Skip to content
Snippets Groups Projects
slab.c 111 KiB
Newer Older
  • Learn to ignore specific revisions
  • Kenneth Johansson's avatar
    Kenneth Johansson committed
    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000
    /*
     * linux/mm/slab.c
     * Written by Mark Hemment, 1996/97.
     * (markhe@nextd.demon.co.uk)
     *
     * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
     *
     * Major cleanup, different bufctl logic, per-cpu arrays
     *	(c) 2000 Manfred Spraul
     *
     * Cleanup, make the head arrays unconditional, preparation for NUMA
     * 	(c) 2002 Manfred Spraul
     *
     * An implementation of the Slab Allocator as described in outline in;
     *	UNIX Internals: The New Frontiers by Uresh Vahalia
     *	Pub: Prentice Hall	ISBN 0-13-101908-2
     * or with a little more detail in;
     *	The Slab Allocator: An Object-Caching Kernel Memory Allocator
     *	Jeff Bonwick (Sun Microsystems).
     *	Presented at: USENIX Summer 1994 Technical Conference
     *
     * The memory is organized in caches, one cache for each object type.
     * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
     * Each cache consists out of many slabs (they are small (usually one
     * page long) and always contiguous), and each slab contains multiple
     * initialized objects.
     *
     * This means, that your constructor is used only for newly allocated
     * slabs and you must pass objects with the same initializations to
     * kmem_cache_free.
     *
     * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
     * normal). If you need a special memory type, then must create a new
     * cache for that memory type.
     *
     * In order to reduce fragmentation, the slabs are sorted in 3 groups:
     *   full slabs with 0 free objects
     *   partial slabs
     *   empty slabs with no allocated objects
     *
     * If partial slabs exist, then new allocations come from these slabs,
     * otherwise from empty slabs or new slabs are allocated.
     *
     * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
     * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
     *
     * Each cache has a short per-cpu head array, most allocs
     * and frees go into that array, and if that array overflows, then 1/2
     * of the entries in the array are given back into the global cache.
     * The head array is strictly LIFO and should improve the cache hit rates.
     * On SMP, it additionally reduces the spinlock operations.
     *
     * The c_cpuarray may not be read with enabled local interrupts -
     * it's changed with a smp_call_function().
     *
     * SMP synchronization:
     *  constructors and destructors are called without any locking.
     *  Several members in struct kmem_cache and struct slab never change, they
     *	are accessed without any locking.
     *  The per-cpu arrays are never accessed from the wrong cpu, no locking,
     *  	and local interrupts are disabled so slab code is preempt-safe.
     *  The non-constant members are protected with a per-cache irq spinlock.
     *
     * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
     * in 2000 - many ideas in the current implementation are derived from
     * his patch.
     *
     * Further notes from the original documentation:
     *
     * 11 April '97.  Started multi-threading - markhe
     *	The global cache-chain is protected by the mutex 'slab_mutex'.
     *	The sem is only needed when accessing/extending the cache-chain, which
     *	can never happen inside an interrupt (kmem_cache_create(),
     *	kmem_cache_shrink() and kmem_cache_reap()).
     *
     *	At present, each engine can be growing a cache.  This should be blocked.
     *
     * 15 March 2005. NUMA slab allocator.
     *	Shai Fultheim <shai@scalex86.org>.
     *	Shobhit Dayal <shobhit@calsoftinc.com>
     *	Alok N Kataria <alokk@calsoftinc.com>
     *	Christoph Lameter <christoph@lameter.com>
     *
     *	Modified the slab allocator to be node aware on NUMA systems.
     *	Each node has its own list of partial, free and full slabs.
     *	All object allocations for a node occur from node specific slab lists.
     */
    
    #include	<linux/slab.h>
    #include	<linux/mm.h>
    #include	<linux/poison.h>
    #include	<linux/swap.h>
    #include	<linux/cache.h>
    #include	<linux/interrupt.h>
    #include	<linux/init.h>
    #include	<linux/compiler.h>
    #include	<linux/cpuset.h>
    #include	<linux/proc_fs.h>
    #include	<linux/seq_file.h>
    #include	<linux/notifier.h>
    #include	<linux/kallsyms.h>
    #include	<linux/cpu.h>
    #include	<linux/sysctl.h>
    #include	<linux/module.h>
    #include	<linux/rcupdate.h>
    #include	<linux/string.h>
    #include	<linux/uaccess.h>
    #include	<linux/nodemask.h>
    #include	<linux/kmemleak.h>
    #include	<linux/mempolicy.h>
    #include	<linux/mutex.h>
    #include	<linux/fault-inject.h>
    #include	<linux/rtmutex.h>
    #include	<linux/reciprocal_div.h>
    #include	<linux/debugobjects.h>
    #include	<linux/kmemcheck.h>
    #include	<linux/memory.h>
    #include	<linux/prefetch.h>
    
    #include	<net/sock.h>
    
    #include	<asm/cacheflush.h>
    #include	<asm/tlbflush.h>
    #include	<asm/page.h>
    
    #include <trace/events/kmem.h>
    
    #include	"internal.h"
    
    #include	"slab.h"
    
    /*
     * DEBUG	- 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
     *		  0 for faster, smaller code (especially in the critical paths).
     *
     * STATS	- 1 to collect stats for /proc/slabinfo.
     *		  0 for faster, smaller code (especially in the critical paths).
     *
     * FORCED_DEBUG	- 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
     */
    
    #ifdef CONFIG_DEBUG_SLAB
    #define	DEBUG		1
    #define	STATS		1
    #define	FORCED_DEBUG	1
    #else
    #define	DEBUG		0
    #define	STATS		0
    #define	FORCED_DEBUG	0
    #endif
    
    /* Shouldn't this be in a header file somewhere? */
    #define	BYTES_PER_WORD		sizeof(void *)
    #define	REDZONE_ALIGN		max(BYTES_PER_WORD, __alignof__(unsigned long long))
    
    #ifndef ARCH_KMALLOC_FLAGS
    #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
    #endif
    
    #define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \
    				<= SLAB_OBJ_MIN_SIZE) ? 1 : 0)
    
    #if FREELIST_BYTE_INDEX
    typedef unsigned char freelist_idx_t;
    #else
    typedef unsigned short freelist_idx_t;
    #endif
    
    #define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1)
    
    /*
     * struct array_cache
     *
     * Purpose:
     * - LIFO ordering, to hand out cache-warm objects from _alloc
     * - reduce the number of linked list operations
     * - reduce spinlock operations
     *
     * The limit is stored in the per-cpu structure to reduce the data cache
     * footprint.
     *
     */
    struct array_cache {
    	unsigned int avail;
    	unsigned int limit;
    	unsigned int batchcount;
    	unsigned int touched;
    	void *entry[];	/*
    			 * Must have this definition in here for the proper
    			 * alignment of array_cache. Also simplifies accessing
    			 * the entries.
    			 */
    };
    
    struct alien_cache {
    	spinlock_t lock;
    	struct array_cache ac;
    };
    
    /*
     * Need this for bootstrapping a per node allocator.
     */
    #define NUM_INIT_LISTS (2 * MAX_NUMNODES)
    static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS];
    #define	CACHE_CACHE 0
    #define	SIZE_NODE (MAX_NUMNODES)
    
    static int drain_freelist(struct kmem_cache *cache,
    			struct kmem_cache_node *n, int tofree);
    static void free_block(struct kmem_cache *cachep, void **objpp, int len,
    			int node, struct list_head *list);
    static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list);
    static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
    static void cache_reap(struct work_struct *unused);
    
    static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
    						void **list);
    static inline void fixup_slab_list(struct kmem_cache *cachep,
    				struct kmem_cache_node *n, struct page *page,
    				void **list);
    static int slab_early_init = 1;
    
    #define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
    
    static void kmem_cache_node_init(struct kmem_cache_node *parent)
    {
    	INIT_LIST_HEAD(&parent->slabs_full);
    	INIT_LIST_HEAD(&parent->slabs_partial);
    	INIT_LIST_HEAD(&parent->slabs_free);
    	parent->shared = NULL;
    	parent->alien = NULL;
    	parent->colour_next = 0;
    	spin_lock_init(&parent->list_lock);
    	parent->free_objects = 0;
    	parent->free_touched = 0;
    	parent->num_slabs = 0;
    }
    
    #define MAKE_LIST(cachep, listp, slab, nodeid)				\
    	do {								\
    		INIT_LIST_HEAD(listp);					\
    		list_splice(&get_node(cachep, nodeid)->slab, listp);	\
    	} while (0)
    
    #define	MAKE_ALL_LISTS(cachep, ptr, nodeid)				\
    	do {								\
    	MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid);	\
    	MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
    	MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid);	\
    	} while (0)
    
    #define CFLGS_OBJFREELIST_SLAB	(0x40000000UL)
    #define CFLGS_OFF_SLAB		(0x80000000UL)
    #define	OBJFREELIST_SLAB(x)	((x)->flags & CFLGS_OBJFREELIST_SLAB)
    #define	OFF_SLAB(x)	((x)->flags & CFLGS_OFF_SLAB)
    
    #define BATCHREFILL_LIMIT	16
    /*
     * Optimization question: fewer reaps means less probability for unnessary
     * cpucache drain/refill cycles.
     *
     * OTOH the cpuarrays can contain lots of objects,
     * which could lock up otherwise freeable slabs.
     */
    #define REAPTIMEOUT_AC		(2*HZ)
    #define REAPTIMEOUT_NODE	(4*HZ)
    
    #if STATS
    #define	STATS_INC_ACTIVE(x)	((x)->num_active++)
    #define	STATS_DEC_ACTIVE(x)	((x)->num_active--)
    #define	STATS_INC_ALLOCED(x)	((x)->num_allocations++)
    #define	STATS_INC_GROWN(x)	((x)->grown++)
    #define	STATS_ADD_REAPED(x,y)	((x)->reaped += (y))
    #define	STATS_SET_HIGH(x)						\
    	do {								\
    		if ((x)->num_active > (x)->high_mark)			\
    			(x)->high_mark = (x)->num_active;		\
    	} while (0)
    #define	STATS_INC_ERR(x)	((x)->errors++)
    #define	STATS_INC_NODEALLOCS(x)	((x)->node_allocs++)
    #define	STATS_INC_NODEFREES(x)	((x)->node_frees++)
    #define STATS_INC_ACOVERFLOW(x)   ((x)->node_overflow++)
    #define	STATS_SET_FREEABLE(x, i)					\
    	do {								\
    		if ((x)->max_freeable < i)				\
    			(x)->max_freeable = i;				\
    	} while (0)
    #define STATS_INC_ALLOCHIT(x)	atomic_inc(&(x)->allochit)
    #define STATS_INC_ALLOCMISS(x)	atomic_inc(&(x)->allocmiss)
    #define STATS_INC_FREEHIT(x)	atomic_inc(&(x)->freehit)
    #define STATS_INC_FREEMISS(x)	atomic_inc(&(x)->freemiss)
    #else
    #define	STATS_INC_ACTIVE(x)	do { } while (0)
    #define	STATS_DEC_ACTIVE(x)	do { } while (0)
    #define	STATS_INC_ALLOCED(x)	do { } while (0)
    #define	STATS_INC_GROWN(x)	do { } while (0)
    #define	STATS_ADD_REAPED(x,y)	do { (void)(y); } while (0)
    #define	STATS_SET_HIGH(x)	do { } while (0)
    #define	STATS_INC_ERR(x)	do { } while (0)
    #define	STATS_INC_NODEALLOCS(x)	do { } while (0)
    #define	STATS_INC_NODEFREES(x)	do { } while (0)
    #define STATS_INC_ACOVERFLOW(x)   do { } while (0)
    #define	STATS_SET_FREEABLE(x, i) do { } while (0)
    #define STATS_INC_ALLOCHIT(x)	do { } while (0)
    #define STATS_INC_ALLOCMISS(x)	do { } while (0)
    #define STATS_INC_FREEHIT(x)	do { } while (0)
    #define STATS_INC_FREEMISS(x)	do { } while (0)
    #endif
    
    #if DEBUG
    
    /*
     * memory layout of objects:
     * 0		: objp
     * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
     * 		the end of an object is aligned with the end of the real
     * 		allocation. Catches writes behind the end of the allocation.
     * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
     * 		redzone word.
     * cachep->obj_offset: The real object.
     * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
     * cachep->size - 1* BYTES_PER_WORD: last caller address
     *					[BYTES_PER_WORD long]
     */
    static int obj_offset(struct kmem_cache *cachep)
    {
    	return cachep->obj_offset;
    }
    
    static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
    {
    	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
    	return (unsigned long long*) (objp + obj_offset(cachep) -
    				      sizeof(unsigned long long));
    }
    
    static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
    {
    	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
    	if (cachep->flags & SLAB_STORE_USER)
    		return (unsigned long long *)(objp + cachep->size -
    					      sizeof(unsigned long long) -
    					      REDZONE_ALIGN);
    	return (unsigned long long *) (objp + cachep->size -
    				       sizeof(unsigned long long));
    }
    
    static void **dbg_userword(struct kmem_cache *cachep, void *objp)
    {
    	BUG_ON(!(cachep->flags & SLAB_STORE_USER));
    	return (void **)(objp + cachep->size - BYTES_PER_WORD);
    }
    
    #else
    
    #define obj_offset(x)			0
    #define dbg_redzone1(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
    #define dbg_redzone2(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
    #define dbg_userword(cachep, objp)	({BUG(); (void **)NULL;})
    
    #endif
    
    #ifdef CONFIG_DEBUG_SLAB_LEAK
    
    static inline bool is_store_user_clean(struct kmem_cache *cachep)
    {
    	return atomic_read(&cachep->store_user_clean) == 1;
    }
    
    static inline void set_store_user_clean(struct kmem_cache *cachep)
    {
    	atomic_set(&cachep->store_user_clean, 1);
    }
    
    static inline void set_store_user_dirty(struct kmem_cache *cachep)
    {
    	if (is_store_user_clean(cachep))
    		atomic_set(&cachep->store_user_clean, 0);
    }
    
    #else
    static inline void set_store_user_dirty(struct kmem_cache *cachep) {}
    
    #endif
    
    /*
     * Do not go above this order unless 0 objects fit into the slab or
     * overridden on the command line.
     */
    #define	SLAB_MAX_ORDER_HI	1
    #define	SLAB_MAX_ORDER_LO	0
    static int slab_max_order = SLAB_MAX_ORDER_LO;
    static bool slab_max_order_set __initdata;
    
    static inline struct kmem_cache *virt_to_cache(const void *obj)
    {
    	struct page *page = virt_to_head_page(obj);
    	return page->slab_cache;
    }
    
    static inline void *index_to_obj(struct kmem_cache *cache, struct page *page,
    				 unsigned int idx)
    {
    	return page->s_mem + cache->size * idx;
    }
    
    /*
     * We want to avoid an expensive divide : (offset / cache->size)
     *   Using the fact that size is a constant for a particular cache,
     *   we can replace (offset / cache->size) by
     *   reciprocal_divide(offset, cache->reciprocal_buffer_size)
     */
    static inline unsigned int obj_to_index(const struct kmem_cache *cache,
    					const struct page *page, void *obj)
    {
    	u32 offset = (obj - page->s_mem);
    	return reciprocal_divide(offset, cache->reciprocal_buffer_size);
    }
    
    #define BOOT_CPUCACHE_ENTRIES	1
    /* internal cache of cache description objs */
    static struct kmem_cache kmem_cache_boot = {
    	.batchcount = 1,
    	.limit = BOOT_CPUCACHE_ENTRIES,
    	.shared = 1,
    	.size = sizeof(struct kmem_cache),
    	.name = "kmem_cache",
    };
    
    static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
    
    static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
    {
    	return this_cpu_ptr(cachep->cpu_cache);
    }
    
    /*
     * Calculate the number of objects and left-over bytes for a given buffer size.
     */
    static unsigned int cache_estimate(unsigned long gfporder, size_t buffer_size,
    		unsigned long flags, size_t *left_over)
    {
    	unsigned int num;
    	size_t slab_size = PAGE_SIZE << gfporder;
    
    	/*
    	 * The slab management structure can be either off the slab or
    	 * on it. For the latter case, the memory allocated for a
    	 * slab is used for:
    	 *
    	 * - @buffer_size bytes for each object
    	 * - One freelist_idx_t for each object
    	 *
    	 * We don't need to consider alignment of freelist because
    	 * freelist will be at the end of slab page. The objects will be
    	 * at the correct alignment.
    	 *
    	 * If the slab management structure is off the slab, then the
    	 * alignment will already be calculated into the size. Because
    	 * the slabs are all pages aligned, the objects will be at the
    	 * correct alignment when allocated.
    	 */
    	if (flags & (CFLGS_OBJFREELIST_SLAB | CFLGS_OFF_SLAB)) {
    		num = slab_size / buffer_size;
    		*left_over = slab_size % buffer_size;
    	} else {
    		num = slab_size / (buffer_size + sizeof(freelist_idx_t));
    		*left_over = slab_size %
    			(buffer_size + sizeof(freelist_idx_t));
    	}
    
    	return num;
    }
    
    #if DEBUG
    #define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
    
    static void __slab_error(const char *function, struct kmem_cache *cachep,
    			char *msg)
    {
    	pr_err("slab error in %s(): cache `%s': %s\n",
    	       function, cachep->name, msg);
    	dump_stack();
    	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
    }
    #endif
    
    /*
     * By default on NUMA we use alien caches to stage the freeing of
     * objects allocated from other nodes. This causes massive memory
     * inefficiencies when using fake NUMA setup to split memory into a
     * large number of small nodes, so it can be disabled on the command
     * line
      */
    
    static int use_alien_caches __read_mostly = 1;
    static int __init noaliencache_setup(char *s)
    {
    	use_alien_caches = 0;
    	return 1;
    }
    __setup("noaliencache", noaliencache_setup);
    
    static int __init slab_max_order_setup(char *str)
    {
    	get_option(&str, &slab_max_order);
    	slab_max_order = slab_max_order < 0 ? 0 :
    				min(slab_max_order, MAX_ORDER - 1);
    	slab_max_order_set = true;
    
    	return 1;
    }
    __setup("slab_max_order=", slab_max_order_setup);
    
    #ifdef CONFIG_NUMA
    /*
     * Special reaping functions for NUMA systems called from cache_reap().
     * These take care of doing round robin flushing of alien caches (containing
     * objects freed on different nodes from which they were allocated) and the
     * flushing of remote pcps by calling drain_node_pages.
     */
    static DEFINE_PER_CPU(unsigned long, slab_reap_node);
    
    static void init_reap_node(int cpu)
    {
    	per_cpu(slab_reap_node, cpu) = next_node_in(cpu_to_mem(cpu),
    						    node_online_map);
    }
    
    static void next_reap_node(void)
    {
    	int node = __this_cpu_read(slab_reap_node);
    
    	node = next_node_in(node, node_online_map);
    	__this_cpu_write(slab_reap_node, node);
    }
    
    #else
    #define init_reap_node(cpu) do { } while (0)
    #define next_reap_node(void) do { } while (0)
    #endif
    
    /*
     * Initiate the reap timer running on the target CPU.  We run at around 1 to 2Hz
     * via the workqueue/eventd.
     * Add the CPU number into the expiration time to minimize the possibility of
     * the CPUs getting into lockstep and contending for the global cache chain
     * lock.
     */
    static void start_cpu_timer(int cpu)
    {
    	struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
    
    	/*
    	 * When this gets called from do_initcalls via cpucache_init(),
    	 * init_workqueues() has already run, so keventd will be setup
    	 * at that time.
    	 */
    	if (keventd_up() && reap_work->work.func == NULL) {
    		init_reap_node(cpu);
    		INIT_DEFERRABLE_WORK(reap_work, cache_reap);
    		schedule_delayed_work_on(cpu, reap_work,
    					__round_jiffies_relative(HZ, cpu));
    	}
    }
    
    static void init_arraycache(struct array_cache *ac, int limit, int batch)
    {
    	/*
    	 * The array_cache structures contain pointers to free object.
    	 * However, when such objects are allocated or transferred to another
    	 * cache the pointers are not cleared and they could be counted as
    	 * valid references during a kmemleak scan. Therefore, kmemleak must
    	 * not scan such objects.
    	 */
    	kmemleak_no_scan(ac);
    	if (ac) {
    		ac->avail = 0;
    		ac->limit = limit;
    		ac->batchcount = batch;
    		ac->touched = 0;
    	}
    }
    
    static struct array_cache *alloc_arraycache(int node, int entries,
    					    int batchcount, gfp_t gfp)
    {
    	size_t memsize = sizeof(void *) * entries + sizeof(struct array_cache);
    	struct array_cache *ac = NULL;
    
    	ac = kmalloc_node(memsize, gfp, node);
    	init_arraycache(ac, entries, batchcount);
    	return ac;
    }
    
    static noinline void cache_free_pfmemalloc(struct kmem_cache *cachep,
    					struct page *page, void *objp)
    {
    	struct kmem_cache_node *n;
    	int page_node;
    	LIST_HEAD(list);
    
    	page_node = page_to_nid(page);
    	n = get_node(cachep, page_node);
    
    	spin_lock(&n->list_lock);
    	free_block(cachep, &objp, 1, page_node, &list);
    	spin_unlock(&n->list_lock);
    
    	slabs_destroy(cachep, &list);
    }
    
    /*
     * Transfer objects in one arraycache to another.
     * Locking must be handled by the caller.
     *
     * Return the number of entries transferred.
     */
    static int transfer_objects(struct array_cache *to,
    		struct array_cache *from, unsigned int max)
    {
    	/* Figure out how many entries to transfer */
    	int nr = min3(from->avail, max, to->limit - to->avail);
    
    	if (!nr)
    		return 0;
    
    	memcpy(to->entry + to->avail, from->entry + from->avail -nr,
    			sizeof(void *) *nr);
    
    	from->avail -= nr;
    	to->avail += nr;
    	return nr;
    }
    
    #ifndef CONFIG_NUMA
    
    #define drain_alien_cache(cachep, alien) do { } while (0)
    #define reap_alien(cachep, n) do { } while (0)
    
    static inline struct alien_cache **alloc_alien_cache(int node,
    						int limit, gfp_t gfp)
    {
    	return NULL;
    }
    
    static inline void free_alien_cache(struct alien_cache **ac_ptr)
    {
    }
    
    static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
    {
    	return 0;
    }
    
    static inline void *alternate_node_alloc(struct kmem_cache *cachep,
    		gfp_t flags)
    {
    	return NULL;
    }
    
    static inline void *____cache_alloc_node(struct kmem_cache *cachep,
    		 gfp_t flags, int nodeid)
    {
    	return NULL;
    }
    
    static inline gfp_t gfp_exact_node(gfp_t flags)
    {
    	return flags & ~__GFP_NOFAIL;
    }
    
    #else	/* CONFIG_NUMA */
    
    static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
    static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
    
    static struct alien_cache *__alloc_alien_cache(int node, int entries,
    						int batch, gfp_t gfp)
    {
    	size_t memsize = sizeof(void *) * entries + sizeof(struct alien_cache);
    	struct alien_cache *alc = NULL;
    
    	alc = kmalloc_node(memsize, gfp, node);
    	init_arraycache(&alc->ac, entries, batch);
    	spin_lock_init(&alc->lock);
    	return alc;
    }
    
    static struct alien_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
    {
    	struct alien_cache **alc_ptr;
    	size_t memsize = sizeof(void *) * nr_node_ids;
    	int i;
    
    	if (limit > 1)
    		limit = 12;
    	alc_ptr = kzalloc_node(memsize, gfp, node);
    	if (!alc_ptr)
    		return NULL;
    
    	for_each_node(i) {
    		if (i == node || !node_online(i))
    			continue;
    		alc_ptr[i] = __alloc_alien_cache(node, limit, 0xbaadf00d, gfp);
    		if (!alc_ptr[i]) {
    			for (i--; i >= 0; i--)
    				kfree(alc_ptr[i]);
    			kfree(alc_ptr);
    			return NULL;
    		}
    	}
    	return alc_ptr;
    }
    
    static void free_alien_cache(struct alien_cache **alc_ptr)
    {
    	int i;
    
    	if (!alc_ptr)
    		return;
    	for_each_node(i)
    	    kfree(alc_ptr[i]);
    	kfree(alc_ptr);
    }
    
    static void __drain_alien_cache(struct kmem_cache *cachep,
    				struct array_cache *ac, int node,
    				struct list_head *list)
    {
    	struct kmem_cache_node *n = get_node(cachep, node);
    
    	if (ac->avail) {
    		spin_lock(&n->list_lock);
    		/*
    		 * Stuff objects into the remote nodes shared array first.
    		 * That way we could avoid the overhead of putting the objects
    		 * into the free lists and getting them back later.
    		 */
    		if (n->shared)
    			transfer_objects(n->shared, ac, ac->limit);
    
    		free_block(cachep, ac->entry, ac->avail, node, list);
    		ac->avail = 0;
    		spin_unlock(&n->list_lock);
    	}
    }
    
    /*
     * Called from cache_reap() to regularly drain alien caches round robin.
     */
    static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n)
    {
    	int node = __this_cpu_read(slab_reap_node);
    
    	if (n->alien) {
    		struct alien_cache *alc = n->alien[node];
    		struct array_cache *ac;
    
    		if (alc) {
    			ac = &alc->ac;
    			if (ac->avail && spin_trylock_irq(&alc->lock)) {
    				LIST_HEAD(list);
    
    				__drain_alien_cache(cachep, ac, node, &list);
    				spin_unlock_irq(&alc->lock);
    				slabs_destroy(cachep, &list);
    			}
    		}
    	}
    }
    
    static void drain_alien_cache(struct kmem_cache *cachep,
    				struct alien_cache **alien)
    {
    	int i = 0;
    	struct alien_cache *alc;
    	struct array_cache *ac;
    	unsigned long flags;
    
    	for_each_online_node(i) {
    		alc = alien[i];
    		if (alc) {
    			LIST_HEAD(list);
    
    			ac = &alc->ac;
    			spin_lock_irqsave(&alc->lock, flags);
    			__drain_alien_cache(cachep, ac, i, &list);
    			spin_unlock_irqrestore(&alc->lock, flags);
    			slabs_destroy(cachep, &list);
    		}
    	}
    }
    
    static int __cache_free_alien(struct kmem_cache *cachep, void *objp,
    				int node, int page_node)
    {
    	struct kmem_cache_node *n;
    	struct alien_cache *alien = NULL;
    	struct array_cache *ac;
    	LIST_HEAD(list);
    
    	n = get_node(cachep, node);
    	STATS_INC_NODEFREES(cachep);
    	if (n->alien && n->alien[page_node]) {
    		alien = n->alien[page_node];
    		ac = &alien->ac;
    		spin_lock(&alien->lock);
    		if (unlikely(ac->avail == ac->limit)) {
    			STATS_INC_ACOVERFLOW(cachep);
    			__drain_alien_cache(cachep, ac, page_node, &list);
    		}
    		ac->entry[ac->avail++] = objp;
    		spin_unlock(&alien->lock);
    		slabs_destroy(cachep, &list);
    	} else {
    		n = get_node(cachep, page_node);
    		spin_lock(&n->list_lock);
    		free_block(cachep, &objp, 1, page_node, &list);
    		spin_unlock(&n->list_lock);
    		slabs_destroy(cachep, &list);
    	}
    	return 1;
    }
    
    static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
    {
    	int page_node = page_to_nid(virt_to_page(objp));
    	int node = numa_mem_id();
    	/*
    	 * Make sure we are not freeing a object from another node to the array
    	 * cache on this cpu.
    	 */
    	if (likely(node == page_node))
    		return 0;
    
    	return __cache_free_alien(cachep, objp, node, page_node);
    }
    
    /*
     * Construct gfp mask to allocate from a specific node but do not reclaim or
     * warn about failures.
     */
    static inline gfp_t gfp_exact_node(gfp_t flags)
    {
    	return (flags | __GFP_THISNODE | __GFP_NOWARN) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
    }
    #endif
    
    static int init_cache_node(struct kmem_cache *cachep, int node, gfp_t gfp)
    {
    	struct kmem_cache_node *n;
    
    	/*
    	 * Set up the kmem_cache_node for cpu before we can
    	 * begin anything. Make sure some other cpu on this
    	 * node has not already allocated this
    	 */
    	n = get_node(cachep, node);
    	if (n) {
    		spin_lock_irq(&n->list_lock);
    		n->free_limit = (1 + nr_cpus_node(node)) * cachep->batchcount +
    				cachep->num;
    		spin_unlock_irq(&n->list_lock);
    
    		return 0;
    	}
    
    	n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node);
    	if (!n)
    		return -ENOMEM;
    
    	kmem_cache_node_init(n);
    	n->next_reap = jiffies + REAPTIMEOUT_NODE +
    		    ((unsigned long)cachep) % REAPTIMEOUT_NODE;
    
    	n->free_limit =
    		(1 + nr_cpus_node(node)) * cachep->batchcount + cachep->num;
    
    	/*
    	 * The kmem_cache_nodes don't come and go as CPUs
    	 * come and go.  slab_mutex is sufficient
    	 * protection here.
    	 */
    	cachep->node[node] = n;
    
    	return 0;
    }
    
    #if (defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)) || defined(CONFIG_SMP)
    /*
     * Allocates and initializes node for a node on each slab cache, used for
     * either memory or cpu hotplug.  If memory is being hot-added, the kmem_cache_node
     * will be allocated off-node since memory is not yet online for the new node.
     * When hotplugging memory or a cpu, existing node are not replaced if
     * already in use.
     *
     * Must hold slab_mutex.
     */
    static int init_cache_node_node(int node)
    {
    	int ret;
    	struct kmem_cache *cachep;
    
    	list_for_each_entry(cachep, &slab_caches, list) {
    		ret = init_cache_node(cachep, node, GFP_KERNEL);
    		if (ret)
    			return ret;
    	}
    
    	return 0;
    }
    #endif
    
    static int setup_kmem_cache_node(struct kmem_cache *cachep,
    				int node, gfp_t gfp, bool force_change)
    {
    	int ret = -ENOMEM;
    	struct kmem_cache_node *n;
    	struct array_cache *old_shared = NULL;
    	struct array_cache *new_shared = NULL;
    	struct alien_cache **new_alien = NULL;
    	LIST_HEAD(list);
    
    	if (use_alien_caches) {
    		new_alien = alloc_alien_cache(node, cachep->limit, gfp);
    		if (!new_alien)
    			goto fail;
    	}
    
    	if (cachep->shared) {
    		new_shared = alloc_arraycache(node,
    			cachep->shared * cachep->batchcount, 0xbaadf00d, gfp);
    		if (!new_shared)
    			goto fail;
    	}
    
    	ret = init_cache_node(cachep, node, gfp);
    	if (ret)
    		goto fail;
    
    	n = get_node(cachep, node);
    	spin_lock_irq(&n->list_lock);
    	if (n->shared && force_change) {
    		free_block(cachep, n->shared->entry,
    				n->shared->avail, node, &list);
    		n->shared->avail = 0;
    	}
    
    	if (!n->shared || force_change) {
    		old_shared = n->shared;
    		n->shared = new_shared;
    		new_shared = NULL;
    	}
    
    	if (!n->alien) {
    		n->alien = new_alien;
    		new_alien = NULL;
    	}
    
    	spin_unlock_irq(&n->list_lock);
    	slabs_destroy(cachep, &list);
    
    	/*
    	 * To protect lockless access to n->shared during irq disabled context.
    	 * If n->shared isn't NULL in irq disabled context, accessing to it is
    	 * guaranteed to be valid until irq is re-enabled, because it will be
    	 * freed after synchronize_sched().
    	 */
    	if (old_shared && force_change)
    		synchronize_sched();
    
    fail:
    	kfree(old_shared);
    	kfree(new_shared);
    	free_alien_cache(new_alien);
    
    	return ret;
    }
    
    #ifdef CONFIG_SMP
    
    static void cpuup_canceled(long cpu)
    {
    	struct kmem_cache *cachep;
    	struct kmem_cache_node *n = NULL;
    	int node = cpu_to_mem(cpu);
    	const struct cpumask *mask = cpumask_of_node(node);
    
    	list_for_each_entry(cachep, &slab_caches, list) {
    		struct array_cache *nc;
    		struct array_cache *shared;
    		struct alien_cache **alien;
    		LIST_HEAD(list);
    
    		n = get_node(cachep, node);
    		if (!n)
    			continue;
    
    		spin_lock_irq(&n->list_lock);