Skip to content
Snippets Groups Projects
percpu-vm.c 10 KiB
Newer Older
  • Learn to ignore specific revisions
  • Kenneth Johansson's avatar
    Kenneth Johansson committed
    /*
     * mm/percpu-vm.c - vmalloc area based chunk allocation
     *
     * Copyright (C) 2010		SUSE Linux Products GmbH
     * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
     *
     * This file is released under the GPLv2.
     *
     * Chunks are mapped into vmalloc areas and populated page by page.
     * This is the default chunk allocator.
     */
    
    static struct page *pcpu_chunk_page(struct pcpu_chunk *chunk,
    				    unsigned int cpu, int page_idx)
    {
    	/* must not be used on pre-mapped chunk */
    	WARN_ON(chunk->immutable);
    
    	return vmalloc_to_page((void *)pcpu_chunk_addr(chunk, cpu, page_idx));
    }
    
    /**
     * pcpu_get_pages - get temp pages array
     * @chunk: chunk of interest
     *
     * Returns pointer to array of pointers to struct page which can be indexed
     * with pcpu_page_idx().  Note that there is only one array and accesses
     * should be serialized by pcpu_alloc_mutex.
     *
     * RETURNS:
     * Pointer to temp pages array on success.
     */
    static struct page **pcpu_get_pages(struct pcpu_chunk *chunk_alloc)
    {
    	static struct page **pages;
    	size_t pages_size = pcpu_nr_units * pcpu_unit_pages * sizeof(pages[0]);
    
    	lockdep_assert_held(&pcpu_alloc_mutex);
    
    	if (!pages)
    		pages = pcpu_mem_zalloc(pages_size);
    	return pages;
    }
    
    /**
     * pcpu_free_pages - free pages which were allocated for @chunk
     * @chunk: chunk pages were allocated for
     * @pages: array of pages to be freed, indexed by pcpu_page_idx()
     * @page_start: page index of the first page to be freed
     * @page_end: page index of the last page to be freed + 1
     *
     * Free pages [@page_start and @page_end) in @pages for all units.
     * The pages were allocated for @chunk.
     */
    static void pcpu_free_pages(struct pcpu_chunk *chunk,
    			    struct page **pages, int page_start, int page_end)
    {
    	unsigned int cpu;
    	int i;
    
    	for_each_possible_cpu(cpu) {
    		for (i = page_start; i < page_end; i++) {
    			struct page *page = pages[pcpu_page_idx(cpu, i)];
    
    			if (page)
    				__free_page(page);
    		}
    	}
    }
    
    /**
     * pcpu_alloc_pages - allocates pages for @chunk
     * @chunk: target chunk
     * @pages: array to put the allocated pages into, indexed by pcpu_page_idx()
     * @page_start: page index of the first page to be allocated
     * @page_end: page index of the last page to be allocated + 1
     *
     * Allocate pages [@page_start,@page_end) into @pages for all units.
     * The allocation is for @chunk.  Percpu core doesn't care about the
     * content of @pages and will pass it verbatim to pcpu_map_pages().
     */
    static int pcpu_alloc_pages(struct pcpu_chunk *chunk,
    			    struct page **pages, int page_start, int page_end)
    {
    	const gfp_t gfp = GFP_KERNEL | __GFP_HIGHMEM | __GFP_COLD;
    	unsigned int cpu, tcpu;
    	int i;
    
    	for_each_possible_cpu(cpu) {
    		for (i = page_start; i < page_end; i++) {
    			struct page **pagep = &pages[pcpu_page_idx(cpu, i)];
    
    			*pagep = alloc_pages_node(cpu_to_node(cpu), gfp, 0);
    			if (!*pagep)
    				goto err;
    		}
    	}
    	return 0;
    
    err:
    	while (--i >= page_start)
    		__free_page(pages[pcpu_page_idx(cpu, i)]);
    
    	for_each_possible_cpu(tcpu) {
    		if (tcpu == cpu)
    			break;
    		for (i = page_start; i < page_end; i++)
    			__free_page(pages[pcpu_page_idx(tcpu, i)]);
    	}
    	return -ENOMEM;
    }
    
    /**
     * pcpu_pre_unmap_flush - flush cache prior to unmapping
     * @chunk: chunk the regions to be flushed belongs to
     * @page_start: page index of the first page to be flushed
     * @page_end: page index of the last page to be flushed + 1
     *
     * Pages in [@page_start,@page_end) of @chunk are about to be
     * unmapped.  Flush cache.  As each flushing trial can be very
     * expensive, issue flush on the whole region at once rather than
     * doing it for each cpu.  This could be an overkill but is more
     * scalable.
     */
    static void pcpu_pre_unmap_flush(struct pcpu_chunk *chunk,
    				 int page_start, int page_end)
    {
    	flush_cache_vunmap(
    		pcpu_chunk_addr(chunk, pcpu_low_unit_cpu, page_start),
    		pcpu_chunk_addr(chunk, pcpu_high_unit_cpu, page_end));
    }
    
    static void __pcpu_unmap_pages(unsigned long addr, int nr_pages)
    {
    	unmap_kernel_range_noflush(addr, nr_pages << PAGE_SHIFT);
    }
    
    /**
     * pcpu_unmap_pages - unmap pages out of a pcpu_chunk
     * @chunk: chunk of interest
     * @pages: pages array which can be used to pass information to free
     * @page_start: page index of the first page to unmap
     * @page_end: page index of the last page to unmap + 1
     *
     * For each cpu, unmap pages [@page_start,@page_end) out of @chunk.
     * Corresponding elements in @pages were cleared by the caller and can
     * be used to carry information to pcpu_free_pages() which will be
     * called after all unmaps are finished.  The caller should call
     * proper pre/post flush functions.
     */
    static void pcpu_unmap_pages(struct pcpu_chunk *chunk,
    			     struct page **pages, int page_start, int page_end)
    {
    	unsigned int cpu;
    	int i;
    
    	for_each_possible_cpu(cpu) {
    		for (i = page_start; i < page_end; i++) {
    			struct page *page;
    
    			page = pcpu_chunk_page(chunk, cpu, i);
    			WARN_ON(!page);
    			pages[pcpu_page_idx(cpu, i)] = page;
    		}
    		__pcpu_unmap_pages(pcpu_chunk_addr(chunk, cpu, page_start),
    				   page_end - page_start);
    	}
    }
    
    /**
     * pcpu_post_unmap_tlb_flush - flush TLB after unmapping
     * @chunk: pcpu_chunk the regions to be flushed belong to
     * @page_start: page index of the first page to be flushed
     * @page_end: page index of the last page to be flushed + 1
     *
     * Pages [@page_start,@page_end) of @chunk have been unmapped.  Flush
     * TLB for the regions.  This can be skipped if the area is to be
     * returned to vmalloc as vmalloc will handle TLB flushing lazily.
     *
     * As with pcpu_pre_unmap_flush(), TLB flushing also is done at once
     * for the whole region.
     */
    static void pcpu_post_unmap_tlb_flush(struct pcpu_chunk *chunk,
    				      int page_start, int page_end)
    {
    	flush_tlb_kernel_range(
    		pcpu_chunk_addr(chunk, pcpu_low_unit_cpu, page_start),
    		pcpu_chunk_addr(chunk, pcpu_high_unit_cpu, page_end));
    }
    
    static int __pcpu_map_pages(unsigned long addr, struct page **pages,
    			    int nr_pages)
    {
    	return map_kernel_range_noflush(addr, nr_pages << PAGE_SHIFT,
    					PAGE_KERNEL, pages);
    }
    
    /**
     * pcpu_map_pages - map pages into a pcpu_chunk
     * @chunk: chunk of interest
     * @pages: pages array containing pages to be mapped
     * @page_start: page index of the first page to map
     * @page_end: page index of the last page to map + 1
     *
     * For each cpu, map pages [@page_start,@page_end) into @chunk.  The
     * caller is responsible for calling pcpu_post_map_flush() after all
     * mappings are complete.
     *
     * This function is responsible for setting up whatever is necessary for
     * reverse lookup (addr -> chunk).
     */
    static int pcpu_map_pages(struct pcpu_chunk *chunk,
    			  struct page **pages, int page_start, int page_end)
    {
    	unsigned int cpu, tcpu;
    	int i, err;
    
    	for_each_possible_cpu(cpu) {
    		err = __pcpu_map_pages(pcpu_chunk_addr(chunk, cpu, page_start),
    				       &pages[pcpu_page_idx(cpu, page_start)],
    				       page_end - page_start);
    		if (err < 0)
    			goto err;
    
    		for (i = page_start; i < page_end; i++)
    			pcpu_set_page_chunk(pages[pcpu_page_idx(cpu, i)],
    					    chunk);
    	}
    	return 0;
    err:
    	for_each_possible_cpu(tcpu) {
    		if (tcpu == cpu)
    			break;
    		__pcpu_unmap_pages(pcpu_chunk_addr(chunk, tcpu, page_start),
    				   page_end - page_start);
    	}
    	pcpu_post_unmap_tlb_flush(chunk, page_start, page_end);
    	return err;
    }
    
    /**
     * pcpu_post_map_flush - flush cache after mapping
     * @chunk: pcpu_chunk the regions to be flushed belong to
     * @page_start: page index of the first page to be flushed
     * @page_end: page index of the last page to be flushed + 1
     *
     * Pages [@page_start,@page_end) of @chunk have been mapped.  Flush
     * cache.
     *
     * As with pcpu_pre_unmap_flush(), TLB flushing also is done at once
     * for the whole region.
     */
    static void pcpu_post_map_flush(struct pcpu_chunk *chunk,
    				int page_start, int page_end)
    {
    	flush_cache_vmap(
    		pcpu_chunk_addr(chunk, pcpu_low_unit_cpu, page_start),
    		pcpu_chunk_addr(chunk, pcpu_high_unit_cpu, page_end));
    }
    
    /**
     * pcpu_populate_chunk - populate and map an area of a pcpu_chunk
     * @chunk: chunk of interest
     * @page_start: the start page
     * @page_end: the end page
     *
     * For each cpu, populate and map pages [@page_start,@page_end) into
     * @chunk.
     *
     * CONTEXT:
     * pcpu_alloc_mutex, does GFP_KERNEL allocation.
     */
    static int pcpu_populate_chunk(struct pcpu_chunk *chunk,
    			       int page_start, int page_end)
    {
    	struct page **pages;
    
    	pages = pcpu_get_pages(chunk);
    	if (!pages)
    		return -ENOMEM;
    
    	if (pcpu_alloc_pages(chunk, pages, page_start, page_end))
    		return -ENOMEM;
    
    	if (pcpu_map_pages(chunk, pages, page_start, page_end)) {
    		pcpu_free_pages(chunk, pages, page_start, page_end);
    		return -ENOMEM;
    	}
    	pcpu_post_map_flush(chunk, page_start, page_end);
    
    	return 0;
    }
    
    /**
     * pcpu_depopulate_chunk - depopulate and unmap an area of a pcpu_chunk
     * @chunk: chunk to depopulate
     * @page_start: the start page
     * @page_end: the end page
     *
     * For each cpu, depopulate and unmap pages [@page_start,@page_end)
     * from @chunk.
     *
     * CONTEXT:
     * pcpu_alloc_mutex.
     */
    static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk,
    				  int page_start, int page_end)
    {
    	struct page **pages;
    
    	/*
    	 * If control reaches here, there must have been at least one
    	 * successful population attempt so the temp pages array must
    	 * be available now.
    	 */
    	pages = pcpu_get_pages(chunk);
    	BUG_ON(!pages);
    
    	/* unmap and free */
    	pcpu_pre_unmap_flush(chunk, page_start, page_end);
    
    	pcpu_unmap_pages(chunk, pages, page_start, page_end);
    
    	/* no need to flush tlb, vmalloc will handle it lazily */
    
    	pcpu_free_pages(chunk, pages, page_start, page_end);
    }
    
    static struct pcpu_chunk *pcpu_create_chunk(void)
    {
    	struct pcpu_chunk *chunk;
    	struct vm_struct **vms;
    
    	chunk = pcpu_alloc_chunk();
    	if (!chunk)
    		return NULL;
    
    	vms = pcpu_get_vm_areas(pcpu_group_offsets, pcpu_group_sizes,
    				pcpu_nr_groups, pcpu_atom_size);
    	if (!vms) {
    		pcpu_free_chunk(chunk);
    		return NULL;
    	}
    
    	chunk->data = vms;
    	chunk->base_addr = vms[0]->addr - pcpu_group_offsets[0];
    	return chunk;
    }
    
    static void pcpu_destroy_chunk(struct pcpu_chunk *chunk)
    {
    	if (chunk && chunk->data)
    		pcpu_free_vm_areas(chunk->data, pcpu_nr_groups);
    	pcpu_free_chunk(chunk);
    }
    
    static struct page *pcpu_addr_to_page(void *addr)
    {
    	return vmalloc_to_page(addr);
    }
    
    static int __init pcpu_verify_alloc_info(const struct pcpu_alloc_info *ai)
    {
    	/* no extra restriction */
    	return 0;
    }