_pages_pte_range(pmd_t *pmd, unsigned long addr,
    			unsigned long end, struct mm_walk *walk)
    {
    	struct vm_area_struct *vma = walk->vma;
    	struct page *page;
    	struct queue_pages *qp = walk->private;
    	unsigned long flags = qp->flags;
    	int nid, ret;
    	pte_t *pte;
    	spinlock_t *ptl;
    
    	if (pmd_trans_huge(*pmd)) {
    		ptl = pmd_lock(walk->mm, pmd);
    		if (pmd_trans_huge(*pmd)) {
    			page = pmd_page(*pmd);
    			if (is_huge_zero_page(page)) {
    				spin_unlock(ptl);
    				split_huge_pmd(vma, pmd, addr);
    			} else {
    				get_page(page);
    				spin_unlock(ptl);
    				lock_page(page);
    				ret = split_huge_page(page);
    				unlock_page(page);
    				put_page(page);
    				if (ret)
    					return 0;
    			}
    		} else {
    			spin_unlock(ptl);
    		}
    	}
    
    	if (pmd_trans_unstable(pmd))
    		return 0;
    retry:
    	pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
    	for (; addr != end; pte++, addr += PAGE_SIZE) {
    		if (!pte_present(*pte))
    			continue;
    		page = vm_normal_page(vma, addr, *pte);
    		if (!page)
    			continue;
    		/*
    		 * vm_normal_page() filters out zero pages, but there might
    		 * still be PageReserved pages to skip, perhaps in a VDSO.
    		 */
    		if (PageReserved(page))
    			continue;
    		nid = page_to_nid(page);
    		if (node_isset(nid, *qp->nmask) == !!(flags & MPOL_MF_INVERT))
    			continue;
    		if (PageTransCompound(page)) {
    			get_page(page);
    			pte_unmap_unlock(pte, ptl);
    			lock_page(page);
    			ret = split_huge_page(page);
    			unlock_page(page);
    			put_page(page);
    			/* Failed to split -- skip. */
    			if (ret) {
    				pte = pte_offset_map_lock(walk->mm, pmd,
    						addr, &ptl);
    				continue;
    			}
    			goto retry;
    		}
    
    		migrate_page_add(page, qp->pagelist, flags);
    	}
    	pte_unmap_unlock(pte - 1, ptl);
    	cond_resched();
    	return 0;
    }
    
    static int queue_pages_hugetlb(pte_t *pte, unsigned long hmask,
    			       unsigned long addr, unsigned long end,
    			       struct mm_walk *walk)
    {
    #ifdef CONFIG_HUGETLB_PAGE
    	struct queue_pages *qp = walk->private;
    	unsigned long flags = qp->flags;
    	int nid;
    	struct page *page;
    	spinlock_t *ptl;
    	pte_t entry;
    
    	ptl = huge_pte_lock(hstate_vma(walk->vma), walk->mm, pte);
    	entry = huge_ptep_get(pte);
    	if (!pte_present(entry))
    		goto unlock;
    	page = pte_page(entry);
    	nid = page_to_nid(page);
    	if (node_isset(nid, *qp->nmask) == !!(flags & MPOL_MF_INVERT))
    		goto unlock;
    	/* With MPOL_MF_MOVE, we migrate only unshared hugepage. */
    	if (flags & (MPOL_MF_MOVE_ALL) ||
    	    (flags & MPOL_MF_MOVE && page_mapcount(page) == 1))
    		isolate_huge_page(page, qp->pagelist);
    unlock:
    	spin_unlock(ptl);
    #else
    	BUG();
    #endif
    	return 0;
    }
    
    #ifdef CONFIG_NUMA_BALANCING
    /*
     * This is used to mark a range of virtual addresses to be inaccessible.
     * These are later cleared by a NUMA hinting fault. Depending on these
     * faults, pages may be migrated for better NUMA placement.
     *
     * This is assuming that NUMA faults are handled using PROT_NONE. If
     * an architecture makes a different choice, it will need further
     * changes to the core.
     */
    unsigned long change_prot_numa(struct vm_area_struct *vma,
    			unsigned long addr, unsigned long end)
    {
    	int nr_updated;
    
    	nr_updated = change_protection(vma, addr, end, PAGE_NONE, 0, 1);
    	if (nr_updated)
    		count_vm_numa_events(NUMA_PTE_UPDATES, nr_updated);
    
    	return nr_updated;
    }
    #else
    static unsigned long change_prot_numa(struct vm_area_struct *vma,
    			unsigned long addr, unsigned long end)
    {
    	return 0;
    }
    #endif /* CONFIG_NUMA_BALANCING */
    
    static int queue_pages_test_walk(unsigned long start, unsigned long end,
    				struct mm_walk *walk)
    {
    	struct vm_area_struct *vma = walk->vma;
    	struct queue_pages *qp = walk->private;
    	unsigned long endvma = vma->vm_end;
    	unsigned long flags = qp->flags;
    
    	if (!vma_migratable(vma))
    		return 1;
    
    	if (endvma > end)
    		endvma = end;
    	if (vma->vm_start > start)
    		start = vma->vm_start;
    
    	if (!(flags & MPOL_MF_DISCONTIG_OK)) {
    		if (!vma->vm_next && vma->vm_end < end)
    			return -EFAULT;
    		if (qp->prev && qp->prev->vm_end < vma->vm_start)
    			return -EFAULT;
    	}
    
    	qp->prev = vma;
    
    	if (flags & MPOL_MF_LAZY) {
    		/* Similar to task_numa_work, skip inaccessible VMAs */
    		if (!is_vm_hugetlb_page(vma) &&
    			(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)) &&
    			!(vma->vm_flags & VM_MIXEDMAP))
    			change_prot_numa(vma, start, endvma);
    		return 1;
    	}
    
    	/* queue pages from current vma */
    	if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
    		return 0;
    	return 1;
    }
    
    /*
     * Walk through page tables and collect pages to be migrated.
     *
     * If pages found in a given range are on a set of nodes (determined by
     * @nodes and @flags,) it's isolated and queued to the pagelist which is
     * passed via @private.)
     */
    static int
    queue_pages_range(struct mm_struct *mm, unsigned long start, unsigned long end,
    		nodemask_t *nodes, unsigned long flags,
    		struct list_head *pagelist)
    {
    	struct queue_pages qp = {
    		.pagelist = pagelist,
    		.flags = flags,
    		.nmask = nodes,
    		.prev = NULL,
    	};
    	struct mm_walk queue_pages_walk = {
    		.hugetlb_entry = queue_pages_hugetlb,
    		.pmd_entry = queue_pages_pte_range,
    		.test_walk = queue_pages_test_walk,
    		.mm = mm,
    		.private = &qp,
    	};
    
    	return walk_page_range(start, end, &queue_pages_walk);
    }
    
    /*
     * Apply policy to a single VMA
     * This must be called with the mmap_sem held for writing.
     */
    static int vma_replace_policy(struct vm_area_struct *vma,
    						struct mempolicy *pol)
    {
    	int err;
    	struct mempolicy *old;
    	struct mempolicy *new;
    
    	pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
    		 vma->vm_start, vma->vm_end, vma->vm_pgoff,
    		 vma->vm_ops, vma->vm_file,
    		 vma->vm_ops ? vma->vm_ops->set_policy : NULL);
    
    	new = mpol_dup(pol);
    	if (IS_ERR(new))
    		return PTR_ERR(new);
    
    	if (vma->vm_ops && vma->vm_ops->set_policy) {
    		err = vma->vm_ops->set_policy(vma, new);
    		if (err)
    			goto err_out;
    	}
    
    	old = vma->vm_policy;
    	vma->vm_policy = new; /* protected by mmap_sem */
    	mpol_put(old);
    
    	return 0;
     err_out:
    	mpol_put(new);
    	return err;
    }
    
    /* Step 2: apply policy to a range and do splits. */
    static int mbind_range(struct mm_struct *mm, unsigned long start,
    		       unsigned long end, struct mempolicy *new_pol)
    {
    	struct vm_area_struct *next;
    	struct vm_area_struct *prev;
    	struct vm_area_struct *vma;
    	int err = 0;
    	pgoff_t pgoff;
    	unsigned long vmstart;
    	unsigned long vmend;
    
    	vma = find_vma(mm, start);
    	if (!vma || vma->vm_start > start)
    		return -EFAULT;
    
    	prev = vma->vm_prev;
    	if (start > vma->vm_start)
    		prev = vma;
    
    	for (; vma && vma->vm_start < end; prev = vma, vma = next) {
    		next = vma->vm_next;
    		vmstart = max(start, vma->vm_start);
    		vmend   = min(end, vma->vm_end);
    
    		if (mpol_equal(vma_policy(vma), new_pol))
    			continue;
    
    		pgoff = vma->vm_pgoff +
    			((vmstart - vma->vm_start) >> PAGE_SHIFT);
    		prev = vma_merge(mm, prev, vmstart, vmend, vma->vm_flags,
    				 vma->anon_vma, vma->vm_file, pgoff,
    				 new_pol, vma->vm_userfaultfd_ctx);
    		if (prev) {
    			vma = prev;
    			next = vma->vm_next;
    			if (mpol_equal(vma_policy(vma), new_pol))
    				continue;
    			/* vma_merge() joined vma && vma->next, case 8 */
    			goto replace;
    		}
    		if (vma->vm_start != vmstart) {
    			err = split_vma(vma->vm_mm, vma, vmstart, 1);
    			if (err)
    				goto out;
    		}
    		if (vma->vm_end != vmend) {
    			err = split_vma(vma->vm_mm, vma, vmend, 0);
    			if (err)
    				goto out;
    		}
     replace:
    		err = vma_replace_policy(vma, new_pol);
    		if (err)
    			goto out;
    	}
    
     out:
    	return err;
    }
    
    /* Set the process memory policy */
    static long do_set_mempolicy(unsigned short mode, unsigned short flags,
    			     nodemask_t *nodes)
    {
    	struct mempolicy *new, *old;
    	NODEMASK_SCRATCH(scratch);
    	int ret;
    
    	if (!scratch)
    		return -ENOMEM;
    
    	new = mpol_new(mode, flags, nodes);
    	if (IS_ERR(new)) {
    		ret = PTR_ERR(new);
    		goto out;
    	}
    
    	task_lock(current);
    	ret = mpol_set_nodemask(new, nodes, scratch);
    	if (ret) {
    		task_unlock(current);
    		mpol_put(new);
    		goto out;
    	}
    	old = current->mempolicy;
    	current->mempolicy = new;
    	if (new && new->mode == MPOL_INTERLEAVE &&
    	    nodes_weight(new->v.nodes))
    		current->il_next = first_node(new->v.nodes);
    	task_unlock(current);
    	mpol_put(old);
    	ret = 0;
    out:
    	NODEMASK_SCRATCH_FREE(scratch);
    	return ret;
    }
    
    /*
     * Return nodemask for policy for get_mempolicy() query
     *
     * Called with task's alloc_lock held
     */
    static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes)
    {
    	nodes_clear(*nodes);
    	if (p == &default_policy)
    		return;
    
    	switch (p->mode) {
    	case MPOL_BIND:
    		/* Fall through */
    	case MPOL_INTERLEAVE:
    		*nodes = p->v.nodes;
    		break;
    	case MPOL_PREFERRED:
    		if (!(p->flags & MPOL_F_LOCAL))
    			node_set(p->v.preferred_node, *nodes);
    		/* else return empty node mask for local allocation */
    		break;
    	default:
    		BUG();
    	}
    }
    
    static int lookup_node(unsigned long addr)
    {
    	struct page *p;
    	int err;
    
    	err = get_user_pages(addr & PAGE_MASK, 1, 0, &p, NULL);
    	if (err >= 0) {
    		err = page_to_nid(p);
    		put_page(p);
    	}
    	return err;
    }
    
    /* Retrieve NUMA policy */
    static long do_get_mempolicy(int *policy, nodemask_t *nmask,
    			     unsigned long addr, unsigned long flags)
    {
    	int err;
    	struct mm_struct *mm = current->mm;
    	struct vm_area_struct *vma = NULL;
    	struct mempolicy *pol = current->mempolicy;
    
    	if (flags &
    		~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
    		return -EINVAL;
    
    	if (flags & MPOL_F_MEMS_ALLOWED) {
    		if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
    			return -EINVAL;
    		*policy = 0;	/* just so it's initialized */
    		task_lock(current);
    		*nmask  = cpuset_current_mems_allowed;
    		task_unlock(current);
    		return 0;
    	}
    
    	if (flags & MPOL_F_ADDR) {
    		/*
    		 * Do NOT fall back to task policy if the
    		 * vma/shared policy at addr is NULL.  We
    		 * want to return MPOL_DEFAULT in this case.
    		 */
    		down_read(&mm->mmap_sem);
    		vma = find_vma_intersection(mm, addr, addr+1);
    		if (!vma) {
    			up_read(&mm->mmap_sem);
    			return -EFAULT;
    		}
    		if (vma->vm_ops && vma->vm_ops->get_policy)
    			pol = vma->vm_ops->get_policy(vma, addr);
    		else
    			pol = vma->vm_policy;
    	} else if (addr)
    		return -EINVAL;
    
    	if (!pol)
    		pol = &default_policy;	/* indicates default behavior */
    
    	if (flags & MPOL_F_NODE) {
    		if (flags & MPOL_F_ADDR) {
    			err = lookup_node(addr);
    			if (err < 0)
    				goto out;
    			*policy = err;
    		} else if (pol == current->mempolicy &&
    				pol->mode == MPOL_INTERLEAVE) {
    			*policy = current->il_next;
    		} else {
    			err = -EINVAL;
    			goto out;
    		}
    	} else {
    		*policy = pol == &default_policy ? MPOL_DEFAULT :
    						pol->mode;
    		/*
    		 * Internal mempolicy flags must be masked off before exposing
    		 * the policy to userspace.
    		 */
    		*policy |= (pol->flags & MPOL_MODE_FLAGS);
    	}
    
    	err = 0;
    	if (nmask) {
    		if (mpol_store_user_nodemask(pol)) {
    			*nmask = pol->w.user_nodemask;
    		} else {
    			task_lock(current);
    			get_policy_nodemask(pol, nmask);
    			task_unlock(current);
    		}
    	}
    
     out:
    	mpol_cond_put(pol);
    	if (vma)
    		up_read(&current->mm->mmap_sem);
    	return err;
    }
    
    #ifdef CONFIG_MIGRATION
    /*
     * page migration
     */
    static void migrate_page_add(struct page *page, struct list_head *pagelist,
    				unsigned long flags)
    {
    	/*
    	 * Avoid migrating a page that is shared with others.
    	 */
    	if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(page) == 1) {
    		if (!isolate_lru_page(page)) {
    			list_add_tail(&page->lru, pagelist);
    			inc_node_page_state(page, NR_ISOLATED_ANON +
    					    page_is_file_cache(page));
    		}
    	}
    }
    
    static struct page *new_node_page(struct page *page, unsigned long node, int **x)
    {
    	if (PageHuge(page))
    		return alloc_huge_page_node(page_hstate(compound_head(page)),
    					node);
    	else
    		return __alloc_pages_node(node, GFP_HIGHUSER_MOVABLE |
    						    __GFP_THISNODE, 0);
    }
    
    /*
     * Migrate pages from one node to a target node.
     * Returns error or the number of pages not migrated.
     */
    static int migrate_to_node(struct mm_struct *mm, int source, int dest,
    			   int flags)
    {
    	nodemask_t nmask;
    	LIST_HEAD(pagelist);
    	int err = 0;
    
    	nodes_clear(nmask);
    	node_set(source, nmask);
    
    	/*
    	 * This does not "check" the range but isolates all pages that
    	 * need migration.  Between passing in the full user address
    	 * space range and MPOL_MF_DISCONTIG_OK, this call can not fail.
    	 */
    	VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)));
    	queue_pages_range(mm, mm->mmap->vm_start, mm->task_size, &nmask,
    			flags | MPOL_MF_DISCONTIG_OK, &pagelist);
    
    	if (!list_empty(&pagelist)) {
    		err = migrate_pages(&pagelist, new_node_page, NULL, dest,