Newer
Older
/*
* (C) Copyright 2016 Intel Corporation
* Author: William Widjaja <w.widjaja@intel.com>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; version 2
* of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#include <linux/module.h>
#include <linux/delay.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/partitions.h>
#include <linux/mtd/nand.h>
#include <linux/spi/spi.h>
#include <linux/of.h>
#include "ltq_spinand.h"
#include <linux/platform_device.h>
/*============================================================================*/
/* Macro and Switches */
/*============================================================================*/
/*******************************************************************************
* fix wrong VID_HDR_OFFSET for UBI due to the minimum calculation involve
* sub page RW size , so we must put no sub page option
******************************************************************************/
#define NONANDSUBPAGEREAD
/*******************************************************************************
* No timeout while waiting for SPI NAND chip status to be ready
******************************************************************************/
#define NOTIMEOUT
/*============================================================================*/
/* Global Vars */
/*============================================================================*/
/*============================================================================*/
/* Helper functions */
/*============================================================================*/
static int spinand_set_otp(struct spi_device *spi, u8 *otp);
static int spinand_get_otp(struct spi_device *spi, u8 *otp);
static int spinand_disable_protection(struct spinand_info *info);
static int spinand_lock_block(struct spi_device *spi_nand, u8 lock);
static int wait_till_ready(struct spi_device *spi);
static int spinand_read_status(struct spi_device *spi, uint8_t *status);
static int spinand_enable_ecc(struct spi_device *spi);
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
/*
* mtd_to_privbuf - [INTERN] to convert mtd_info* to spinand_privbuf*
* @mtd: MTD device structure
* Description:
* Helper function to convert mtd_info* to spinand_privbuf*.
*/
static inline struct spinand_privbuf* mtd_to_privbuf(struct mtd_info *mtd)
{
struct nand_chip *chip = mtd_to_nand(mtd);
struct spinand_info *info = (struct spinand_info *)chip->priv;
struct spinand_privbuf *state = (struct spinand_privbuf *)info->priv;
return state;
}
/*
* spi_to_info - [INTERN] to convert spi_device* to spinand_info*
* @mtd: MTD device structure
* Description:
* Helper function to convert spi_device* to spinand_info*.
*/
static inline struct spinand_info* spi_to_info(struct spi_device *spi)
{
struct mtd_info *mtd = (struct mtd_info *)dev_get_drvdata((const struct device *)&(spi->dev));
struct nand_chip *chip = mtd_to_nand(mtd);
struct spinand_info *info = (struct spinand_info *)chip->priv;
return info;
}
/*============================================================================*/
/* nand scan hook functions for SPI NAND */
/*============================================================================*/
#define LP_OPTIONS NAND_SAMSUNG_LP_OPTIONS
/*
* The chip ID list:
* name, device ID, page size, chip size in MiB, eraseblock size, options
*
* If page size and eraseblock size are 0, the sizes are taken from the
* extended chip ID.
*/
struct nand_flash_dev spinand_flash_ids[] = {
{"SPI NAND Gigadevice 1Gbit 3.3v",
{ .id = {0xc8, 0xb1} }, 2048, 128, 0x20000,
LP_OPTIONS | GIGADEVICE_DUMMY_TYPE, 2, 128},
{ .id = {0xc8, 0xb2} }, 2048, 256, 0x20000,
LP_OPTIONS | GIGADEVICE_DUMMY_TYPE, 2, 128},
{ .id = {0xc8, 0xb4} }, 4096, 512, 0x40000,
LP_OPTIONS | GIGADEVICE_DUMMY_TYPE, 2, 256},
{ .id = {0xc8, 0xA4} }, 4096, 512, 0x40000,
LP_OPTIONS | GIGADEVICE_DUMMY_TYPE, 2, 256},
{"SPI NAND Micron 128MiB 3,3V 8-bit",
{ .id = {0x2c, 0x11} }, 2048, 128, 0x20000, LP_OPTIONS, 2, 64},
{"SPI NAND Micron 128MiB 3,3V 8-bit",
{ .id = {0x2c, 0x12} }, 2048, 128, 0x20000, LP_OPTIONS, 2, 64},
{"SPI NAND MT29F2G01AAAED 256MiB",
{ .id = {0x2c, 0x22} }, 2048, 256, 0x20000,
LP_OPTIONS | SPINAND_NEED_PLANE_SELECT, 2, 64},
{ .id = {0x2c, 0x32} }, 2048, 512, 0x20000,
LP_OPTIONS | SPINAND_NEED_PLANE_SELECT, 2, 64},
{"SPI NAND MT29F1G01ABB 1Gbit",
{ .id = {0x2c, 0x15} }, 2048, 128, 0x20000, LP_OPTIONS, 2, 128},
{"SPI NAND TC58CVG0S3 1Gbit",
{ .id = {0x98, 0xc2} }, 2048, 128, 0x20000, LP_OPTIONS, 2, 64},
{"SPI NAND TC58CVG1S3 2Gbit",
{ .id = {0x98, 0xcb} }, 2048, 256, 0x20000, LP_OPTIONS, 2, 64},
{"SPI NAND TC58CVG2S0 4Gbit",
{ .id = {0x98, 0xcd} }, 4096, 512, 0x40000, LP_OPTIONS, 2, 128},
{"SPI NAND MX35LFE4AB 1Gbit",
{ .id = {0xc2, 0x12} }, 2048, 128, 0x20000, LP_OPTIONS, 2, 64},
{"SPI NAND MX35LFE4AB 2Gbit",
{ .id = {0xc2, 0x22} }, 2048, 256, 0x20000,
LP_OPTIONS | SPINAND_NEED_PLANE_SELECT, 2, 64},
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
};
#if 0
/**
* Default OOB area specification layout
*/
static struct nand_ecclayout micron_ecc_layout_64 = {
.eccbytes = 32,
.eccpos = {
8, 9, 10, 11, 12, 13, 14, 15,
24, 25, 26, 27, 28, 29, 30, 21,
40, 41, 42, 43, 44, 45, 46, 47,
56, 57, 58, 59, 60, 61, 62, 63},
.oobavail = 30,
.oobfree = {
{.offset = 2,
.length = 6},
{.offset = 16,
.length = 8},
{.offset = 32,
.length = 8},
{.offset = 48,
.length = 8}, }
};
static struct nand_ecclayout gd5f_ecc_layout_256 = {
.eccbytes = 128,
.eccpos = {
128, 129, 130, 131, 132, 133, 134, 135,
136, 137, 138, 139, 140, 141, 142, 143,
144, 145, 146, 147, 148, 149, 150, 151,
152, 153, 154, 155, 156, 157, 158, 159,
160, 161, 162, 163, 164, 165, 166, 167,
168, 169, 170, 171, 172, 173, 174, 175,
176, 177, 178, 179, 180, 181, 182, 183,
184, 185, 186, 187, 188, 189, 190, 191,
192, 193, 194, 195, 196, 197, 198, 199,
200, 201, 202, 203, 204, 205, 206, 207,
208, 209, 210, 211, 212, 213, 214, 215,
216, 217, 218, 219, 220, 221, 222, 223,
224, 225, 226, 227, 228, 229, 230, 231,
232, 233, 234, 235, 236, 237, 238, 239,
240, 241, 242, 243, 244, 245, 246, 247,
248, 249, 250, 251, 252, 253, 254, 255
},
.oobavail = 127,
.oobfree = { {1, 127} }
};
static struct nand_ecclayout gd5f_ecc_layout_128 = {
.eccbytes = 64,
.eccpos = {
64, 65, 66, 67, 68, 69, 70, 72,
72, 73, 74, 75, 76, 77, 78, 79,
80, 81, 82, 83, 84, 85, 86, 87,
88, 89, 90, 91, 92, 93, 94, 95,
96, 97, 98, 99, 100, 101, 102, 103,
104, 105, 106, 107, 108, 109, 110, 111,
112, 113, 114, 115, 116, 117, 118, 119,
120, 121, 122, 123, 124, 125, 126, 127,
},
.oobavail = 62,
.oobfree = { {2, 63} }
};
#endif
static int spi_nand_manufacture_init(struct mtd_info *mtd, struct nand_chip *chip, struct nand_flash_dev *type)
{
struct spinand_info *info = (struct spinand_info *)chip->priv;
switch (type->mfr_id) {
case NAND_MFR_MICRON:
// if (mtd->oobsize== 64)
// chip->ecc.layout = µn_ecc_layout_64;
chip->ecc.strength = 4; /* 4 bits correction per page region (512 bytes) */
chip->ecc.size = mtd->writesize >> 2;
//chip->ecc.steps = 4; /* 4 regions within page NOTE: removed here since it is calculated in nand_scan_tail */
chip->ecc.bytes = 8; /* pretty sure it is 8 bytes ECC per sub page from oob layout */
/*!<WW: This force BBT out of OOB area , they put it inside a inband */
/* or possibly data area, im just concerned whether the reason it is put */
/* into non oob because Internal ECC occupy the whole oob spare area ? */
/* BUT WE HAVE TO MAKE IT MATCH WITH WHAT IT IS USED BY UBOOT, AND THEY */
/* USE THE USUAL OOB AREA */
/* NOTE:*/
/* For much research, in MICRON Devices it does point it out to the problem BBT Marker is */
/* put on byte 8 of OOB which is where ECC parity bytes is stored for Main 0 */
/* or User data 0 , I THINK IT IS SAFER TO ENABLE THE OPTION NAND_BBT_NO_OOB */
/* and move the BBT Marker out of OOB Area */
chip->bbt_options |= NAND_BBT_NO_OOB;
break;
case NAND_MFR_TOSHIBA:
// if (mtd->oobsize == 64)
// chip->ecc.layout = µn_ecc_layout_64; /* to make mtd happy , i really guess it entirely free*/
/* !<WW: Toshiba Internal ECC 8 Bits per 528(512+16), but this is plus 16 bytes in OOB */
/* It seem like ecc_step_ds expect just the page size step though so i put it */
/* 2048 divided by 4 (one page is divided by 4 and paired each 512 bytes with 16 bytes in OOB)*/
/*
* @steps: number of ECC steps per page
* @size: data bytes per ECC step
* @bytes: ECC bytes per step
* @strength: max number of correctible bits per ECC step
* @total: total number of ECC bytes per page
*/
chip->ecc.strength = 8; /* 8 bits correction per page region (512 bytes) */
chip->ecc.size = 512; /* sub page region (512 bytes) */
//if (mtd->writesize == 8192 )
//chip->ecc.steps = 8; /* 8 regions / sub pages within page NOTE: removed here since it is calculated in nand_scan_tail */
//else
//chip->ecc.steps = 4; /* 4 regions within page NOTE: removed here since it is calculated in nand_scan_tail */
chip->ecc.bytes = 16; /* !<TODO : it think the extra 64 bytes in OOB is the ECC bytes , since we hv 4 subpage so 16 */
break;
case NAND_MFR_MACRONIX:
// if (mtd->oobsize == 64)
// chip->ecc.layout = µn_ecc_layout_64; /* to make mtd happy , i really guess it entirely free*/
/* !<WW: MXIC Internal ECC 4 Bits per 528 Segment (512+16), but this is plus 16 bytes in OOB */
/* It seem like ecc_step_ds expect just the page size step though so i put it */
/* 2048 divided by 4 (one page is divided by 4 and paired each 512 bytes with 16 bytes in OOB)*/
chip->ecc.strength = 4; /* 4 bits correction per page region (512 bytes) */
chip->ecc.size = mtd->writesize >> 2;
//chip->ecc.steps = 4; /* 4 regions within page */
chip->ecc.bytes = 8; /* !<TODO : ??? */
break;
case 0xC8: /* NAND_MFR_GIGADEVICE: */
chip->ecc.strength = 8; /* 8 bits correction per page region (512 bytes) */
chip->ecc.size = mtd->writesize >> 2; /* page region (512 bytes) */
//chip->ecc.steps = 4; /* 4 regions within page, NOTE: removed here since it is calculated in nand_scan_tail */
if (mtd->oobsize == 128) {
// chip->ecc.layout = &gd5f_ecc_layout_128;
chip->ecc.bytes = 16; /* 64 bytes ecc total so 16 bytes per 4 sub pages */
}
else if (mtd->oobsize == 256) {
// chip->ecc.layout = &gd5f_ecc_layout_256;
chip->ecc.bytes = 32; /* !<TODO : sorry i havent seen one chip like this, so had to assume 4 sub page so 128 / 4 = ???? */
}
break;
default:
break;
}
/* set QE bit for quad */
if (info->spi->mode & (SPI_RX_QUAD | SPI_TX_QUAD))
spinand_disable_protection(info);
return 0;
}
/*
* Check if the NAND chip is SPI NAND flash, returns 1 if it is, 0 otherwise.
*/
struct nand_flash_dev * spinand_flash_detect(struct mtd_info *mtd, struct nand_chip *chip)
{
int retval=0;
u8 id_data[8];
int i;
struct nand_flash_dev *type = NULL;
chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
id_data[i] = chip->read_byte(mtd);
if (!type)
type = spinand_flash_ids;
for (; type->name != NULL; type++)
if ((id_data[0] == type->mfr_id) && (id_data[1] == type->dev_id))
if (!type->name) {
pr_err("Unable to find flash id 0x%x 0x%x\n", id_data[0],
id_data[1]);
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
/* found */
mtd->writesize = type->pagesize;
mtd->erasesize = type->erasesize;
mtd->oobsize = type->oobsize;
chip->chipsize = (type->chipsize) << 20;
/* do we need it ? */
chip->options |= type->options;
/* manufacturer init */
spi_nand_manufacture_init(mtd, chip, type);
// retval = 1;
probe_done:
return type;
};
EXPORT_SYMBOL(spinand_flash_detect);
/*============================================================================*/
/* internal functions */
/*============================================================================*/
/*
* spinand_cmd - [INTERN] to process a command to send to the SPI Nand
* @spi: spi device structure
* @cmd: command structure
* Description:
* Set up the command buffer to send to the SPI controller.
* The command buffer has to initialized to 0.
*/
static int spinand_cmd(struct spi_device *spi, struct spinand_cmd *cmd)
{
struct spi_message message;
struct spi_transfer x[4];
u8 dummy = 0xff;
spi_message_init(&message);
memset(x, 0, sizeof(x));
x[0].len = 1;
x[0].tx_buf = &cmd->cmd;
spi_message_add_tail(&x[0], &message);
if (cmd->n_addr) {
x[1].len = cmd->n_addr;
x[1].tx_buf = cmd->addr;
spi_message_add_tail(&x[1], &message);
}
if (cmd->n_dummy) {
x[2].len = cmd->n_dummy;
x[2].tx_buf = &dummy;
spi_message_add_tail(&x[2], &message);
}
if (cmd->n_tx) {
x[3].len = cmd->n_tx;
x[3].tx_buf = cmd->tx_buf;
spi_message_add_tail(&x[3], &message);
}
if (cmd->n_rx) {
x[3].len = cmd->n_rx;
x[3].rx_buf = cmd->rx_buf;
spi_message_add_tail(&x[3], &message);
}
return spi_sync(spi, &message);
}
static int spinand_read_protection(struct spi_device *spi, uint8_t *status)
{
struct spinand_cmd cmd = {0};
int ret;
cmd.cmd = CMD_READ_REG;
cmd.n_addr = 1;
cmd.addr[0] = REG_BLOCK_LOCK;
cmd.n_rx = 1;
cmd.rx_buf = status;
ret = spinand_cmd(spi, &cmd);
if (ret < 0)
dev_err(&spi->dev, "err: %d read status register\n", ret);
return ret;
}
static int spinand_disable_protection(struct spinand_info *info)
{
int ret;
u8 qe = 0, protection, status;
pr_debug("[%s]spi mode=0x%x\n", __func__, info->spi->mode);
spinand_read_protection(info->spi, &protection);
while ((protection & BL_ALL_LOCKED) != 0) {
/* safety try to unlock after reset */
ret = spinand_lock_block(info->spi, BL_ALL_UNLOCKED);
/* elapse 1ms before issuing any other command */
udelay(1000);
if (wait_till_ready(info->spi))
dev_err(&info->spi->dev, "WAIT timedout!\n");
spinand_read_protection(info->spi, &protection);
pr_debug("[%s] protection=0x%x\n", __func__, protection);
}
ret = spinand_get_otp(info->spi, &qe);
pr_debug("[%s]Feature read reg=0x%x\n", __func__, qe);
/* set qe bit */
if (info->spi->mode & (SPI_TX_QUAD | SPI_RX_QUAD))
qe |= OTP_QE_BIT;
else
qe &= ~OTP_QE_BIT;
ret = spinand_set_otp(info->spi, &qe);
pr_debug("[%s]Feature write qe=0x%x\n", __func__, qe);
wait_till_ready(info->spi);
while (!(qe & OTP_ECC_MASK)) {
ret = spinand_enable_ecc(info->spi);
pr_debug("[%s]Feature write reg=0x%x\n", __func__, qe);
/* elapse 1ms before issuing any other command */
udelay(1000);
if (wait_till_ready(info->spi))
dev_err(&info->spi->dev, "WAIT timedout!\n");
ret = spinand_get_otp(info->spi, &qe);
pr_debug("[%s]Feature read reg=0x%x\n", __func__, qe);
/* elapse 1ms before issuing any other command */
udelay(1000);
}
while (qe & OTP_ENABLE) {
qe &= ~OTP_ENABLE;
ret = spinand_set_otp(info->spi, &qe);
pr_debug("[%s]Feature write reg=0x%x\n", __func__, qe);
ret = spinand_get_otp(info->spi, &qe);
pr_debug("[%s]Feature read reg=0x%x\n", __func__, qe);
}
ret = spinand_read_protection(info->spi, &protection);
ret = spinand_get_otp(info->spi, &qe);
ret = spinand_read_status(info->spi, &status);
pr_debug("[%s]0xA0reg=0x%x, 0xB0reg=0x%x, 0xC0Reg=0x%x\n", __func__, protection, qe, status);
return ret;
}
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
/*
* spinand_read_id - [INTERN] Read SPI Nand ID
* @spi: spi device structure
* @id : 2 bytes result buffer
* Description:
* Read ID: Generic read two ID bytes from the SPI Nand device, regardless
* of dummy bytes specific to manufacturer command
*/
static int spinand_read_id(struct spi_device *spi, u8 *id)
{
int retval;
u8 nand_id[3];
struct spinand_cmd cmd = {0};
cmd.cmd = CMD_READ_ID;
cmd.n_rx = 3;
cmd.rx_buf = &nand_id[0];
retval = spinand_cmd(spi, &cmd);
if (retval < 0) {
dev_err(&spi->dev, "error %d reading id\n", retval);
return retval;
}
id[0] = nand_id[0];
id[1] = nand_id[1];
if (nand_id[0] == 0 || nand_id[0] == 0xFF) {
id[0] = nand_id[1];
id[1] = nand_id[2];
}
return retval;
}
/*
* spinand_read_status- [INTERN] send command 0xf to the SPI Nand status register
* @spi: spi device structure
* @status : content of status register result (1 byte)
*
* Description:
* After read, write, or erase, the Nand device is expected to set the
* busy status.
* This function is to allow reading the status of the command: read,
* write, and erase.
* Once the status turns to be ready, the other status bits also are
* valid status bits.
*/
static int spinand_read_status(struct spi_device *spi, uint8_t *status)
{
struct spinand_cmd cmd = {0};
int ret;
cmd.cmd = CMD_READ_REG;
cmd.n_addr = 1;
cmd.addr[0] = REG_STATUS;
cmd.n_rx = 1;
cmd.rx_buf = status;
ret = spinand_cmd(spi, &cmd);
if (ret < 0)
dev_err(&spi->dev, "err: %d read status register\n", ret);
return ret;
}
/**
* wait_till_ready - [INTERN] wait until SPI NAND chip report ready
* @spi: the spi device.
*
* Description:
* Seem like this is used internally and seperate from spinand_wait
* which is NAND Interface wait, I don't like this. anyway for list this is
* used in:
* - spinand_read_page : to wait until spinand_read_page_to_cache ready
* - spinand_program_page : to wait until spinand_write_enable ready
* - spinand_erase_block : to wait until spinand_write_enable ready
* - spinand_reset : at the end to check if device is ready after reset + 1ms
* - spinand_cmdfunc : at NAND_CMD_RESET before calling spinand_reset
*
* it is a concern since it is fixed value 40 ms for all diff kind situation ?
*
*/
#define MAX_WAIT_MS 40
static int wait_till_ready(struct spi_device *spi)
{
unsigned long deadline;
int retval;
u8 stat = 0;
#ifdef NOTIMEOUT
do {
retval = spinand_read_status(spi, &stat);
if (retval < 0)
return -1;
else if (!(stat & 0x1))
break;
cond_resched();
} while (1);
#else /* NOTIMEOUT */
deadline = jiffies + msecs_to_jiffies(MAX_WAIT_MS);
do {
retval = spinand_read_status(spi, &stat);
if (retval < 0)
return -1;
else if (!(stat & 0x1))
break;
cond_resched();
} while (!time_after_eq(jiffies, deadline));
#endif /* NOTIMEOUT */
if ((stat & 0x1) == 0)
return 0;
return -1;
}
/**
* spinand_get_otp - [INTERN] send command 0xf to read the SPI Nand OTP register
* @spi: the spi device.
* @otp: reg otp value 8bits
*
* Description:
* There is one bit( bit 0x10 ) to set or to clear the internal ECC.
* Enable chip internal ECC, set the bit to 1
* Disable chip internal ECC, clear the bit to 0
*/
static int spinand_get_otp(struct spi_device *spi, u8 *otp)
{
struct spinand_cmd cmd = {0};
int retval;
cmd.cmd = CMD_READ_REG;
cmd.n_addr = 1;
cmd.addr[0] = REG_OTP;
cmd.n_rx = 1;
cmd.rx_buf = otp;
retval = spinand_cmd(spi, &cmd);
if (retval < 0)
dev_err(&spi->dev, "error %d get otp\n", retval);
return retval;
}
/**
* spinand_set_otp - [INTERN] send command 0x1f to write the SPI Nand OTP register
* @spi: the spi device.
* @otp: reg otp value 8bits
*
* Description:
* There is one bit( bit 0x10 ) to set or to clear the internal ECC.
* Enable chip internal ECC, set the bit to 1
* Disable chip internal ECC, clear the bit to 0
*/
static int spinand_set_otp(struct spi_device *spi, u8 *otp)
{
int retval;
struct spinand_cmd cmd = {0};
cmd.cmd = CMD_WRITE_REG,
cmd.n_addr = 1,
cmd.addr[0] = REG_OTP,
cmd.n_tx = 1,
cmd.tx_buf = otp,
retval = spinand_cmd(spi, &cmd);
if (retval < 0)
dev_err(&spi->dev, "error %d set otp\n", retval);
return retval;
}
/**
* spinand_enable_ecc - [INTERN] send command 0x1f to write the SPI Nand OTP register
* @spi: the spi device.
*
* Description:
* There is one bit( bit 0x10 ) to set or to clear the internal ECC.
* Enable chip internal ECC, set the bit to 1
* Disable chip internal ECC, clear the bit to 0
*/
static int spinand_enable_ecc(struct spi_device *spi)
{
int retval;
u8 otp = 0;
retval = spinand_get_otp(spi, &otp);
if (retval < 0)
return retval;
if ((otp & OTP_ECC_MASK) == OTP_ECC_MASK)
return 0;
otp |= OTP_ECC_MASK;
retval = spinand_set_otp(spi, &otp);
if (retval < 0)
return retval;
return spinand_get_otp(spi, &otp);
}
/**
* spinand_disable_ecc - [INTERN] send command 0x1f to write the SPI Nand OTP register
* @spi: the spi device.
*-
* Description:
* There is one bit( bit 0x10 ) to set or to clear the internal ECC.
* Enable chip internal ECC, set the bit to 1
* Disable chip internal ECC, clear the bit to 0
*/
static int spinand_disable_ecc(struct spi_device *spi)
{
int retval;
u8 otp = 0;
retval = spinand_get_otp(spi, &otp);
if (retval < 0)
return retval;
if ((otp & OTP_ECC_MASK) == OTP_ECC_MASK) {
otp &= ~OTP_ECC_MASK;
retval = spinand_set_otp(spi, &otp);
if (retval < 0)
return retval;
return spinand_get_otp(spi, &otp);
}
return 0;
}
/**
* spinand_write_enable - [INTERN] send command 0x06 to enable write or erase the
* Nand cells
* @spi: the spi device.
*
* Description:
* Before write and erase the Nand cells, the write enable has to be set.
* After the write or erase, the write enable bit is automatically
* cleared (status register bit 2)
* Set the bit 2 of the status register has the same effect
*/
static int spinand_write_enable(struct spi_device *spi)
{
struct spinand_cmd cmd = {0};
cmd.cmd = CMD_WR_ENABLE;
return spinand_cmd(spi, &cmd);
}
/*
* spinand_read_page_to_cache - [INTERN] to read a page with:
* @spi: the spi device.
* @page_id: the physical page number
*
* Description:
* The read commands to the Nand: 0x13 to read to SPI NAND chip internal cache
* Remember to Poll to read status to wait for tRD time.
*/
static int spinand_read_page_to_cache(struct spi_device *spi, int page_id)
{
struct mtd_info *mtd = (struct mtd_info *)dev_get_drvdata((const struct device *)&(spi->dev));
struct nand_chip *chip = mtd_to_nand(mtd);
struct spinand_info *info = (struct spinand_info *)chip->priv;
struct spinand_cmd cmd = {0};
u16 row;
row = page_id;
cmd.cmd = CMD_READ;
cmd.n_addr = 3;
if (info->spi->mode & SPI_RX_QUAD) {
cmd.addr[2] = (u8) ((page_id & 0xff0000) >> 16);
cmd.addr[1] = (u8)((page_id & 0xff00) >> 8);
cmd.addr[0] = (u8)(page_id & 0x00ff);
} else {
cmd.addr[0] = (u8) ((page_id & 0xff0000) >> 16);
cmd.addr[1] = (u8)((page_id & 0xff00) >> 8);
cmd.addr[2] = (u8)(page_id & 0x00ff);
}
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
return spinand_cmd(spi, &cmd);
}
/*
* spinand_read_from_cache - [INTERN] send command 0x03 to read out the data from the
* cache register(2112 bytes max)
* @spi: the spi device.
* @page_id: the physical page number
* @byte_id: column or offset within page
* @len: number of bytes to read
* @rbuf: read buffer to hold @len bytes
*
* Description:
* The read can specify 1 to 2112 bytes of data read at the corresponding
* locations.
* No tRd delay.
*/
static int spinand_read_from_cache(struct spi_device *spi, int page_id,
u16 byte_id, u16 len, u8 *rbuf)
{
struct mtd_info *mtd = (struct mtd_info *)dev_get_drvdata((const struct device *)&(spi->dev));
struct nand_chip *chip = mtd_to_nand(mtd);
struct spinand_info *info = (struct spinand_info *)chip->priv;
struct spinand_cmd cmd = {0};
u16 column;
if (chip->options & SPINAND_NEED_PLANE_SELECT) {
plane_select = (page_id >> 6) & 0x1;
column |= plane_select << 12;
}
if (info->spi->mode & SPI_RX_QUAD)
else if (info->spi->mode & SPI_RX_DUAL)
cmd.cmd = CMD_READ_CACHE_X2;
else
cmd.cmd = CMD_READ_RDM;
if (chip->options & GIGADEVICE_DUMMY_TYPE) {
if (info->spi->mode & SPI_RX_QUAD) {
cmd.addr[2] = 0;
cmd.addr[1] = (u8)(column >> 8);
cmd.addr[0] = (u8)column;
} else {
cmd.addr[0] = 0;
cmd.addr[1] = (u8)(column >> 8);
cmd.addr[2] = (u8)column;
}
} else if (info->spi->mode & SPI_RX_QUAD) {
cmd.addr[0] = 0;
cmd.addr[1] = (u8)(column >> 8);
cmd.addr[2] = (u8)column;
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
} else {
cmd.addr[0] = (u8)((column & 0xff00) >> 8);
cmd.addr[1] = (u8)(column & 0x00ff);
cmd.addr[2] = (u8)(0xff);
}
cmd.n_dummy = 0;
cmd.n_rx = len;
cmd.rx_buf = rbuf;
return spinand_cmd(spi, &cmd);
}
/*
* spinand_ecc_status - [INTERN] to check and report to mtd internal ecc status
* after a page read:
* @spi: the spi device.
* @status: REG STATUS value read from SPI NAND chip
* @ecc_error: 0 for OK, 1 for error ?
*
* Description:
* to check and report to mtd internal ecc status after a page read
*/
static void spinand_ecc_status(struct spi_device *spi,
unsigned int status,
unsigned int *ecc_error)
{
struct mtd_info *mtd = (struct mtd_info *)dev_get_drvdata((const struct device *)&(spi->dev));
struct nand_chip *chip = mtd_to_nand(mtd);
struct spinand_info *info = (struct spinand_info *)chip->priv;
unsigned int ecc_status;
if (info->spi->mode & SPI_RX_QUAD) {
ecc_status = (status >> SPI_NAND_MT29F_ECC_SHIFT) &
SPI_NAND_MT29F_ECC_MASK;
*ecc_error = (ecc_status == SPI_NAND_MT29F_ECC_UNCORR);
} else if (chip->options & GIGADEVICE_DUMMY_TYPE) {
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
ecc_status = (status >> SPI_NAND_GD5F_ECC_SHIFT) &
SPI_NAND_GD5F_ECC_MASK;
*ecc_error = (ecc_status == SPI_NAND_GD5F_ECC_UNCORR);
} else {
ecc_status = (status >> SPI_NAND_MT29F_ECC_SHIFT) &
SPI_NAND_MT29F_ECC_MASK;
*ecc_error = (ecc_status == SPI_NAND_MT29F_ECC_UNCORR);
}
/*
* !<TODO: fix corrected bits, we can put this above and differentiate.
* gigadevice can straight away get num of error bit from status reg
* other manufacturer has a way to probe more detail e.g.:
* - macronix with cmd 7Ch (For 1Gb only)
* - Toshiba SPI NAND get feature from bit flip count */
if (*ecc_error == 0) /* if not unrecoverable error */
mtd->ecc_stats.corrected += ecc_status;
else /* exceed correctable bits or error*/
mtd->ecc_stats.failed++;
return;
}
/*
* spinand_read_page - [INTERN] to read a page with:
* @spi: the spi device.
* @page_id: the physical page number
* @offset: the location from 0 to 2111
* @len: number of bytes to read
* @rbuf: read buffer to hold @len bytes
*
* Description:
* The read includes two commands to the Nand: 0x13 and 0x03 commands
* Poll to read status to wait for tRD time.
*/
static int spinand_read_page(struct spi_device *spi, int page_id,
u16 offset, u16 len, u8 *rbuf)
{
int ret, ecc_error;
u8 status = 0;
ret = spinand_read_page_to_cache(spi, page_id);
if (ret < 0)
return ret;
if (wait_till_ready(spi))
dev_err(&spi->dev, "WAIT timedout!!!\n");
while (1) {
ret = spinand_read_status(spi, &status);
if (ret < 0) {
dev_err(&spi->dev,
"err %d read status register\n", ret);
return ret;
}
if ((status & STATUS_OIP_MASK) == STATUS_READY) {
spinand_ecc_status(spi, status, &ecc_error);
if (ecc_error) {
dev_err(&spi->dev, "ecc error, page=%d\n",
page_id);
/* return on error ? or keep read ? it is a
* choice based on driver i saw*/
// return 0;
}
break;
}
}
ret = spinand_read_from_cache(spi, page_id, offset, len, rbuf);
if (ret < 0) {
dev_err(&spi->dev, "read from cache failed!!\n");
return ret;
}
return ret;
}
/*
* spinand_program_data_to_cache - [INTERN] to write a page to cache with:
* @spi: the spi device.
* @byte_id: the location to write to the cache
* @len: number of bytes to write
* @rbuf: read buffer to hold @len bytes
*
* Description:
* The write command used here is 0x84--indicating that the cache is
* not cleared first.
* Since it is writing the data to cache, there is no tPROG time.
*/
static int spinand_program_data_to_cache(struct spi_device *spi,
int page_id, u16 byte_id, u16 len, u8 *wbuf)
{
struct mtd_info *mtd = (struct mtd_info *)dev_get_drvdata((const struct device *)&(spi->dev));
struct nand_chip *chip = mtd_to_nand(mtd);
struct spinand_info *info = (struct spinand_info *)chip->priv;
if (chip->options & SPINAND_NEED_PLANE_SELECT) {
plane_select = (page_id >> 6) & 0x1;
column |= plane_select << 12;
}
if (info->spi->mode & SPI_TX_QUAD)
cmd.cmd = CMD_PROG_PAGE_CLRCACHE_X4;
else
cmd.cmd = CMD_PROG_PAGE_CLRCACHE;
cmd.n_addr = 2;
cmd.addr[0] = (u8)((column & 0xff00) >> 8);
cmd.addr[1] = (u8)(column & 0x00ff);
cmd.n_tx = len;
cmd.tx_buf = wbuf;
return spinand_cmd(spi, &cmd);
}
/**
* spinand_program_execute - [INTERN] to write a page from cache to the Nand array with
* @spi: the spi device.
* @page_id: the physical page location to write the page.
*
* Description:
* The write command used here is 0x10--indicating the cache is writing to
* the Nand array.
* Need to wait for tPROG time to finish the transaction.
*/
static int spinand_program_execute(struct spi_device *spi, int page_id)
{
struct mtd_info *mtd = (struct mtd_info *)dev_get_drvdata((const struct device *)&(spi->dev));
struct nand_chip *chip = mtd_to_nand(mtd);
struct spinand_info *info = (struct spinand_info *)chip->priv;
struct spinand_cmd cmd = {0};
/* NOTE: this is changed so you can write above 128 MB */
cmd.cmd = CMD_PROG_PAGE_EXC;
cmd.n_addr = 3;
if (info->spi->mode & SPI_TX_QUAD) {
cmd.addr[2] = (u8)((page_id & 0xff0000) >> 16);
cmd.addr[1] = (u8)((page_id & 0xff00) >> 8);
cmd.addr[0] = (u8)(page_id & 0x00ff);
} else {
cmd.addr[0] = (u8)((page_id & 0xff0000) >> 16);
cmd.addr[1] = (u8)((page_id & 0xff00) >> 8);
cmd.addr[2] = (u8)(page_id & 0x00ff);
}
return spinand_cmd(spi, &cmd);
}
/**
* spinand_program_page -[INTERN] to write a page with: