Skip to content
Snippets Groups Projects
vmscan.c 111 KiB
Newer Older
  • Learn to ignore specific revisions
  • Kenneth Johansson's avatar
    Kenneth Johansson committed
    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000
    /*
     *  linux/mm/vmscan.c
     *
     *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
     *
     *  Swap reorganised 29.12.95, Stephen Tweedie.
     *  kswapd added: 7.1.96  sct
     *  Removed kswapd_ctl limits, and swap out as many pages as needed
     *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
     *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
     *  Multiqueue VM started 5.8.00, Rik van Riel.
     */
    
    #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
    
    #include <linux/mm.h>
    #include <linux/module.h>
    #include <linux/gfp.h>
    #include <linux/kernel_stat.h>
    #include <linux/swap.h>
    #include <linux/pagemap.h>
    #include <linux/init.h>
    #include <linux/highmem.h>
    #include <linux/vmpressure.h>
    #include <linux/vmstat.h>
    #include <linux/file.h>
    #include <linux/writeback.h>
    #include <linux/blkdev.h>
    #include <linux/buffer_head.h>	/* for try_to_release_page(),
    					buffer_heads_over_limit */
    #include <linux/mm_inline.h>
    #include <linux/backing-dev.h>
    #include <linux/rmap.h>
    #include <linux/topology.h>
    #include <linux/cpu.h>
    #include <linux/cpuset.h>
    #include <linux/compaction.h>
    #include <linux/notifier.h>
    #include <linux/rwsem.h>
    #include <linux/delay.h>
    #include <linux/kthread.h>
    #include <linux/freezer.h>
    #include <linux/memcontrol.h>
    #include <linux/delayacct.h>
    #include <linux/sysctl.h>
    #include <linux/oom.h>
    #include <linux/prefetch.h>
    #include <linux/printk.h>
    #include <linux/dax.h>
    
    #include <asm/tlbflush.h>
    #include <asm/div64.h>
    
    #include <linux/swapops.h>
    #include <linux/balloon_compaction.h>
    
    #include "internal.h"
    
    #define CREATE_TRACE_POINTS
    #include <trace/events/vmscan.h>
    
    struct scan_control {
    	/* How many pages shrink_list() should reclaim */
    	unsigned long nr_to_reclaim;
    
    	/* This context's GFP mask */
    	gfp_t gfp_mask;
    
    	/* Allocation order */
    	int order;
    
    	/*
    	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
    	 * are scanned.
    	 */
    	nodemask_t	*nodemask;
    
    	/*
    	 * The memory cgroup that hit its limit and as a result is the
    	 * primary target of this reclaim invocation.
    	 */
    	struct mem_cgroup *target_mem_cgroup;
    
    	/* Scan (total_size >> priority) pages at once */
    	int priority;
    
    	/* The highest zone to isolate pages for reclaim from */
    	enum zone_type reclaim_idx;
    
    	unsigned int may_writepage:1;
    
    	/* Can mapped pages be reclaimed? */
    	unsigned int may_unmap:1;
    
    	/* Can pages be swapped as part of reclaim? */
    	unsigned int may_swap:1;
    
    	/* Can cgroups be reclaimed below their normal consumption range? */
    	unsigned int may_thrash:1;
    
    	unsigned int hibernation_mode:1;
    
    	/* One of the zones is ready for compaction */
    	unsigned int compaction_ready:1;
    
    	/* Incremented by the number of inactive pages that were scanned */
    	unsigned long nr_scanned;
    
    	/* Number of pages freed so far during a call to shrink_zones() */
    	unsigned long nr_reclaimed;
    };
    
    #ifdef ARCH_HAS_PREFETCH
    #define prefetch_prev_lru_page(_page, _base, _field)			\
    	do {								\
    		if ((_page)->lru.prev != _base) {			\
    			struct page *prev;				\
    									\
    			prev = lru_to_page(&(_page->lru));		\
    			prefetch(&prev->_field);			\
    		}							\
    	} while (0)
    #else
    #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
    #endif
    
    #ifdef ARCH_HAS_PREFETCHW
    #define prefetchw_prev_lru_page(_page, _base, _field)			\
    	do {								\
    		if ((_page)->lru.prev != _base) {			\
    			struct page *prev;				\
    									\
    			prev = lru_to_page(&(_page->lru));		\
    			prefetchw(&prev->_field);			\
    		}							\
    	} while (0)
    #else
    #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
    #endif
    
    /*
     * From 0 .. 100.  Higher means more swappy.
     */
    int vm_swappiness = 60;
    /*
     * The total number of pages which are beyond the high watermark within all
     * zones.
     */
    unsigned long vm_total_pages;
    
    static LIST_HEAD(shrinker_list);
    static DECLARE_RWSEM(shrinker_rwsem);
    
    #ifdef CONFIG_MEMCG
    static bool global_reclaim(struct scan_control *sc)
    {
    	return !sc->target_mem_cgroup;
    }
    
    /**
     * sane_reclaim - is the usual dirty throttling mechanism operational?
     * @sc: scan_control in question
     *
     * The normal page dirty throttling mechanism in balance_dirty_pages() is
     * completely broken with the legacy memcg and direct stalling in
     * shrink_page_list() is used for throttling instead, which lacks all the
     * niceties such as fairness, adaptive pausing, bandwidth proportional
     * allocation and configurability.
     *
     * This function tests whether the vmscan currently in progress can assume
     * that the normal dirty throttling mechanism is operational.
     */
    static bool sane_reclaim(struct scan_control *sc)
    {
    	struct mem_cgroup *memcg = sc->target_mem_cgroup;
    
    	if (!memcg)
    		return true;
    #ifdef CONFIG_CGROUP_WRITEBACK
    	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
    		return true;
    #endif
    	return false;
    }
    #else
    static bool global_reclaim(struct scan_control *sc)
    {
    	return true;
    }
    
    static bool sane_reclaim(struct scan_control *sc)
    {
    	return true;
    }
    #endif
    
    /*
     * This misses isolated pages which are not accounted for to save counters.
     * As the data only determines if reclaim or compaction continues, it is
     * not expected that isolated pages will be a dominating factor.
     */
    unsigned long zone_reclaimable_pages(struct zone *zone)
    {
    	unsigned long nr;
    
    	nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
    		zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
    	if (get_nr_swap_pages() > 0)
    		nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
    			zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
    
    	return nr;
    }
    
    unsigned long pgdat_reclaimable_pages(struct pglist_data *pgdat)
    {
    	unsigned long nr;
    
    	nr = node_page_state_snapshot(pgdat, NR_ACTIVE_FILE) +
    	     node_page_state_snapshot(pgdat, NR_INACTIVE_FILE) +
    	     node_page_state_snapshot(pgdat, NR_ISOLATED_FILE);
    
    	if (get_nr_swap_pages() > 0)
    		nr += node_page_state_snapshot(pgdat, NR_ACTIVE_ANON) +
    		      node_page_state_snapshot(pgdat, NR_INACTIVE_ANON) +
    		      node_page_state_snapshot(pgdat, NR_ISOLATED_ANON);
    
    	return nr;
    }
    
    bool pgdat_reclaimable(struct pglist_data *pgdat)
    {
    	return node_page_state_snapshot(pgdat, NR_PAGES_SCANNED) <
    		pgdat_reclaimable_pages(pgdat) * 6;
    }
    
    /**
     * lruvec_lru_size -  Returns the number of pages on the given LRU list.
     * @lruvec: lru vector
     * @lru: lru to use
     * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
     */
    unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx)
    {
    	unsigned long lru_size;
    	int zid;
    
    	if (!mem_cgroup_disabled())
    		lru_size = mem_cgroup_get_lru_size(lruvec, lru);
    	else
    		lru_size = node_page_state(lruvec_pgdat(lruvec), NR_LRU_BASE + lru);
    
    	for (zid = zone_idx + 1; zid < MAX_NR_ZONES; zid++) {
    		struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
    		unsigned long size;
    
    		if (!managed_zone(zone))
    			continue;
    
    		if (!mem_cgroup_disabled())
    			size = mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
    		else
    			size = zone_page_state(&lruvec_pgdat(lruvec)->node_zones[zid],
    				       NR_ZONE_LRU_BASE + lru);
    		lru_size -= min(size, lru_size);
    	}
    
    	return lru_size;
    
    }
    
    /*
     * Add a shrinker callback to be called from the vm.
     */
    int register_shrinker(struct shrinker *shrinker)
    {
    	size_t size = sizeof(*shrinker->nr_deferred);
    
    	if (shrinker->flags & SHRINKER_NUMA_AWARE)
    		size *= nr_node_ids;
    
    	shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
    	if (!shrinker->nr_deferred)
    		return -ENOMEM;
    
    	down_write(&shrinker_rwsem);
    	list_add_tail(&shrinker->list, &shrinker_list);
    	up_write(&shrinker_rwsem);
    	return 0;
    }
    EXPORT_SYMBOL(register_shrinker);
    
    /*
     * Remove one
     */
    void unregister_shrinker(struct shrinker *shrinker)
    {
    	down_write(&shrinker_rwsem);
    	list_del(&shrinker->list);
    	up_write(&shrinker_rwsem);
    	kfree(shrinker->nr_deferred);
    }
    EXPORT_SYMBOL(unregister_shrinker);
    
    #define SHRINK_BATCH 128
    
    static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
    				    struct shrinker *shrinker,
    				    unsigned long nr_scanned,
    				    unsigned long nr_eligible)
    {
    	unsigned long freed = 0;
    	unsigned long long delta;
    	long total_scan;
    	long freeable;
    	long nr;
    	long new_nr;
    	int nid = shrinkctl->nid;
    	long batch_size = shrinker->batch ? shrinker->batch
    					  : SHRINK_BATCH;
    	long scanned = 0, next_deferred;
    
    	freeable = shrinker->count_objects(shrinker, shrinkctl);
    	if (freeable == 0)
    		return 0;
    
    	/*
    	 * copy the current shrinker scan count into a local variable
    	 * and zero it so that other concurrent shrinker invocations
    	 * don't also do this scanning work.
    	 */
    	nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
    
    	total_scan = nr;
    	delta = (4 * nr_scanned) / shrinker->seeks;
    	delta *= freeable;
    	do_div(delta, nr_eligible + 1);
    	total_scan += delta;
    	if (total_scan < 0) {
    		pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n",
    		       shrinker->scan_objects, total_scan);
    		total_scan = freeable;
    		next_deferred = nr;
    	} else
    		next_deferred = total_scan;
    
    	/*
    	 * We need to avoid excessive windup on filesystem shrinkers
    	 * due to large numbers of GFP_NOFS allocations causing the
    	 * shrinkers to return -1 all the time. This results in a large
    	 * nr being built up so when a shrink that can do some work
    	 * comes along it empties the entire cache due to nr >>>
    	 * freeable. This is bad for sustaining a working set in
    	 * memory.
    	 *
    	 * Hence only allow the shrinker to scan the entire cache when
    	 * a large delta change is calculated directly.
    	 */
    	if (delta < freeable / 4)
    		total_scan = min(total_scan, freeable / 2);
    
    	/*
    	 * Avoid risking looping forever due to too large nr value:
    	 * never try to free more than twice the estimate number of
    	 * freeable entries.
    	 */
    	if (total_scan > freeable * 2)
    		total_scan = freeable * 2;
    
    	trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
    				   nr_scanned, nr_eligible,
    				   freeable, delta, total_scan);
    
    	/*
    	 * Normally, we should not scan less than batch_size objects in one
    	 * pass to avoid too frequent shrinker calls, but if the slab has less
    	 * than batch_size objects in total and we are really tight on memory,
    	 * we will try to reclaim all available objects, otherwise we can end
    	 * up failing allocations although there are plenty of reclaimable
    	 * objects spread over several slabs with usage less than the
    	 * batch_size.
    	 *
    	 * We detect the "tight on memory" situations by looking at the total
    	 * number of objects we want to scan (total_scan). If it is greater
    	 * than the total number of objects on slab (freeable), we must be
    	 * scanning at high prio and therefore should try to reclaim as much as
    	 * possible.
    	 */
    	while (total_scan >= batch_size ||
    	       total_scan >= freeable) {
    		unsigned long ret;
    		unsigned long nr_to_scan = min(batch_size, total_scan);
    
    		shrinkctl->nr_to_scan = nr_to_scan;
    		ret = shrinker->scan_objects(shrinker, shrinkctl);
    		if (ret == SHRINK_STOP)
    			break;
    		freed += ret;
    
    		count_vm_events(SLABS_SCANNED, nr_to_scan);
    		total_scan -= nr_to_scan;
    		scanned += nr_to_scan;
    
    		cond_resched();
    	}
    
    	if (next_deferred >= scanned)
    		next_deferred -= scanned;
    	else
    		next_deferred = 0;
    	/*
    	 * move the unused scan count back into the shrinker in a
    	 * manner that handles concurrent updates. If we exhausted the
    	 * scan, there is no need to do an update.
    	 */
    	if (next_deferred > 0)
    		new_nr = atomic_long_add_return(next_deferred,
    						&shrinker->nr_deferred[nid]);
    	else
    		new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
    
    	trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
    	return freed;
    }
    
    /**
     * shrink_slab - shrink slab caches
     * @gfp_mask: allocation context
     * @nid: node whose slab caches to target
     * @memcg: memory cgroup whose slab caches to target
     * @nr_scanned: pressure numerator
     * @nr_eligible: pressure denominator
     *
     * Call the shrink functions to age shrinkable caches.
     *
     * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
     * unaware shrinkers will receive a node id of 0 instead.
     *
     * @memcg specifies the memory cgroup to target. If it is not NULL,
     * only shrinkers with SHRINKER_MEMCG_AWARE set will be called to scan
     * objects from the memory cgroup specified. Otherwise, only unaware
     * shrinkers are called.
     *
     * @nr_scanned and @nr_eligible form a ratio that indicate how much of
     * the available objects should be scanned.  Page reclaim for example
     * passes the number of pages scanned and the number of pages on the
     * LRU lists that it considered on @nid, plus a bias in @nr_scanned
     * when it encountered mapped pages.  The ratio is further biased by
     * the ->seeks setting of the shrink function, which indicates the
     * cost to recreate an object relative to that of an LRU page.
     *
     * Returns the number of reclaimed slab objects.
     */
    static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
    				 struct mem_cgroup *memcg,
    				 unsigned long nr_scanned,
    				 unsigned long nr_eligible)
    {
    	struct shrinker *shrinker;
    	unsigned long freed = 0;
    
    	if (memcg && (!memcg_kmem_enabled() || !mem_cgroup_online(memcg)))
    		return 0;
    
    	if (nr_scanned == 0)
    		nr_scanned = SWAP_CLUSTER_MAX;
    
    	if (!down_read_trylock(&shrinker_rwsem)) {
    		/*
    		 * If we would return 0, our callers would understand that we
    		 * have nothing else to shrink and give up trying. By returning
    		 * 1 we keep it going and assume we'll be able to shrink next
    		 * time.
    		 */
    		freed = 1;
    		goto out;
    	}
    
    	list_for_each_entry(shrinker, &shrinker_list, list) {
    		struct shrink_control sc = {
    			.gfp_mask = gfp_mask,
    			.nid = nid,
    			.memcg = memcg,
    		};
    
    		/*
    		 * If kernel memory accounting is disabled, we ignore
    		 * SHRINKER_MEMCG_AWARE flag and call all shrinkers
    		 * passing NULL for memcg.
    		 */
    		if (memcg_kmem_enabled() &&
    		    !!memcg != !!(shrinker->flags & SHRINKER_MEMCG_AWARE))
    			continue;
    
    		if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
    			sc.nid = 0;
    
    		freed += do_shrink_slab(&sc, shrinker, nr_scanned, nr_eligible);
    	}
    
    	up_read(&shrinker_rwsem);
    out:
    	cond_resched();
    	return freed;
    }
    
    void drop_slab_node(int nid)
    {
    	unsigned long freed;
    
    	do {
    		struct mem_cgroup *memcg = NULL;
    
    		freed = 0;
    		do {
    			freed += shrink_slab(GFP_KERNEL, nid, memcg,
    					     1000, 1000);
    		} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
    	} while (freed > 10);
    }
    
    void drop_slab(void)
    {
    	int nid;
    
    	for_each_online_node(nid)
    		drop_slab_node(nid);
    }
    
    static inline int is_page_cache_freeable(struct page *page)
    {
    	/*
    	 * A freeable page cache page is referenced only by the caller
    	 * that isolated the page, the page cache radix tree and
    	 * optional buffer heads at page->private.
    	 */
    	return page_count(page) - page_has_private(page) == 2;
    }
    
    static int may_write_to_inode(struct inode *inode, struct scan_control *sc)
    {
    	if (current->flags & PF_SWAPWRITE)
    		return 1;
    	if (!inode_write_congested(inode))
    		return 1;
    	if (inode_to_bdi(inode) == current->backing_dev_info)
    		return 1;
    	return 0;
    }
    
    /*
     * We detected a synchronous write error writing a page out.  Probably
     * -ENOSPC.  We need to propagate that into the address_space for a subsequent
     * fsync(), msync() or close().
     *
     * The tricky part is that after writepage we cannot touch the mapping: nothing
     * prevents it from being freed up.  But we have a ref on the page and once
     * that page is locked, the mapping is pinned.
     *
     * We're allowed to run sleeping lock_page() here because we know the caller has
     * __GFP_FS.
     */
    static void handle_write_error(struct address_space *mapping,
    				struct page *page, int error)
    {
    	lock_page(page);
    	if (page_mapping(page) == mapping)
    		mapping_set_error(mapping, error);
    	unlock_page(page);
    }
    
    /* possible outcome of pageout() */
    typedef enum {
    	/* failed to write page out, page is locked */
    	PAGE_KEEP,
    	/* move page to the active list, page is locked */
    	PAGE_ACTIVATE,
    	/* page has been sent to the disk successfully, page is unlocked */
    	PAGE_SUCCESS,
    	/* page is clean and locked */
    	PAGE_CLEAN,
    } pageout_t;
    
    /*
     * pageout is called by shrink_page_list() for each dirty page.
     * Calls ->writepage().
     */
    static pageout_t pageout(struct page *page, struct address_space *mapping,
    			 struct scan_control *sc)
    {
    	/*
    	 * If the page is dirty, only perform writeback if that write
    	 * will be non-blocking.  To prevent this allocation from being
    	 * stalled by pagecache activity.  But note that there may be
    	 * stalls if we need to run get_block().  We could test
    	 * PagePrivate for that.
    	 *
    	 * If this process is currently in __generic_file_write_iter() against
    	 * this page's queue, we can perform writeback even if that
    	 * will block.
    	 *
    	 * If the page is swapcache, write it back even if that would
    	 * block, for some throttling. This happens by accident, because
    	 * swap_backing_dev_info is bust: it doesn't reflect the
    	 * congestion state of the swapdevs.  Easy to fix, if needed.
    	 */
    	if (!is_page_cache_freeable(page))
    		return PAGE_KEEP;
    	if (!mapping) {
    		/*
    		 * Some data journaling orphaned pages can have
    		 * page->mapping == NULL while being dirty with clean buffers.
    		 */
    		if (page_has_private(page)) {
    			if (try_to_free_buffers(page)) {
    				ClearPageDirty(page);
    				pr_info("%s: orphaned page\n", __func__);
    				return PAGE_CLEAN;
    			}
    		}
    		return PAGE_KEEP;
    	}
    	if (mapping->a_ops->writepage == NULL)
    		return PAGE_ACTIVATE;
    	if (!may_write_to_inode(mapping->host, sc))
    		return PAGE_KEEP;
    
    	if (clear_page_dirty_for_io(page)) {
    		int res;
    		struct writeback_control wbc = {
    			.sync_mode = WB_SYNC_NONE,
    			.nr_to_write = SWAP_CLUSTER_MAX,
    			.range_start = 0,
    			.range_end = LLONG_MAX,
    			.for_reclaim = 1,
    		};
    
    		SetPageReclaim(page);
    		res = mapping->a_ops->writepage(page, &wbc);
    		if (res < 0)
    			handle_write_error(mapping, page, res);
    		if (res == AOP_WRITEPAGE_ACTIVATE) {
    			ClearPageReclaim(page);
    			return PAGE_ACTIVATE;
    		}
    
    		if (!PageWriteback(page)) {
    			/* synchronous write or broken a_ops? */
    			ClearPageReclaim(page);
    		}
    		trace_mm_vmscan_writepage(page);
    		inc_node_page_state(page, NR_VMSCAN_WRITE);
    		return PAGE_SUCCESS;
    	}
    
    	return PAGE_CLEAN;
    }
    
    /*
     * Same as remove_mapping, but if the page is removed from the mapping, it
     * gets returned with a refcount of 0.
     */
    static int __remove_mapping(struct address_space *mapping, struct page *page,
    			    bool reclaimed)
    {
    	unsigned long flags;
    
    	BUG_ON(!PageLocked(page));
    	BUG_ON(mapping != page_mapping(page));
    
    	spin_lock_irqsave(&mapping->tree_lock, flags);
    	/*
    	 * The non racy check for a busy page.
    	 *
    	 * Must be careful with the order of the tests. When someone has
    	 * a ref to the page, it may be possible that they dirty it then
    	 * drop the reference. So if PageDirty is tested before page_count
    	 * here, then the following race may occur:
    	 *
    	 * get_user_pages(&page);
    	 * [user mapping goes away]
    	 * write_to(page);
    	 *				!PageDirty(page)    [good]
    	 * SetPageDirty(page);
    	 * put_page(page);
    	 *				!page_count(page)   [good, discard it]
    	 *
    	 * [oops, our write_to data is lost]
    	 *
    	 * Reversing the order of the tests ensures such a situation cannot
    	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
    	 * load is not satisfied before that of page->_refcount.
    	 *
    	 * Note that if SetPageDirty is always performed via set_page_dirty,
    	 * and thus under tree_lock, then this ordering is not required.
    	 */
    	if (!page_ref_freeze(page, 2))
    		goto cannot_free;
    	/* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
    	if (unlikely(PageDirty(page))) {
    		page_ref_unfreeze(page, 2);
    		goto cannot_free;
    	}
    
    	if (PageSwapCache(page)) {
    		swp_entry_t swap = { .val = page_private(page) };
    		mem_cgroup_swapout(page, swap);
    		__delete_from_swap_cache(page);
    		spin_unlock_irqrestore(&mapping->tree_lock, flags);
    		swapcache_free(swap);
    	} else {
    		void (*freepage)(struct page *);
    		void *shadow = NULL;
    
    		freepage = mapping->a_ops->freepage;
    		/*
    		 * Remember a shadow entry for reclaimed file cache in
    		 * order to detect refaults, thus thrashing, later on.
    		 *
    		 * But don't store shadows in an address space that is
    		 * already exiting.  This is not just an optizimation,
    		 * inode reclaim needs to empty out the radix tree or
    		 * the nodes are lost.  Don't plant shadows behind its
    		 * back.
    		 *
    		 * We also don't store shadows for DAX mappings because the
    		 * only page cache pages found in these are zero pages
    		 * covering holes, and because we don't want to mix DAX
    		 * exceptional entries and shadow exceptional entries in the
    		 * same page_tree.
    		 */
    		if (reclaimed && page_is_file_cache(page) &&
    		    !mapping_exiting(mapping) && !dax_mapping(mapping))
    			shadow = workingset_eviction(mapping, page);
    		__delete_from_page_cache(page, shadow);
    		spin_unlock_irqrestore(&mapping->tree_lock, flags);
    
    		if (freepage != NULL)
    			freepage(page);
    	}
    
    	return 1;
    
    cannot_free:
    	spin_unlock_irqrestore(&mapping->tree_lock, flags);
    	return 0;
    }
    
    /*
     * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
     * someone else has a ref on the page, abort and return 0.  If it was
     * successfully detached, return 1.  Assumes the caller has a single ref on
     * this page.
     */
    int remove_mapping(struct address_space *mapping, struct page *page)
    {
    	if (__remove_mapping(mapping, page, false)) {
    		/*
    		 * Unfreezing the refcount with 1 rather than 2 effectively
    		 * drops the pagecache ref for us without requiring another
    		 * atomic operation.
    		 */
    		page_ref_unfreeze(page, 1);
    		return 1;
    	}
    	return 0;
    }
    
    /**
     * putback_lru_page - put previously isolated page onto appropriate LRU list
     * @page: page to be put back to appropriate lru list
     *
     * Add previously isolated @page to appropriate LRU list.
     * Page may still be unevictable for other reasons.
     *
     * lru_lock must not be held, interrupts must be enabled.
     */
    void putback_lru_page(struct page *page)
    {
    	bool is_unevictable;
    	int was_unevictable = PageUnevictable(page);
    
    	VM_BUG_ON_PAGE(PageLRU(page), page);
    
    redo:
    	ClearPageUnevictable(page);
    
    	if (page_evictable(page)) {
    		/*
    		 * For evictable pages, we can use the cache.
    		 * In event of a race, worst case is we end up with an
    		 * unevictable page on [in]active list.
    		 * We know how to handle that.
    		 */
    		is_unevictable = false;
    		lru_cache_add(page);
    	} else {
    		/*
    		 * Put unevictable pages directly on zone's unevictable
    		 * list.
    		 */
    		is_unevictable = true;
    		add_page_to_unevictable_list(page);
    		/*
    		 * When racing with an mlock or AS_UNEVICTABLE clearing
    		 * (page is unlocked) make sure that if the other thread
    		 * does not observe our setting of PG_lru and fails
    		 * isolation/check_move_unevictable_pages,
    		 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
    		 * the page back to the evictable list.
    		 *
    		 * The other side is TestClearPageMlocked() or shmem_lock().
    		 */
    		smp_mb();
    	}
    
    	/*
    	 * page's status can change while we move it among lru. If an evictable
    	 * page is on unevictable list, it never be freed. To avoid that,
    	 * check after we added it to the list, again.
    	 */
    	if (is_unevictable && page_evictable(page)) {
    		if (!isolate_lru_page(page)) {
    			put_page(page);
    			goto redo;
    		}
    		/* This means someone else dropped this page from LRU
    		 * So, it will be freed or putback to LRU again. There is
    		 * nothing to do here.
    		 */
    	}
    
    	if (was_unevictable && !is_unevictable)
    		count_vm_event(UNEVICTABLE_PGRESCUED);
    	else if (!was_unevictable && is_unevictable)
    		count_vm_event(UNEVICTABLE_PGCULLED);
    
    	put_page(page);		/* drop ref from isolate */
    }
    
    enum page_references {
    	PAGEREF_RECLAIM,
    	PAGEREF_RECLAIM_CLEAN,
    	PAGEREF_KEEP,
    	PAGEREF_ACTIVATE,
    };
    
    static enum page_references page_check_references(struct page *page,
    						  struct scan_control *sc)
    {
    	int referenced_ptes, referenced_page;
    	unsigned long vm_flags;
    
    	referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
    					  &vm_flags);
    	referenced_page = TestClearPageReferenced(page);
    
    	/*
    	 * Mlock lost the isolation race with us.  Let try_to_unmap()
    	 * move the page to the unevictable list.
    	 */
    	if (vm_flags & VM_LOCKED)
    		return PAGEREF_RECLAIM;
    
    	if (referenced_ptes) {
    		if (PageSwapBacked(page))
    			return PAGEREF_ACTIVATE;
    		/*
    		 * All mapped pages start out with page table
    		 * references from the instantiating fault, so we need
    		 * to look twice if a mapped file page is used more
    		 * than once.
    		 *
    		 * Mark it and spare it for another trip around the
    		 * inactive list.  Another page table reference will
    		 * lead to its activation.
    		 *
    		 * Note: the mark is set for activated pages as well
    		 * so that recently deactivated but used pages are
    		 * quickly recovered.
    		 */
    		SetPageReferenced(page);
    
    		if (referenced_page || referenced_ptes > 1)
    			return PAGEREF_ACTIVATE;
    
    		/*
    		 * Activate file-backed executable pages after first usage.
    		 */
    		if (vm_flags & VM_EXEC)
    			return PAGEREF_ACTIVATE;
    
    		return PAGEREF_KEEP;
    	}
    
    	/* Reclaim if clean, defer dirty pages to writeback */
    	if (referenced_page && !PageSwapBacked(page))
    		return PAGEREF_RECLAIM_CLEAN;
    
    	return PAGEREF_RECLAIM;
    }
    
    /* Check if a page is dirty or under writeback */
    static void page_check_dirty_writeback(struct page *page,
    				       bool *dirty, bool *writeback)
    {
    	struct address_space *mapping;
    
    	/*
    	 * Anonymous pages are not handled by flushers and must be written
    	 * from reclaim context. Do not stall reclaim based on them
    	 */
    	if (!page_is_file_cache(page)) {
    		*dirty = false;
    		*writeback = false;
    		return;
    	}
    
    	/* By default assume that the page flags are accurate */
    	*dirty = PageDirty(page);
    	*writeback = PageWriteback(page);
    
    	/* Verify dirty/writeback state if the filesystem supports it */
    	if (!page_has_private(page))
    		return;
    
    	mapping = page_mapping(page);
    	if (mapping && mapping->a_ops->is_dirty_writeback)
    		mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
    }
    
    /*
     * shrink_page_list() returns the number of reclaimed pages
     */
    static unsigned long shrink_page_list(struct list_head *page_list,
    				      struct pglist_data *pgdat,
    				      struct scan_control *sc,
    				      enum ttu_flags ttu_flags,
    				      unsigned long *ret_nr_dirty,
    				      unsigned long *ret_nr_unqueued_dirty,
    				      unsigned long *ret_nr_congested,
    				      unsigned long *ret_nr_writeback,
    				      unsigned long *ret_nr_immediate,
    				      bool force_reclaim)
    {
    	LIST_HEAD(ret_pages);
    	LIST_HEAD(free_pages);
    	int pgactivate = 0;
    	unsigned long nr_unqueued_dirty = 0;
    	unsigned long nr_dirty = 0;
    	unsigned long nr_congested = 0;
    	unsigned long nr_reclaimed = 0;
    	unsigned long nr_writeback = 0;
    	unsigned long nr_immediate = 0;
    
    	cond_resched();
    
    	while (!list_empty(page_list)) {
    		struct address_space *mapping;
    		struct page *page;
    		int may_enter_fs;
    		enum page_references references = PAGEREF_RECLAIM_CLEAN;
    		bool dirty, writeback;
    		bool lazyfree = false;
    		int ret = SWAP_SUCCESS;
    
    		cond_resched();
    
    		page = lru_to_page(page_list);
    		list_del(&page->lru);
    
    		if (!trylock_page(page))
    			goto keep;
    
    		VM_BUG_ON_PAGE(PageActive(page), page);
    
    		sc->nr_scanned++;
    
    		if (unlikely(!page_evictable(page)))
    			goto cull_mlocked;
    
    		if (!sc->may_unmap && page_mapped(page))
    			goto keep_locked;
    
    		/* Double the slab pressure for mapped and swapcache pages */
    		if (page_mapped(page) || PageSwapCache(page))
    			sc->nr_scanned++;
    
    		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
    			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
    
    		/*
    		 * The number of dirty pages determines if a zone is marked
    		 * reclaim_congested which affects wait_iff_congested. kswapd
    		 * will stall and start writing pages if the tail of the LRU
    		 * is all dirty unqueued pages.
    		 */
    		page_check_dirty_writeback(page, &dirty, &writeback);
    		if (dirty || writeback)
    			nr_dirty++;