Skip to content
Snippets Groups Projects
percpu.c 66.3 KiB
Newer Older
  • Learn to ignore specific revisions
  • Kenneth Johansson's avatar
    Kenneth Johansson committed
    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000
    /*
     * mm/percpu.c - percpu memory allocator
     *
     * Copyright (C) 2009		SUSE Linux Products GmbH
     * Copyright (C) 2009		Tejun Heo <tj@kernel.org>
     *
     * This file is released under the GPLv2.
     *
     * This is percpu allocator which can handle both static and dynamic
     * areas.  Percpu areas are allocated in chunks.  Each chunk is
     * consisted of boot-time determined number of units and the first
     * chunk is used for static percpu variables in the kernel image
     * (special boot time alloc/init handling necessary as these areas
     * need to be brought up before allocation services are running).
     * Unit grows as necessary and all units grow or shrink in unison.
     * When a chunk is filled up, another chunk is allocated.
     *
     *  c0                           c1                         c2
     *  -------------------          -------------------        ------------
     * | u0 | u1 | u2 | u3 |        | u0 | u1 | u2 | u3 |      | u0 | u1 | u
     *  -------------------  ......  -------------------  ....  ------------
     *
     * Allocation is done in offset-size areas of single unit space.  Ie,
     * an area of 512 bytes at 6k in c1 occupies 512 bytes at 6k of c1:u0,
     * c1:u1, c1:u2 and c1:u3.  On UMA, units corresponds directly to
     * cpus.  On NUMA, the mapping can be non-linear and even sparse.
     * Percpu access can be done by configuring percpu base registers
     * according to cpu to unit mapping and pcpu_unit_size.
     *
     * There are usually many small percpu allocations many of them being
     * as small as 4 bytes.  The allocator organizes chunks into lists
     * according to free size and tries to allocate from the fullest one.
     * Each chunk keeps the maximum contiguous area size hint which is
     * guaranteed to be equal to or larger than the maximum contiguous
     * area in the chunk.  This helps the allocator not to iterate the
     * chunk maps unnecessarily.
     *
     * Allocation state in each chunk is kept using an array of integers
     * on chunk->map.  A positive value in the map represents a free
     * region and negative allocated.  Allocation inside a chunk is done
     * by scanning this map sequentially and serving the first matching
     * entry.  This is mostly copied from the percpu_modalloc() allocator.
     * Chunks can be determined from the address using the index field
     * in the page struct. The index field contains a pointer to the chunk.
     *
     * To use this allocator, arch code should do the followings.
     *
     * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate
     *   regular address to percpu pointer and back if they need to be
     *   different from the default
     *
     * - use pcpu_setup_first_chunk() during percpu area initialization to
     *   setup the first chunk containing the kernel static percpu area
     */
    
    #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
    
    #include <linux/bitmap.h>
    #include <linux/bootmem.h>
    #include <linux/err.h>
    #include <linux/list.h>
    #include <linux/log2.h>
    #include <linux/mm.h>
    #include <linux/module.h>
    #include <linux/mutex.h>
    #include <linux/percpu.h>
    #include <linux/pfn.h>
    #include <linux/slab.h>
    #include <linux/spinlock.h>
    #include <linux/vmalloc.h>
    #include <linux/workqueue.h>
    #include <linux/kmemleak.h>
    
    #include <asm/cacheflush.h>
    #include <asm/sections.h>
    #include <asm/tlbflush.h>
    #include <asm/io.h>
    
    #define PCPU_SLOT_BASE_SHIFT		5	/* 1-31 shares the same slot */
    #define PCPU_DFL_MAP_ALLOC		16	/* start a map with 16 ents */
    #define PCPU_ATOMIC_MAP_MARGIN_LOW	32
    #define PCPU_ATOMIC_MAP_MARGIN_HIGH	64
    #define PCPU_EMPTY_POP_PAGES_LOW	2
    #define PCPU_EMPTY_POP_PAGES_HIGH	4
    
    #ifdef CONFIG_SMP
    /* default addr <-> pcpu_ptr mapping, override in asm/percpu.h if necessary */
    #ifndef __addr_to_pcpu_ptr
    #define __addr_to_pcpu_ptr(addr)					\
    	(void __percpu *)((unsigned long)(addr) -			\
    			  (unsigned long)pcpu_base_addr	+		\
    			  (unsigned long)__per_cpu_start)
    #endif
    #ifndef __pcpu_ptr_to_addr
    #define __pcpu_ptr_to_addr(ptr)						\
    	(void __force *)((unsigned long)(ptr) +				\
    			 (unsigned long)pcpu_base_addr -		\
    			 (unsigned long)__per_cpu_start)
    #endif
    #else	/* CONFIG_SMP */
    /* on UP, it's always identity mapped */
    #define __addr_to_pcpu_ptr(addr)	(void __percpu *)(addr)
    #define __pcpu_ptr_to_addr(ptr)		(void __force *)(ptr)
    #endif	/* CONFIG_SMP */
    
    struct pcpu_chunk {
    	struct list_head	list;		/* linked to pcpu_slot lists */
    	int			free_size;	/* free bytes in the chunk */
    	int			contig_hint;	/* max contiguous size hint */
    	void			*base_addr;	/* base address of this chunk */
    
    	int			map_used;	/* # of map entries used before the sentry */
    	int			map_alloc;	/* # of map entries allocated */
    	int			*map;		/* allocation map */
    	struct list_head	map_extend_list;/* on pcpu_map_extend_chunks */
    
    	void			*data;		/* chunk data */
    	int			first_free;	/* no free below this */
    	bool			immutable;	/* no [de]population allowed */
    	int			nr_populated;	/* # of populated pages */
    	unsigned long		populated[];	/* populated bitmap */
    };
    
    static int pcpu_unit_pages __read_mostly;
    static int pcpu_unit_size __read_mostly;
    static int pcpu_nr_units __read_mostly;
    static int pcpu_atom_size __read_mostly;
    static int pcpu_nr_slots __read_mostly;
    static size_t pcpu_chunk_struct_size __read_mostly;
    
    /* cpus with the lowest and highest unit addresses */
    static unsigned int pcpu_low_unit_cpu __read_mostly;
    static unsigned int pcpu_high_unit_cpu __read_mostly;
    
    /* the address of the first chunk which starts with the kernel static area */
    void *pcpu_base_addr __read_mostly;
    EXPORT_SYMBOL_GPL(pcpu_base_addr);
    
    static const int *pcpu_unit_map __read_mostly;		/* cpu -> unit */
    const unsigned long *pcpu_unit_offsets __read_mostly;	/* cpu -> unit offset */
    
    /* group information, used for vm allocation */
    static int pcpu_nr_groups __read_mostly;
    static const unsigned long *pcpu_group_offsets __read_mostly;
    static const size_t *pcpu_group_sizes __read_mostly;
    
    /*
     * The first chunk which always exists.  Note that unlike other
     * chunks, this one can be allocated and mapped in several different
     * ways and thus often doesn't live in the vmalloc area.
     */
    static struct pcpu_chunk *pcpu_first_chunk;
    
    /*
     * Optional reserved chunk.  This chunk reserves part of the first
     * chunk and serves it for reserved allocations.  The amount of
     * reserved offset is in pcpu_reserved_chunk_limit.  When reserved
     * area doesn't exist, the following variables contain NULL and 0
     * respectively.
     */
    static struct pcpu_chunk *pcpu_reserved_chunk;
    static int pcpu_reserved_chunk_limit;
    
    static DEFINE_SPINLOCK(pcpu_lock);	/* all internal data structures */
    static DEFINE_MUTEX(pcpu_alloc_mutex);	/* chunk create/destroy, [de]pop, map ext */
    
    static struct list_head *pcpu_slot __read_mostly; /* chunk list slots */
    
    /* chunks which need their map areas extended, protected by pcpu_lock */
    static LIST_HEAD(pcpu_map_extend_chunks);
    
    /*
     * The number of empty populated pages, protected by pcpu_lock.  The
     * reserved chunk doesn't contribute to the count.
     */
    static int pcpu_nr_empty_pop_pages;
    
    /*
     * Balance work is used to populate or destroy chunks asynchronously.  We
     * try to keep the number of populated free pages between
     * PCPU_EMPTY_POP_PAGES_LOW and HIGH for atomic allocations and at most one
     * empty chunk.
     */
    static void pcpu_balance_workfn(struct work_struct *work);
    static DECLARE_WORK(pcpu_balance_work, pcpu_balance_workfn);
    static bool pcpu_async_enabled __read_mostly;
    static bool pcpu_atomic_alloc_failed;
    
    static void pcpu_schedule_balance_work(void)
    {
    	if (pcpu_async_enabled)
    		schedule_work(&pcpu_balance_work);
    }
    
    static bool pcpu_addr_in_first_chunk(void *addr)
    {
    	void *first_start = pcpu_first_chunk->base_addr;
    
    	return addr >= first_start && addr < first_start + pcpu_unit_size;
    }
    
    static bool pcpu_addr_in_reserved_chunk(void *addr)
    {
    	void *first_start = pcpu_first_chunk->base_addr;
    
    	return addr >= first_start &&
    		addr < first_start + pcpu_reserved_chunk_limit;
    }
    
    static int __pcpu_size_to_slot(int size)
    {
    	int highbit = fls(size);	/* size is in bytes */
    	return max(highbit - PCPU_SLOT_BASE_SHIFT + 2, 1);
    }
    
    static int pcpu_size_to_slot(int size)
    {
    	if (size == pcpu_unit_size)
    		return pcpu_nr_slots - 1;
    	return __pcpu_size_to_slot(size);
    }
    
    static int pcpu_chunk_slot(const struct pcpu_chunk *chunk)
    {
    	if (chunk->free_size < sizeof(int) || chunk->contig_hint < sizeof(int))
    		return 0;
    
    	return pcpu_size_to_slot(chunk->free_size);
    }
    
    /* set the pointer to a chunk in a page struct */
    static void pcpu_set_page_chunk(struct page *page, struct pcpu_chunk *pcpu)
    {
    	page->index = (unsigned long)pcpu;
    }
    
    /* obtain pointer to a chunk from a page struct */
    static struct pcpu_chunk *pcpu_get_page_chunk(struct page *page)
    {
    	return (struct pcpu_chunk *)page->index;
    }
    
    static int __maybe_unused pcpu_page_idx(unsigned int cpu, int page_idx)
    {
    	return pcpu_unit_map[cpu] * pcpu_unit_pages + page_idx;
    }
    
    static unsigned long pcpu_chunk_addr(struct pcpu_chunk *chunk,
    				     unsigned int cpu, int page_idx)
    {
    	return (unsigned long)chunk->base_addr + pcpu_unit_offsets[cpu] +
    		(page_idx << PAGE_SHIFT);
    }
    
    static void __maybe_unused pcpu_next_unpop(struct pcpu_chunk *chunk,
    					   int *rs, int *re, int end)
    {
    	*rs = find_next_zero_bit(chunk->populated, end, *rs);
    	*re = find_next_bit(chunk->populated, end, *rs + 1);
    }
    
    static void __maybe_unused pcpu_next_pop(struct pcpu_chunk *chunk,
    					 int *rs, int *re, int end)
    {
    	*rs = find_next_bit(chunk->populated, end, *rs);
    	*re = find_next_zero_bit(chunk->populated, end, *rs + 1);
    }
    
    /*
     * (Un)populated page region iterators.  Iterate over (un)populated
     * page regions between @start and @end in @chunk.  @rs and @re should
     * be integer variables and will be set to start and end page index of
     * the current region.
     */
    #define pcpu_for_each_unpop_region(chunk, rs, re, start, end)		    \
    	for ((rs) = (start), pcpu_next_unpop((chunk), &(rs), &(re), (end)); \
    	     (rs) < (re);						    \
    	     (rs) = (re) + 1, pcpu_next_unpop((chunk), &(rs), &(re), (end)))
    
    #define pcpu_for_each_pop_region(chunk, rs, re, start, end)		    \
    	for ((rs) = (start), pcpu_next_pop((chunk), &(rs), &(re), (end));   \
    	     (rs) < (re);						    \
    	     (rs) = (re) + 1, pcpu_next_pop((chunk), &(rs), &(re), (end)))
    
    /**
     * pcpu_mem_zalloc - allocate memory
     * @size: bytes to allocate
     *
     * Allocate @size bytes.  If @size is smaller than PAGE_SIZE,
     * kzalloc() is used; otherwise, vzalloc() is used.  The returned
     * memory is always zeroed.
     *
     * CONTEXT:
     * Does GFP_KERNEL allocation.
     *
     * RETURNS:
     * Pointer to the allocated area on success, NULL on failure.
     */
    static void *pcpu_mem_zalloc(size_t size)
    {
    	if (WARN_ON_ONCE(!slab_is_available()))
    		return NULL;
    
    	if (size <= PAGE_SIZE)
    		return kzalloc(size, GFP_KERNEL);
    	else
    		return vzalloc(size);
    }
    
    /**
     * pcpu_mem_free - free memory
     * @ptr: memory to free
     *
     * Free @ptr.  @ptr should have been allocated using pcpu_mem_zalloc().
     */
    static void pcpu_mem_free(void *ptr)
    {
    	kvfree(ptr);
    }
    
    /**
     * pcpu_count_occupied_pages - count the number of pages an area occupies
     * @chunk: chunk of interest
     * @i: index of the area in question
     *
     * Count the number of pages chunk's @i'th area occupies.  When the area's
     * start and/or end address isn't aligned to page boundary, the straddled
     * page is included in the count iff the rest of the page is free.
     */
    static int pcpu_count_occupied_pages(struct pcpu_chunk *chunk, int i)
    {
    	int off = chunk->map[i] & ~1;
    	int end = chunk->map[i + 1] & ~1;
    
    	if (!PAGE_ALIGNED(off) && i > 0) {
    		int prev = chunk->map[i - 1];
    
    		if (!(prev & 1) && prev <= round_down(off, PAGE_SIZE))
    			off = round_down(off, PAGE_SIZE);
    	}
    
    	if (!PAGE_ALIGNED(end) && i + 1 < chunk->map_used) {
    		int next = chunk->map[i + 1];
    		int nend = chunk->map[i + 2] & ~1;
    
    		if (!(next & 1) && nend >= round_up(end, PAGE_SIZE))
    			end = round_up(end, PAGE_SIZE);
    	}
    
    	return max_t(int, PFN_DOWN(end) - PFN_UP(off), 0);
    }
    
    /**
     * pcpu_chunk_relocate - put chunk in the appropriate chunk slot
     * @chunk: chunk of interest
     * @oslot: the previous slot it was on
     *
     * This function is called after an allocation or free changed @chunk.
     * New slot according to the changed state is determined and @chunk is
     * moved to the slot.  Note that the reserved chunk is never put on
     * chunk slots.
     *
     * CONTEXT:
     * pcpu_lock.
     */
    static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot)
    {
    	int nslot = pcpu_chunk_slot(chunk);
    
    	if (chunk != pcpu_reserved_chunk && oslot != nslot) {
    		if (oslot < nslot)
    			list_move(&chunk->list, &pcpu_slot[nslot]);
    		else
    			list_move_tail(&chunk->list, &pcpu_slot[nslot]);
    	}
    }
    
    /**
     * pcpu_need_to_extend - determine whether chunk area map needs to be extended
     * @chunk: chunk of interest
     * @is_atomic: the allocation context
     *
     * Determine whether area map of @chunk needs to be extended.  If
     * @is_atomic, only the amount necessary for a new allocation is
     * considered; however, async extension is scheduled if the left amount is
     * low.  If !@is_atomic, it aims for more empty space.  Combined, this
     * ensures that the map is likely to have enough available space to
     * accomodate atomic allocations which can't extend maps directly.
     *
     * CONTEXT:
     * pcpu_lock.
     *
     * RETURNS:
     * New target map allocation length if extension is necessary, 0
     * otherwise.
     */
    static int pcpu_need_to_extend(struct pcpu_chunk *chunk, bool is_atomic)
    {
    	int margin, new_alloc;
    
    	lockdep_assert_held(&pcpu_lock);
    
    	if (is_atomic) {
    		margin = 3;
    
    		if (chunk->map_alloc <
    		    chunk->map_used + PCPU_ATOMIC_MAP_MARGIN_LOW) {
    			if (list_empty(&chunk->map_extend_list)) {
    				list_add_tail(&chunk->map_extend_list,
    					      &pcpu_map_extend_chunks);
    				pcpu_schedule_balance_work();
    			}
    		}
    	} else {
    		margin = PCPU_ATOMIC_MAP_MARGIN_HIGH;
    	}
    
    	if (chunk->map_alloc >= chunk->map_used + margin)
    		return 0;
    
    	new_alloc = PCPU_DFL_MAP_ALLOC;
    	while (new_alloc < chunk->map_used + margin)
    		new_alloc *= 2;
    
    	return new_alloc;
    }
    
    /**
     * pcpu_extend_area_map - extend area map of a chunk
     * @chunk: chunk of interest
     * @new_alloc: new target allocation length of the area map
     *
     * Extend area map of @chunk to have @new_alloc entries.
     *
     * CONTEXT:
     * Does GFP_KERNEL allocation.  Grabs and releases pcpu_lock.
     *
     * RETURNS:
     * 0 on success, -errno on failure.
     */
    static int pcpu_extend_area_map(struct pcpu_chunk *chunk, int new_alloc)
    {
    	int *old = NULL, *new = NULL;
    	size_t old_size = 0, new_size = new_alloc * sizeof(new[0]);
    	unsigned long flags;
    
    	lockdep_assert_held(&pcpu_alloc_mutex);
    
    	new = pcpu_mem_zalloc(new_size);
    	if (!new)
    		return -ENOMEM;
    
    	/* acquire pcpu_lock and switch to new area map */
    	spin_lock_irqsave(&pcpu_lock, flags);
    
    	if (new_alloc <= chunk->map_alloc)
    		goto out_unlock;
    
    	old_size = chunk->map_alloc * sizeof(chunk->map[0]);
    	old = chunk->map;
    
    	memcpy(new, old, old_size);
    
    	chunk->map_alloc = new_alloc;
    	chunk->map = new;
    	new = NULL;
    
    out_unlock:
    	spin_unlock_irqrestore(&pcpu_lock, flags);
    
    	/*
    	 * pcpu_mem_free() might end up calling vfree() which uses
    	 * IRQ-unsafe lock and thus can't be called under pcpu_lock.
    	 */
    	pcpu_mem_free(old);
    	pcpu_mem_free(new);
    
    	return 0;
    }
    
    /**
     * pcpu_fit_in_area - try to fit the requested allocation in a candidate area
     * @chunk: chunk the candidate area belongs to
     * @off: the offset to the start of the candidate area
     * @this_size: the size of the candidate area
     * @size: the size of the target allocation
     * @align: the alignment of the target allocation
     * @pop_only: only allocate from already populated region
     *
     * We're trying to allocate @size bytes aligned at @align.  @chunk's area
     * at @off sized @this_size is a candidate.  This function determines
     * whether the target allocation fits in the candidate area and returns the
     * number of bytes to pad after @off.  If the target area doesn't fit, -1
     * is returned.
     *
     * If @pop_only is %true, this function only considers the already
     * populated part of the candidate area.
     */
    static int pcpu_fit_in_area(struct pcpu_chunk *chunk, int off, int this_size,
    			    int size, int align, bool pop_only)
    {
    	int cand_off = off;
    
    	while (true) {
    		int head = ALIGN(cand_off, align) - off;
    		int page_start, page_end, rs, re;
    
    		if (this_size < head + size)
    			return -1;
    
    		if (!pop_only)
    			return head;
    
    		/*
    		 * If the first unpopulated page is beyond the end of the
    		 * allocation, the whole allocation is populated;
    		 * otherwise, retry from the end of the unpopulated area.
    		 */
    		page_start = PFN_DOWN(head + off);
    		page_end = PFN_UP(head + off + size);
    
    		rs = page_start;
    		pcpu_next_unpop(chunk, &rs, &re, PFN_UP(off + this_size));
    		if (rs >= page_end)
    			return head;
    		cand_off = re * PAGE_SIZE;
    	}
    }
    
    /**
     * pcpu_alloc_area - allocate area from a pcpu_chunk
     * @chunk: chunk of interest
     * @size: wanted size in bytes
     * @align: wanted align
     * @pop_only: allocate only from the populated area
     * @occ_pages_p: out param for the number of pages the area occupies
     *
     * Try to allocate @size bytes area aligned at @align from @chunk.
     * Note that this function only allocates the offset.  It doesn't
     * populate or map the area.
     *
     * @chunk->map must have at least two free slots.
     *
     * CONTEXT:
     * pcpu_lock.
     *
     * RETURNS:
     * Allocated offset in @chunk on success, -1 if no matching area is
     * found.
     */
    static int pcpu_alloc_area(struct pcpu_chunk *chunk, int size, int align,
    			   bool pop_only, int *occ_pages_p)
    {
    	int oslot = pcpu_chunk_slot(chunk);
    	int max_contig = 0;
    	int i, off;
    	bool seen_free = false;
    	int *p;
    
    	for (i = chunk->first_free, p = chunk->map + i; i < chunk->map_used; i++, p++) {
    		int head, tail;
    		int this_size;
    
    		off = *p;
    		if (off & 1)
    			continue;
    
    		this_size = (p[1] & ~1) - off;
    
    		head = pcpu_fit_in_area(chunk, off, this_size, size, align,
    					pop_only);
    		if (head < 0) {
    			if (!seen_free) {
    				chunk->first_free = i;
    				seen_free = true;
    			}
    			max_contig = max(this_size, max_contig);
    			continue;
    		}
    
    		/*
    		 * If head is small or the previous block is free,
    		 * merge'em.  Note that 'small' is defined as smaller
    		 * than sizeof(int), which is very small but isn't too
    		 * uncommon for percpu allocations.
    		 */
    		if (head && (head < sizeof(int) || !(p[-1] & 1))) {
    			*p = off += head;
    			if (p[-1] & 1)
    				chunk->free_size -= head;
    			else
    				max_contig = max(*p - p[-1], max_contig);
    			this_size -= head;
    			head = 0;
    		}
    
    		/* if tail is small, just keep it around */
    		tail = this_size - head - size;
    		if (tail < sizeof(int)) {
    			tail = 0;
    			size = this_size - head;
    		}
    
    		/* split if warranted */
    		if (head || tail) {
    			int nr_extra = !!head + !!tail;
    
    			/* insert new subblocks */
    			memmove(p + nr_extra + 1, p + 1,
    				sizeof(chunk->map[0]) * (chunk->map_used - i));
    			chunk->map_used += nr_extra;
    
    			if (head) {
    				if (!seen_free) {
    					chunk->first_free = i;
    					seen_free = true;
    				}
    				*++p = off += head;
    				++i;
    				max_contig = max(head, max_contig);
    			}
    			if (tail) {
    				p[1] = off + size;
    				max_contig = max(tail, max_contig);
    			}
    		}
    
    		if (!seen_free)
    			chunk->first_free = i + 1;
    
    		/* update hint and mark allocated */
    		if (i + 1 == chunk->map_used)
    			chunk->contig_hint = max_contig; /* fully scanned */
    		else
    			chunk->contig_hint = max(chunk->contig_hint,
    						 max_contig);
    
    		chunk->free_size -= size;
    		*p |= 1;
    
    		*occ_pages_p = pcpu_count_occupied_pages(chunk, i);
    		pcpu_chunk_relocate(chunk, oslot);
    		return off;
    	}
    
    	chunk->contig_hint = max_contig;	/* fully scanned */
    	pcpu_chunk_relocate(chunk, oslot);
    
    	/* tell the upper layer that this chunk has no matching area */
    	return -1;
    }
    
    /**
     * pcpu_free_area - free area to a pcpu_chunk
     * @chunk: chunk of interest
     * @freeme: offset of area to free
     * @occ_pages_p: out param for the number of pages the area occupies
     *
     * Free area starting from @freeme to @chunk.  Note that this function
     * only modifies the allocation map.  It doesn't depopulate or unmap
     * the area.
     *
     * CONTEXT:
     * pcpu_lock.
     */
    static void pcpu_free_area(struct pcpu_chunk *chunk, int freeme,
    			   int *occ_pages_p)
    {
    	int oslot = pcpu_chunk_slot(chunk);
    	int off = 0;
    	unsigned i, j;
    	int to_free = 0;
    	int *p;
    
    	freeme |= 1;	/* we are searching for <given offset, in use> pair */
    
    	i = 0;
    	j = chunk->map_used;
    	while (i != j) {
    		unsigned k = (i + j) / 2;
    		off = chunk->map[k];
    		if (off < freeme)
    			i = k + 1;
    		else if (off > freeme)
    			j = k;
    		else
    			i = j = k;
    	}
    	BUG_ON(off != freeme);
    
    	if (i < chunk->first_free)
    		chunk->first_free = i;
    
    	p = chunk->map + i;
    	*p = off &= ~1;
    	chunk->free_size += (p[1] & ~1) - off;
    
    	*occ_pages_p = pcpu_count_occupied_pages(chunk, i);
    
    	/* merge with next? */
    	if (!(p[1] & 1))
    		to_free++;
    	/* merge with previous? */
    	if (i > 0 && !(p[-1] & 1)) {
    		to_free++;
    		i--;
    		p--;
    	}
    	if (to_free) {
    		chunk->map_used -= to_free;
    		memmove(p + 1, p + 1 + to_free,
    			(chunk->map_used - i) * sizeof(chunk->map[0]));
    	}
    
    	chunk->contig_hint = max(chunk->map[i + 1] - chunk->map[i] - 1, chunk->contig_hint);
    	pcpu_chunk_relocate(chunk, oslot);
    }
    
    static struct pcpu_chunk *pcpu_alloc_chunk(void)
    {
    	struct pcpu_chunk *chunk;
    
    	chunk = pcpu_mem_zalloc(pcpu_chunk_struct_size);
    	if (!chunk)
    		return NULL;
    
    	chunk->map = pcpu_mem_zalloc(PCPU_DFL_MAP_ALLOC *
    						sizeof(chunk->map[0]));
    	if (!chunk->map) {
    		pcpu_mem_free(chunk);
    		return NULL;
    	}
    
    	chunk->map_alloc = PCPU_DFL_MAP_ALLOC;
    	chunk->map[0] = 0;
    	chunk->map[1] = pcpu_unit_size | 1;
    	chunk->map_used = 1;
    
    	INIT_LIST_HEAD(&chunk->list);
    	INIT_LIST_HEAD(&chunk->map_extend_list);
    	chunk->free_size = pcpu_unit_size;
    	chunk->contig_hint = pcpu_unit_size;
    
    	return chunk;
    }
    
    static void pcpu_free_chunk(struct pcpu_chunk *chunk)
    {
    	if (!chunk)
    		return;
    	pcpu_mem_free(chunk->map);
    	pcpu_mem_free(chunk);
    }
    
    /**
     * pcpu_chunk_populated - post-population bookkeeping
     * @chunk: pcpu_chunk which got populated
     * @page_start: the start page
     * @page_end: the end page
     *
     * Pages in [@page_start,@page_end) have been populated to @chunk.  Update
     * the bookkeeping information accordingly.  Must be called after each
     * successful population.
     */
    static void pcpu_chunk_populated(struct pcpu_chunk *chunk,
    				 int page_start, int page_end)
    {
    	int nr = page_end - page_start;
    
    	lockdep_assert_held(&pcpu_lock);
    
    	bitmap_set(chunk->populated, page_start, nr);
    	chunk->nr_populated += nr;
    	pcpu_nr_empty_pop_pages += nr;
    }
    
    /**
     * pcpu_chunk_depopulated - post-depopulation bookkeeping
     * @chunk: pcpu_chunk which got depopulated
     * @page_start: the start page
     * @page_end: the end page
     *
     * Pages in [@page_start,@page_end) have been depopulated from @chunk.
     * Update the bookkeeping information accordingly.  Must be called after
     * each successful depopulation.
     */
    static void pcpu_chunk_depopulated(struct pcpu_chunk *chunk,
    				   int page_start, int page_end)
    {
    	int nr = page_end - page_start;
    
    	lockdep_assert_held(&pcpu_lock);
    
    	bitmap_clear(chunk->populated, page_start, nr);
    	chunk->nr_populated -= nr;
    	pcpu_nr_empty_pop_pages -= nr;
    }
    
    /*
     * Chunk management implementation.
     *
     * To allow different implementations, chunk alloc/free and
     * [de]population are implemented in a separate file which is pulled
     * into this file and compiled together.  The following functions
     * should be implemented.
     *
     * pcpu_populate_chunk		- populate the specified range of a chunk
     * pcpu_depopulate_chunk	- depopulate the specified range of a chunk
     * pcpu_create_chunk		- create a new chunk
     * pcpu_destroy_chunk		- destroy a chunk, always preceded by full depop
     * pcpu_addr_to_page		- translate address to physical address
     * pcpu_verify_alloc_info	- check alloc_info is acceptable during init
     */
    static int pcpu_populate_chunk(struct pcpu_chunk *chunk, int off, int size);
    static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk, int off, int size);
    static struct pcpu_chunk *pcpu_create_chunk(void);
    static void pcpu_destroy_chunk(struct pcpu_chunk *chunk);
    static struct page *pcpu_addr_to_page(void *addr);
    static int __init pcpu_verify_alloc_info(const struct pcpu_alloc_info *ai);
    
    #ifdef CONFIG_NEED_PER_CPU_KM
    #include "percpu-km.c"
    #else
    #include "percpu-vm.c"
    #endif
    
    /**
     * pcpu_chunk_addr_search - determine chunk containing specified address
     * @addr: address for which the chunk needs to be determined.
     *
     * RETURNS:
     * The address of the found chunk.
     */
    static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr)
    {
    	/* is it in the first chunk? */
    	if (pcpu_addr_in_first_chunk(addr)) {
    		/* is it in the reserved area? */
    		if (pcpu_addr_in_reserved_chunk(addr))
    			return pcpu_reserved_chunk;
    		return pcpu_first_chunk;
    	}
    
    	/*
    	 * The address is relative to unit0 which might be unused and
    	 * thus unmapped.  Offset the address to the unit space of the
    	 * current processor before looking it up in the vmalloc
    	 * space.  Note that any possible cpu id can be used here, so
    	 * there's no need to worry about preemption or cpu hotplug.
    	 */
    	addr += pcpu_unit_offsets[raw_smp_processor_id()];
    	return pcpu_get_page_chunk(pcpu_addr_to_page(addr));
    }
    
    /**
     * pcpu_alloc - the percpu allocator
     * @size: size of area to allocate in bytes
     * @align: alignment of area (max PAGE_SIZE)
     * @reserved: allocate from the reserved chunk if available
     * @gfp: allocation flags
     *
     * Allocate percpu area of @size bytes aligned at @align.  If @gfp doesn't
     * contain %GFP_KERNEL, the allocation is atomic.
     *
     * RETURNS:
     * Percpu pointer to the allocated area on success, NULL on failure.
     */
    static void __percpu *pcpu_alloc(size_t size, size_t align, bool reserved,
    				 gfp_t gfp)
    {
    	static int warn_limit = 10;
    	struct pcpu_chunk *chunk;
    	const char *err;
    	bool is_atomic = (gfp & GFP_KERNEL) != GFP_KERNEL;
    	int occ_pages = 0;
    	int slot, off, new_alloc, cpu, ret;
    	unsigned long flags;
    	void __percpu *ptr;
    
    	/*
    	 * We want the lowest bit of offset available for in-use/free
    	 * indicator, so force >= 16bit alignment and make size even.
    	 */
    	if (unlikely(align < 2))
    		align = 2;
    
    	size = ALIGN(size, 2);
    
    	if (unlikely(!size || size > PCPU_MIN_UNIT_SIZE || align > PAGE_SIZE)) {
    		WARN(true, "illegal size (%zu) or align (%zu) for percpu allocation\n",
    		     size, align);
    		return NULL;
    	}
    
    	if (!is_atomic)
    		mutex_lock(&pcpu_alloc_mutex);
    
    	spin_lock_irqsave(&pcpu_lock, flags);
    
    	/* serve reserved allocations from the reserved chunk if available */
    	if (reserved && pcpu_reserved_chunk) {
    		chunk = pcpu_reserved_chunk;
    
    		if (size > chunk->contig_hint) {
    			err = "alloc from reserved chunk failed";
    			goto fail_unlock;
    		}
    
    		while ((new_alloc = pcpu_need_to_extend(chunk, is_atomic))) {
    			spin_unlock_irqrestore(&pcpu_lock, flags);
    			if (is_atomic ||
    			    pcpu_extend_area_map(chunk, new_alloc) < 0) {
    				err = "failed to extend area map of reserved chunk";
    				goto fail;
    			}
    			spin_lock_irqsave(&pcpu_lock, flags);
    		}
    
    		off = pcpu_alloc_area(chunk, size, align, is_atomic,
    				      &occ_pages);
    		if (off >= 0)
    			goto area_found;
    
    		err = "alloc from reserved chunk failed";
    		goto fail_unlock;
    	}
    
    restart:
    	/* search through normal chunks */
    	for (slot = pcpu_size_to_slot(size); slot < pcpu_nr_slots; slot++) {
    		list_for_each_entry(chunk, &pcpu_slot[slot], list) {
    			if (size > chunk->contig_hint)
    				continue;
    
    			new_alloc = pcpu_need_to_extend(chunk, is_atomic);
    			if (new_alloc) {
    				if (is_atomic)
    					continue;
    				spin_unlock_irqrestore(&pcpu_lock, flags);
    				if (pcpu_extend_area_map(chunk,
    							 new_alloc) < 0) {
    					err = "failed to extend area map";
    					goto fail;
    				}
    				spin_lock_irqsave(&pcpu_lock, flags);
    				/*
    				 * pcpu_lock has been dropped, need to
    				 * restart cpu_slot list walking.
    				 */
    				goto restart;
    			}
    
    			off = pcpu_alloc_area(chunk, size, align, is_atomic,
    					      &occ_pages);
    			if (off >= 0)
    				goto area_found;
    		}
    	}
    
    	spin_unlock_irqrestore(&pcpu_lock, flags);
    
    	/*
    	 * No space left.  Create a new chunk.  We don't want multiple
    	 * tasks to create chunks simultaneously.  Serialize and create iff
    	 * there's still no empty chunk after grabbing the mutex.
    	 */
    	if (is_atomic)
    		goto fail;
    
    	if (list_empty(&pcpu_slot[pcpu_nr_slots - 1])) {
    		chunk = pcpu_create_chunk();
    		if (!chunk) {
    			err = "failed to allocate new chunk";
    			goto fail;
    		}
    
    		spin_lock_irqsave(&pcpu_lock, flags);
    		pcpu_chunk_relocate(chunk, -1);
    	} else {
    		spin_lock_irqsave(&pcpu_lock, flags);
    	}
    
    	goto restart;
    
    area_found:
    	spin_unlock_irqrestore(&pcpu_lock, flags);
    
    	/* populate if not all pages are already there */
    	if (!is_atomic) {
    		int page_start, page_end, rs, re;
    
    		page_start = PFN_DOWN(off);
    		page_end = PFN_UP(off + size);
    
    		pcpu_for_each_unpop_region(chunk, rs, re, page_start, page_end) {
    			WARN_ON(chunk->immutable);
    
    			ret = pcpu_populate_chunk(chunk, rs, re);
    
    			spin_lock_irqsave(&pcpu_lock, flags);