Skip to content
Snippets Groups Projects
page_io.c 9.51 KiB
Newer Older
  • Learn to ignore specific revisions
  • Kenneth Johansson's avatar
    Kenneth Johansson committed
    /*
     *  linux/mm/page_io.c
     *
     *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
     *
     *  Swap reorganised 29.12.95, 
     *  Asynchronous swapping added 30.12.95. Stephen Tweedie
     *  Removed race in async swapping. 14.4.1996. Bruno Haible
     *  Add swap of shared pages through the page cache. 20.2.1998. Stephen Tweedie
     *  Always use brw_page, life becomes simpler. 12 May 1998 Eric Biederman
     */
    
    #include <linux/mm.h>
    #include <linux/kernel_stat.h>
    #include <linux/gfp.h>
    #include <linux/pagemap.h>
    #include <linux/swap.h>
    #include <linux/bio.h>
    #include <linux/swapops.h>
    #include <linux/buffer_head.h>
    #include <linux/writeback.h>
    #include <linux/frontswap.h>
    #include <linux/blkdev.h>
    #include <linux/uio.h>
    #include <asm/pgtable.h>
    
    static struct bio *get_swap_bio(gfp_t gfp_flags,
    				struct page *page, bio_end_io_t end_io)
    {
    	struct bio *bio;
    
    	bio = bio_alloc(gfp_flags, 1);
    	if (bio) {
    		bio->bi_iter.bi_sector = map_swap_page(page, &bio->bi_bdev);
    		bio->bi_iter.bi_sector <<= PAGE_SHIFT - 9;
    		bio->bi_end_io = end_io;
    
    		bio_add_page(bio, page, PAGE_SIZE, 0);
    		BUG_ON(bio->bi_iter.bi_size != PAGE_SIZE);
    	}
    	return bio;
    }
    
    void end_swap_bio_write(struct bio *bio)
    {
    	struct page *page = bio->bi_io_vec[0].bv_page;
    
    	if (bio->bi_error) {
    		SetPageError(page);
    		/*
    		 * We failed to write the page out to swap-space.
    		 * Re-dirty the page in order to avoid it being reclaimed.
    		 * Also print a dire warning that things will go BAD (tm)
    		 * very quickly.
    		 *
    		 * Also clear PG_reclaim to avoid rotate_reclaimable_page()
    		 */
    		set_page_dirty(page);
    		pr_alert("Write-error on swap-device (%u:%u:%llu)\n",
    			 imajor(bio->bi_bdev->bd_inode),
    			 iminor(bio->bi_bdev->bd_inode),
    			 (unsigned long long)bio->bi_iter.bi_sector);
    		ClearPageReclaim(page);
    	}
    	end_page_writeback(page);
    	bio_put(bio);
    }
    
    static void swap_slot_free_notify(struct page *page)
    {
    	struct swap_info_struct *sis;
    	struct gendisk *disk;
    
    	/*
    	 * There is no guarantee that the page is in swap cache - the software
    	 * suspend code (at least) uses end_swap_bio_read() against a non-
    	 * swapcache page.  So we must check PG_swapcache before proceeding with
    	 * this optimization.
    	 */
    	if (unlikely(!PageSwapCache(page)))
    		return;
    
    	sis = page_swap_info(page);
    	if (!(sis->flags & SWP_BLKDEV))
    		return;
    
    	/*
    	 * The swap subsystem performs lazy swap slot freeing,
    	 * expecting that the page will be swapped out again.
    	 * So we can avoid an unnecessary write if the page
    	 * isn't redirtied.
    	 * This is good for real swap storage because we can
    	 * reduce unnecessary I/O and enhance wear-leveling
    	 * if an SSD is used as the as swap device.
    	 * But if in-memory swap device (eg zram) is used,
    	 * this causes a duplicated copy between uncompressed
    	 * data in VM-owned memory and compressed data in
    	 * zram-owned memory.  So let's free zram-owned memory
    	 * and make the VM-owned decompressed page *dirty*,
    	 * so the page should be swapped out somewhere again if
    	 * we again wish to reclaim it.
    	 */
    	disk = sis->bdev->bd_disk;
    	if (disk->fops->swap_slot_free_notify) {
    		swp_entry_t entry;
    		unsigned long offset;
    
    		entry.val = page_private(page);
    		offset = swp_offset(entry);
    
    		SetPageDirty(page);
    		disk->fops->swap_slot_free_notify(sis->bdev,
    				offset);
    	}
    }
    
    static void end_swap_bio_read(struct bio *bio)
    {
    	struct page *page = bio->bi_io_vec[0].bv_page;
    
    	if (bio->bi_error) {
    		SetPageError(page);
    		ClearPageUptodate(page);
    		pr_alert("Read-error on swap-device (%u:%u:%llu)\n",
    			 imajor(bio->bi_bdev->bd_inode),
    			 iminor(bio->bi_bdev->bd_inode),
    			 (unsigned long long)bio->bi_iter.bi_sector);
    		goto out;
    	}
    
    	SetPageUptodate(page);
    	swap_slot_free_notify(page);
    out:
    	unlock_page(page);
    	bio_put(bio);
    }
    
    int generic_swapfile_activate(struct swap_info_struct *sis,
    				struct file *swap_file,
    				sector_t *span)
    {
    	struct address_space *mapping = swap_file->f_mapping;
    	struct inode *inode = mapping->host;
    	unsigned blocks_per_page;
    	unsigned long page_no;
    	unsigned blkbits;
    	sector_t probe_block;
    	sector_t last_block;
    	sector_t lowest_block = -1;
    	sector_t highest_block = 0;
    	int nr_extents = 0;
    	int ret;
    
    	blkbits = inode->i_blkbits;
    	blocks_per_page = PAGE_SIZE >> blkbits;
    
    	/*
    	 * Map all the blocks into the extent list.  This code doesn't try
    	 * to be very smart.
    	 */
    	probe_block = 0;
    	page_no = 0;
    	last_block = i_size_read(inode) >> blkbits;
    	while ((probe_block + blocks_per_page) <= last_block &&
    			page_no < sis->max) {
    		unsigned block_in_page;
    		sector_t first_block;
    
    		cond_resched();
    
    		first_block = bmap(inode, probe_block);
    		if (first_block == 0)
    			goto bad_bmap;
    
    		/*
    		 * It must be PAGE_SIZE aligned on-disk
    		 */
    		if (first_block & (blocks_per_page - 1)) {
    			probe_block++;
    			goto reprobe;
    		}
    
    		for (block_in_page = 1; block_in_page < blocks_per_page;
    					block_in_page++) {
    			sector_t block;
    
    			block = bmap(inode, probe_block + block_in_page);
    			if (block == 0)
    				goto bad_bmap;
    			if (block != first_block + block_in_page) {
    				/* Discontiguity */
    				probe_block++;
    				goto reprobe;
    			}
    		}
    
    		first_block >>= (PAGE_SHIFT - blkbits);
    		if (page_no) {	/* exclude the header page */
    			if (first_block < lowest_block)
    				lowest_block = first_block;
    			if (first_block > highest_block)
    				highest_block = first_block;
    		}
    
    		/*
    		 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
    		 */
    		ret = add_swap_extent(sis, page_no, 1, first_block);
    		if (ret < 0)
    			goto out;
    		nr_extents += ret;
    		page_no++;
    		probe_block += blocks_per_page;
    reprobe:
    		continue;
    	}
    	ret = nr_extents;
    	*span = 1 + highest_block - lowest_block;
    	if (page_no == 0)
    		page_no = 1;	/* force Empty message */
    	sis->max = page_no;
    	sis->pages = page_no - 1;
    	sis->highest_bit = page_no - 1;
    out:
    	return ret;
    bad_bmap:
    	pr_err("swapon: swapfile has holes\n");
    	ret = -EINVAL;
    	goto out;
    }
    
    /*
     * We may have stale swap cache pages in memory: notice
     * them here and get rid of the unnecessary final write.
     */
    int swap_writepage(struct page *page, struct writeback_control *wbc)
    {
    	int ret = 0;
    
    	if (try_to_free_swap(page)) {
    		unlock_page(page);
    		goto out;
    	}
    	if (frontswap_store(page) == 0) {
    		set_page_writeback(page);
    		unlock_page(page);
    		end_page_writeback(page);
    		goto out;
    	}
    	ret = __swap_writepage(page, wbc, end_swap_bio_write);
    out:
    	return ret;
    }
    
    static sector_t swap_page_sector(struct page *page)
    {
    	return (sector_t)__page_file_index(page) << (PAGE_SHIFT - 9);
    }
    
    int __swap_writepage(struct page *page, struct writeback_control *wbc,
    		bio_end_io_t end_write_func)
    {
    	struct bio *bio;
    	int ret;
    	struct swap_info_struct *sis = page_swap_info(page);
    
    	VM_BUG_ON_PAGE(!PageSwapCache(page), page);
    	if (sis->flags & SWP_FILE) {
    		struct kiocb kiocb;
    		struct file *swap_file = sis->swap_file;
    		struct address_space *mapping = swap_file->f_mapping;
    		struct bio_vec bv = {
    			.bv_page = page,
    			.bv_len  = PAGE_SIZE,
    			.bv_offset = 0
    		};
    		struct iov_iter from;
    
    		iov_iter_bvec(&from, ITER_BVEC | WRITE, &bv, 1, PAGE_SIZE);
    		init_sync_kiocb(&kiocb, swap_file);
    		kiocb.ki_pos = page_file_offset(page);
    
    		set_page_writeback(page);
    		unlock_page(page);
    		ret = mapping->a_ops->direct_IO(&kiocb, &from);
    		if (ret == PAGE_SIZE) {
    			count_vm_event(PSWPOUT);
    			ret = 0;
    		} else {
    			/*
    			 * In the case of swap-over-nfs, this can be a
    			 * temporary failure if the system has limited
    			 * memory for allocating transmit buffers.
    			 * Mark the page dirty and avoid
    			 * rotate_reclaimable_page but rate-limit the
    			 * messages but do not flag PageError like
    			 * the normal direct-to-bio case as it could
    			 * be temporary.
    			 */
    			set_page_dirty(page);
    			ClearPageReclaim(page);
    			pr_err_ratelimited("Write error on dio swapfile (%llu)\n",
    					   page_file_offset(page));
    		}
    		end_page_writeback(page);
    		return ret;
    	}
    
    	ret = bdev_write_page(sis->bdev, swap_page_sector(page), page, wbc);
    	if (!ret) {
    		count_vm_event(PSWPOUT);
    		return 0;
    	}
    
    	ret = 0;
    	bio = get_swap_bio(GFP_NOIO, page, end_write_func);
    	if (bio == NULL) {
    		set_page_dirty(page);
    		unlock_page(page);
    		ret = -ENOMEM;
    		goto out;
    	}
    	if (wbc->sync_mode == WB_SYNC_ALL)
    		bio_set_op_attrs(bio, REQ_OP_WRITE, REQ_SYNC);
    	else
    		bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
    	count_vm_event(PSWPOUT);
    	set_page_writeback(page);
    	unlock_page(page);
    	submit_bio(bio);
    out:
    	return ret;
    }
    
    int swap_readpage(struct page *page)
    {
    	struct bio *bio;
    	int ret = 0;
    	struct swap_info_struct *sis = page_swap_info(page);
    
    	VM_BUG_ON_PAGE(!PageSwapCache(page), page);
    	VM_BUG_ON_PAGE(!PageLocked(page), page);
    	VM_BUG_ON_PAGE(PageUptodate(page), page);
    	if (frontswap_load(page) == 0) {
    		SetPageUptodate(page);
    		unlock_page(page);
    		goto out;
    	}
    
    	if (sis->flags & SWP_FILE) {
    		struct file *swap_file = sis->swap_file;
    		struct address_space *mapping = swap_file->f_mapping;
    
    		ret = mapping->a_ops->readpage(swap_file, page);
    		if (!ret)
    			count_vm_event(PSWPIN);
    		return ret;
    	}
    
    	ret = bdev_read_page(sis->bdev, swap_page_sector(page), page);
    	if (!ret) {
    		if (trylock_page(page)) {
    			swap_slot_free_notify(page);
    			unlock_page(page);
    		}
    
    		count_vm_event(PSWPIN);
    		return 0;
    	}
    
    	ret = 0;
    	bio = get_swap_bio(GFP_KERNEL, page, end_swap_bio_read);
    	if (bio == NULL) {
    		unlock_page(page);
    		ret = -ENOMEM;
    		goto out;
    	}
    	bio_set_op_attrs(bio, REQ_OP_READ, 0);
    	count_vm_event(PSWPIN);
    	submit_bio(bio);
    out:
    	return ret;
    }
    
    int swap_set_page_dirty(struct page *page)
    {
    	struct swap_info_struct *sis = page_swap_info(page);
    
    	if (sis->flags & SWP_FILE) {
    		struct address_space *mapping = sis->swap_file->f_mapping;
    
    		VM_BUG_ON_PAGE(!PageSwapCache(page), page);
    		return mapping->a_ops->set_page_dirty(page);
    	} else {
    		return __set_page_dirty_no_writeback(page);
    	}
    }