Skip to content
Snippets Groups Projects
aio.c 44 KiB
Newer Older
  • Learn to ignore specific revisions
  • Kenneth Johansson's avatar
    Kenneth Johansson committed
    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000
    /*
     *	An async IO implementation for Linux
     *	Written by Benjamin LaHaise <bcrl@kvack.org>
     *
     *	Implements an efficient asynchronous io interface.
     *
     *	Copyright 2000, 2001, 2002 Red Hat, Inc.  All Rights Reserved.
     *
     *	See ../COPYING for licensing terms.
     */
    #define pr_fmt(fmt) "%s: " fmt, __func__
    
    #include <linux/kernel.h>
    #include <linux/init.h>
    #include <linux/errno.h>
    #include <linux/time.h>
    #include <linux/aio_abi.h>
    #include <linux/export.h>
    #include <linux/syscalls.h>
    #include <linux/backing-dev.h>
    #include <linux/uio.h>
    
    #include <linux/sched.h>
    #include <linux/fs.h>
    #include <linux/file.h>
    #include <linux/mm.h>
    #include <linux/mman.h>
    #include <linux/mmu_context.h>
    #include <linux/percpu.h>
    #include <linux/slab.h>
    #include <linux/timer.h>
    #include <linux/aio.h>
    #include <linux/highmem.h>
    #include <linux/workqueue.h>
    #include <linux/security.h>
    #include <linux/eventfd.h>
    #include <linux/blkdev.h>
    #include <linux/compat.h>
    #include <linux/migrate.h>
    #include <linux/ramfs.h>
    #include <linux/percpu-refcount.h>
    #include <linux/mount.h>
    
    #include <asm/kmap_types.h>
    #include <asm/uaccess.h>
    
    #include "internal.h"
    
    #define AIO_RING_MAGIC			0xa10a10a1
    #define AIO_RING_COMPAT_FEATURES	1
    #define AIO_RING_INCOMPAT_FEATURES	0
    struct aio_ring {
    	unsigned	id;	/* kernel internal index number */
    	unsigned	nr;	/* number of io_events */
    	unsigned	head;	/* Written to by userland or under ring_lock
    				 * mutex by aio_read_events_ring(). */
    	unsigned	tail;
    
    	unsigned	magic;
    	unsigned	compat_features;
    	unsigned	incompat_features;
    	unsigned	header_length;	/* size of aio_ring */
    
    
    	struct io_event		io_events[0];
    }; /* 128 bytes + ring size */
    
    #define AIO_RING_PAGES	8
    
    struct kioctx_table {
    	struct rcu_head	rcu;
    	unsigned	nr;
    	struct kioctx	*table[];
    };
    
    struct kioctx_cpu {
    	unsigned		reqs_available;
    };
    
    struct ctx_rq_wait {
    	struct completion comp;
    	atomic_t count;
    };
    
    struct kioctx {
    	struct percpu_ref	users;
    	atomic_t		dead;
    
    	struct percpu_ref	reqs;
    
    	unsigned long		user_id;
    
    	struct __percpu kioctx_cpu *cpu;
    
    	/*
    	 * For percpu reqs_available, number of slots we move to/from global
    	 * counter at a time:
    	 */
    	unsigned		req_batch;
    	/*
    	 * This is what userspace passed to io_setup(), it's not used for
    	 * anything but counting against the global max_reqs quota.
    	 *
    	 * The real limit is nr_events - 1, which will be larger (see
    	 * aio_setup_ring())
    	 */
    	unsigned		max_reqs;
    
    	/* Size of ringbuffer, in units of struct io_event */
    	unsigned		nr_events;
    
    	unsigned long		mmap_base;
    	unsigned long		mmap_size;
    
    	struct page		**ring_pages;
    	long			nr_pages;
    
    	struct work_struct	free_work;
    
    	/*
    	 * signals when all in-flight requests are done
    	 */
    	struct ctx_rq_wait	*rq_wait;
    
    	struct {
    		/*
    		 * This counts the number of available slots in the ringbuffer,
    		 * so we avoid overflowing it: it's decremented (if positive)
    		 * when allocating a kiocb and incremented when the resulting
    		 * io_event is pulled off the ringbuffer.
    		 *
    		 * We batch accesses to it with a percpu version.
    		 */
    		atomic_t	reqs_available;
    	} ____cacheline_aligned_in_smp;
    
    	struct {
    		spinlock_t	ctx_lock;
    		struct list_head active_reqs;	/* used for cancellation */
    	} ____cacheline_aligned_in_smp;
    
    	struct {
    		struct mutex	ring_lock;
    		wait_queue_head_t wait;
    	} ____cacheline_aligned_in_smp;
    
    	struct {
    		unsigned	tail;
    		unsigned	completed_events;
    		spinlock_t	completion_lock;
    	} ____cacheline_aligned_in_smp;
    
    	struct page		*internal_pages[AIO_RING_PAGES];
    	struct file		*aio_ring_file;
    
    	unsigned		id;
    };
    
    /*
     * We use ki_cancel == KIOCB_CANCELLED to indicate that a kiocb has been either
     * cancelled or completed (this makes a certain amount of sense because
     * successful cancellation - io_cancel() - does deliver the completion to
     * userspace).
     *
     * And since most things don't implement kiocb cancellation and we'd really like
     * kiocb completion to be lockless when possible, we use ki_cancel to
     * synchronize cancellation and completion - we only set it to KIOCB_CANCELLED
     * with xchg() or cmpxchg(), see batch_complete_aio() and kiocb_cancel().
     */
    #define KIOCB_CANCELLED		((void *) (~0ULL))
    
    struct aio_kiocb {
    	struct kiocb		common;
    
    	struct kioctx		*ki_ctx;
    	kiocb_cancel_fn		*ki_cancel;
    
    	struct iocb __user	*ki_user_iocb;	/* user's aiocb */
    	__u64			ki_user_data;	/* user's data for completion */
    
    	struct list_head	ki_list;	/* the aio core uses this
    						 * for cancellation */
    
    	/*
    	 * If the aio_resfd field of the userspace iocb is not zero,
    	 * this is the underlying eventfd context to deliver events to.
    	 */
    	struct eventfd_ctx	*ki_eventfd;
    };
    
    /*------ sysctl variables----*/
    static DEFINE_SPINLOCK(aio_nr_lock);
    unsigned long aio_nr;		/* current system wide number of aio requests */
    unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */
    /*----end sysctl variables---*/
    
    static struct kmem_cache	*kiocb_cachep;
    static struct kmem_cache	*kioctx_cachep;
    
    static struct vfsmount *aio_mnt;
    
    static const struct file_operations aio_ring_fops;
    static const struct address_space_operations aio_ctx_aops;
    
    static struct file *aio_private_file(struct kioctx *ctx, loff_t nr_pages)
    {
    	struct qstr this = QSTR_INIT("[aio]", 5);
    	struct file *file;
    	struct path path;
    	struct inode *inode = alloc_anon_inode(aio_mnt->mnt_sb);
    	if (IS_ERR(inode))
    		return ERR_CAST(inode);
    
    	inode->i_mapping->a_ops = &aio_ctx_aops;
    	inode->i_mapping->private_data = ctx;
    	inode->i_size = PAGE_SIZE * nr_pages;
    
    	path.dentry = d_alloc_pseudo(aio_mnt->mnt_sb, &this);
    	if (!path.dentry) {
    		iput(inode);
    		return ERR_PTR(-ENOMEM);
    	}
    	path.mnt = mntget(aio_mnt);
    
    	d_instantiate(path.dentry, inode);
    	file = alloc_file(&path, FMODE_READ | FMODE_WRITE, &aio_ring_fops);
    	if (IS_ERR(file)) {
    		path_put(&path);
    		return file;
    	}
    
    	file->f_flags = O_RDWR;
    	return file;
    }
    
    static struct dentry *aio_mount(struct file_system_type *fs_type,
    				int flags, const char *dev_name, void *data)
    {
    	static const struct dentry_operations ops = {
    		.d_dname	= simple_dname,
    	};
    	struct dentry *root = mount_pseudo(fs_type, "aio:", NULL, &ops,
    					   AIO_RING_MAGIC);
    
    	if (!IS_ERR(root))
    		root->d_sb->s_iflags |= SB_I_NOEXEC;
    	return root;
    }
    
    /* aio_setup
     *	Creates the slab caches used by the aio routines, panic on
     *	failure as this is done early during the boot sequence.
     */
    static int __init aio_setup(void)
    {
    	static struct file_system_type aio_fs = {
    		.name		= "aio",
    		.mount		= aio_mount,
    		.kill_sb	= kill_anon_super,
    	};
    	aio_mnt = kern_mount(&aio_fs);
    	if (IS_ERR(aio_mnt))
    		panic("Failed to create aio fs mount.");
    
    	kiocb_cachep = KMEM_CACHE(aio_kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC);
    	kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC);
    
    	pr_debug("sizeof(struct page) = %zu\n", sizeof(struct page));
    
    	return 0;
    }
    __initcall(aio_setup);
    
    static void put_aio_ring_file(struct kioctx *ctx)
    {
    	struct file *aio_ring_file = ctx->aio_ring_file;
    	struct address_space *i_mapping;
    
    	if (aio_ring_file) {
    		truncate_setsize(aio_ring_file->f_inode, 0);
    
    		/* Prevent further access to the kioctx from migratepages */
    		i_mapping = aio_ring_file->f_inode->i_mapping;
    		spin_lock(&i_mapping->private_lock);
    		i_mapping->private_data = NULL;
    		ctx->aio_ring_file = NULL;
    		spin_unlock(&i_mapping->private_lock);
    
    		fput(aio_ring_file);
    	}
    }
    
    static void aio_free_ring(struct kioctx *ctx)
    {
    	int i;
    
    	/* Disconnect the kiotx from the ring file.  This prevents future
    	 * accesses to the kioctx from page migration.
    	 */
    	put_aio_ring_file(ctx);
    
    	for (i = 0; i < ctx->nr_pages; i++) {
    		struct page *page;
    		pr_debug("pid(%d) [%d] page->count=%d\n", current->pid, i,
    				page_count(ctx->ring_pages[i]));
    		page = ctx->ring_pages[i];
    		if (!page)
    			continue;
    		ctx->ring_pages[i] = NULL;
    		put_page(page);
    	}
    
    	if (ctx->ring_pages && ctx->ring_pages != ctx->internal_pages) {
    		kfree(ctx->ring_pages);
    		ctx->ring_pages = NULL;
    	}
    }
    
    static int aio_ring_mremap(struct vm_area_struct *vma)
    {
    	struct file *file = vma->vm_file;
    	struct mm_struct *mm = vma->vm_mm;
    	struct kioctx_table *table;
    	int i, res = -EINVAL;
    
    	spin_lock(&mm->ioctx_lock);
    	rcu_read_lock();
    	table = rcu_dereference(mm->ioctx_table);
    	for (i = 0; i < table->nr; i++) {
    		struct kioctx *ctx;
    
    		ctx = table->table[i];
    		if (ctx && ctx->aio_ring_file == file) {
    			if (!atomic_read(&ctx->dead)) {
    				ctx->user_id = ctx->mmap_base = vma->vm_start;
    				res = 0;
    			}
    			break;
    		}
    	}
    
    	rcu_read_unlock();
    	spin_unlock(&mm->ioctx_lock);
    	return res;
    }
    
    static const struct vm_operations_struct aio_ring_vm_ops = {
    	.mremap		= aio_ring_mremap,
    #if IS_ENABLED(CONFIG_MMU)
    	.fault		= filemap_fault,
    	.map_pages	= filemap_map_pages,
    	.page_mkwrite	= filemap_page_mkwrite,
    #endif
    };
    
    static int aio_ring_mmap(struct file *file, struct vm_area_struct *vma)
    {
    	vma->vm_flags |= VM_DONTEXPAND;
    	vma->vm_ops = &aio_ring_vm_ops;
    	return 0;
    }
    
    static const struct file_operations aio_ring_fops = {
    	.mmap = aio_ring_mmap,
    };
    
    #if IS_ENABLED(CONFIG_MIGRATION)
    static int aio_migratepage(struct address_space *mapping, struct page *new,
    			struct page *old, enum migrate_mode mode)
    {
    	struct kioctx *ctx;
    	unsigned long flags;
    	pgoff_t idx;
    	int rc;
    
    	rc = 0;
    
    	/* mapping->private_lock here protects against the kioctx teardown.  */
    	spin_lock(&mapping->private_lock);
    	ctx = mapping->private_data;
    	if (!ctx) {
    		rc = -EINVAL;
    		goto out;
    	}
    
    	/* The ring_lock mutex.  The prevents aio_read_events() from writing
    	 * to the ring's head, and prevents page migration from mucking in
    	 * a partially initialized kiotx.
    	 */
    	if (!mutex_trylock(&ctx->ring_lock)) {
    		rc = -EAGAIN;
    		goto out;
    	}
    
    	idx = old->index;
    	if (idx < (pgoff_t)ctx->nr_pages) {
    		/* Make sure the old page hasn't already been changed */
    		if (ctx->ring_pages[idx] != old)
    			rc = -EAGAIN;
    	} else
    		rc = -EINVAL;
    
    	if (rc != 0)
    		goto out_unlock;
    
    	/* Writeback must be complete */
    	BUG_ON(PageWriteback(old));
    	get_page(new);
    
    	rc = migrate_page_move_mapping(mapping, new, old, NULL, mode, 1);
    	if (rc != MIGRATEPAGE_SUCCESS) {
    		put_page(new);
    		goto out_unlock;
    	}
    
    	/* Take completion_lock to prevent other writes to the ring buffer
    	 * while the old page is copied to the new.  This prevents new
    	 * events from being lost.
    	 */
    	spin_lock_irqsave(&ctx->completion_lock, flags);
    	migrate_page_copy(new, old);
    	BUG_ON(ctx->ring_pages[idx] != old);
    	ctx->ring_pages[idx] = new;
    	spin_unlock_irqrestore(&ctx->completion_lock, flags);
    
    	/* The old page is no longer accessible. */
    	put_page(old);
    
    out_unlock:
    	mutex_unlock(&ctx->ring_lock);
    out:
    	spin_unlock(&mapping->private_lock);
    	return rc;
    }
    #endif
    
    static const struct address_space_operations aio_ctx_aops = {
    	.set_page_dirty = __set_page_dirty_no_writeback,
    #if IS_ENABLED(CONFIG_MIGRATION)
    	.migratepage	= aio_migratepage,
    #endif
    };
    
    static int aio_setup_ring(struct kioctx *ctx)
    {
    	struct aio_ring *ring;
    	unsigned nr_events = ctx->max_reqs;
    	struct mm_struct *mm = current->mm;
    	unsigned long size, unused;
    	int nr_pages;
    	int i;
    	struct file *file;
    
    	/* Compensate for the ring buffer's head/tail overlap entry */
    	nr_events += 2;	/* 1 is required, 2 for good luck */
    
    	size = sizeof(struct aio_ring);
    	size += sizeof(struct io_event) * nr_events;
    
    	nr_pages = PFN_UP(size);
    	if (nr_pages < 0)
    		return -EINVAL;
    
    	file = aio_private_file(ctx, nr_pages);
    	if (IS_ERR(file)) {
    		ctx->aio_ring_file = NULL;
    		return -ENOMEM;
    	}
    
    	ctx->aio_ring_file = file;
    	nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring))
    			/ sizeof(struct io_event);
    
    	ctx->ring_pages = ctx->internal_pages;
    	if (nr_pages > AIO_RING_PAGES) {
    		ctx->ring_pages = kcalloc(nr_pages, sizeof(struct page *),
    					  GFP_KERNEL);
    		if (!ctx->ring_pages) {
    			put_aio_ring_file(ctx);
    			return -ENOMEM;
    		}
    	}
    
    	for (i = 0; i < nr_pages; i++) {
    		struct page *page;
    		page = find_or_create_page(file->f_inode->i_mapping,
    					   i, GFP_HIGHUSER | __GFP_ZERO);
    		if (!page)
    			break;
    		pr_debug("pid(%d) page[%d]->count=%d\n",
    			 current->pid, i, page_count(page));
    		SetPageUptodate(page);
    		unlock_page(page);
    
    		ctx->ring_pages[i] = page;
    	}
    	ctx->nr_pages = i;
    
    	if (unlikely(i != nr_pages)) {
    		aio_free_ring(ctx);
    		return -ENOMEM;
    	}
    
    	ctx->mmap_size = nr_pages * PAGE_SIZE;
    	pr_debug("attempting mmap of %lu bytes\n", ctx->mmap_size);
    
    	if (down_write_killable(&mm->mmap_sem)) {
    		ctx->mmap_size = 0;
    		aio_free_ring(ctx);
    		return -EINTR;
    	}
    
    	ctx->mmap_base = do_mmap_pgoff(ctx->aio_ring_file, 0, ctx->mmap_size,
    				       PROT_READ | PROT_WRITE,
    				       MAP_SHARED, 0, &unused);
    	up_write(&mm->mmap_sem);
    	if (IS_ERR((void *)ctx->mmap_base)) {
    		ctx->mmap_size = 0;
    		aio_free_ring(ctx);
    		return -ENOMEM;
    	}
    
    	pr_debug("mmap address: 0x%08lx\n", ctx->mmap_base);
    
    	ctx->user_id = ctx->mmap_base;
    	ctx->nr_events = nr_events; /* trusted copy */
    
    	ring = kmap_atomic(ctx->ring_pages[0]);
    	ring->nr = nr_events;	/* user copy */
    	ring->id = ~0U;
    	ring->head = ring->tail = 0;
    	ring->magic = AIO_RING_MAGIC;
    	ring->compat_features = AIO_RING_COMPAT_FEATURES;
    	ring->incompat_features = AIO_RING_INCOMPAT_FEATURES;
    	ring->header_length = sizeof(struct aio_ring);
    	kunmap_atomic(ring);
    	flush_dcache_page(ctx->ring_pages[0]);
    
    	return 0;
    }
    
    #define AIO_EVENTS_PER_PAGE	(PAGE_SIZE / sizeof(struct io_event))
    #define AIO_EVENTS_FIRST_PAGE	((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
    #define AIO_EVENTS_OFFSET	(AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
    
    void kiocb_set_cancel_fn(struct kiocb *iocb, kiocb_cancel_fn *cancel)
    {
    	struct aio_kiocb *req = container_of(iocb, struct aio_kiocb, common);
    	struct kioctx *ctx = req->ki_ctx;
    	unsigned long flags;
    
    	spin_lock_irqsave(&ctx->ctx_lock, flags);
    
    	if (!req->ki_list.next)
    		list_add(&req->ki_list, &ctx->active_reqs);
    
    	req->ki_cancel = cancel;
    
    	spin_unlock_irqrestore(&ctx->ctx_lock, flags);
    }
    EXPORT_SYMBOL(kiocb_set_cancel_fn);
    
    static int kiocb_cancel(struct aio_kiocb *kiocb)
    {
    	kiocb_cancel_fn *old, *cancel;
    
    	/*
    	 * Don't want to set kiocb->ki_cancel = KIOCB_CANCELLED unless it
    	 * actually has a cancel function, hence the cmpxchg()
    	 */
    
    	cancel = ACCESS_ONCE(kiocb->ki_cancel);
    	do {
    		if (!cancel || cancel == KIOCB_CANCELLED)
    			return -EINVAL;
    
    		old = cancel;
    		cancel = cmpxchg(&kiocb->ki_cancel, old, KIOCB_CANCELLED);
    	} while (cancel != old);
    
    	return cancel(&kiocb->common);
    }
    
    static void free_ioctx(struct work_struct *work)
    {
    	struct kioctx *ctx = container_of(work, struct kioctx, free_work);
    
    	pr_debug("freeing %p\n", ctx);
    
    	aio_free_ring(ctx);
    	free_percpu(ctx->cpu);
    	percpu_ref_exit(&ctx->reqs);
    	percpu_ref_exit(&ctx->users);
    	kmem_cache_free(kioctx_cachep, ctx);
    }
    
    static void free_ioctx_reqs(struct percpu_ref *ref)
    {
    	struct kioctx *ctx = container_of(ref, struct kioctx, reqs);
    
    	/* At this point we know that there are no any in-flight requests */
    	if (ctx->rq_wait && atomic_dec_and_test(&ctx->rq_wait->count))
    		complete(&ctx->rq_wait->comp);
    
    	INIT_WORK(&ctx->free_work, free_ioctx);
    	schedule_work(&ctx->free_work);
    }
    
    /*
     * When this function runs, the kioctx has been removed from the "hash table"
     * and ctx->users has dropped to 0, so we know no more kiocbs can be submitted -
     * now it's safe to cancel any that need to be.
     */
    static void free_ioctx_users(struct percpu_ref *ref)
    {
    	struct kioctx *ctx = container_of(ref, struct kioctx, users);
    	struct aio_kiocb *req;
    
    	spin_lock_irq(&ctx->ctx_lock);
    
    	while (!list_empty(&ctx->active_reqs)) {
    		req = list_first_entry(&ctx->active_reqs,
    				       struct aio_kiocb, ki_list);
    
    		list_del_init(&req->ki_list);
    		kiocb_cancel(req);
    	}
    
    	spin_unlock_irq(&ctx->ctx_lock);
    
    	percpu_ref_kill(&ctx->reqs);
    	percpu_ref_put(&ctx->reqs);
    }
    
    static int ioctx_add_table(struct kioctx *ctx, struct mm_struct *mm)
    {
    	unsigned i, new_nr;
    	struct kioctx_table *table, *old;
    	struct aio_ring *ring;
    
    	spin_lock(&mm->ioctx_lock);
    	table = rcu_dereference_raw(mm->ioctx_table);
    
    	while (1) {
    		if (table)
    			for (i = 0; i < table->nr; i++)
    				if (!table->table[i]) {
    					ctx->id = i;
    					table->table[i] = ctx;
    					spin_unlock(&mm->ioctx_lock);
    
    					/* While kioctx setup is in progress,
    					 * we are protected from page migration
    					 * changes ring_pages by ->ring_lock.
    					 */
    					ring = kmap_atomic(ctx->ring_pages[0]);
    					ring->id = ctx->id;
    					kunmap_atomic(ring);
    					return 0;
    				}
    
    		new_nr = (table ? table->nr : 1) * 4;
    		spin_unlock(&mm->ioctx_lock);
    
    		table = kzalloc(sizeof(*table) + sizeof(struct kioctx *) *
    				new_nr, GFP_KERNEL);
    		if (!table)
    			return -ENOMEM;
    
    		table->nr = new_nr;
    
    		spin_lock(&mm->ioctx_lock);
    		old = rcu_dereference_raw(mm->ioctx_table);
    
    		if (!old) {
    			rcu_assign_pointer(mm->ioctx_table, table);
    		} else if (table->nr > old->nr) {
    			memcpy(table->table, old->table,
    			       old->nr * sizeof(struct kioctx *));
    
    			rcu_assign_pointer(mm->ioctx_table, table);
    			kfree_rcu(old, rcu);
    		} else {
    			kfree(table);
    			table = old;
    		}
    	}
    }
    
    static void aio_nr_sub(unsigned nr)
    {
    	spin_lock(&aio_nr_lock);
    	if (WARN_ON(aio_nr - nr > aio_nr))
    		aio_nr = 0;
    	else
    		aio_nr -= nr;
    	spin_unlock(&aio_nr_lock);
    }
    
    /* ioctx_alloc
     *	Allocates and initializes an ioctx.  Returns an ERR_PTR if it failed.
     */
    static struct kioctx *ioctx_alloc(unsigned nr_events)
    {
    	struct mm_struct *mm = current->mm;
    	struct kioctx *ctx;
    	int err = -ENOMEM;
    
    	/*
    	 * We keep track of the number of available ringbuffer slots, to prevent
    	 * overflow (reqs_available), and we also use percpu counters for this.
    	 *
    	 * So since up to half the slots might be on other cpu's percpu counters
    	 * and unavailable, double nr_events so userspace sees what they
    	 * expected: additionally, we move req_batch slots to/from percpu
    	 * counters at a time, so make sure that isn't 0:
    	 */
    	nr_events = max(nr_events, num_possible_cpus() * 4);
    	nr_events *= 2;
    
    	/* Prevent overflows */
    	if (nr_events > (0x10000000U / sizeof(struct io_event))) {
    		pr_debug("ENOMEM: nr_events too high\n");
    		return ERR_PTR(-EINVAL);
    	}
    
    	if (!nr_events || (unsigned long)nr_events > (aio_max_nr * 2UL))
    		return ERR_PTR(-EAGAIN);
    
    	ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL);
    	if (!ctx)
    		return ERR_PTR(-ENOMEM);
    
    	ctx->max_reqs = nr_events;
    
    	spin_lock_init(&ctx->ctx_lock);
    	spin_lock_init(&ctx->completion_lock);
    	mutex_init(&ctx->ring_lock);
    	/* Protect against page migration throughout kiotx setup by keeping
    	 * the ring_lock mutex held until setup is complete. */
    	mutex_lock(&ctx->ring_lock);
    	init_waitqueue_head(&ctx->wait);
    
    	INIT_LIST_HEAD(&ctx->active_reqs);
    
    	if (percpu_ref_init(&ctx->users, free_ioctx_users, 0, GFP_KERNEL))
    		goto err;
    
    	if (percpu_ref_init(&ctx->reqs, free_ioctx_reqs, 0, GFP_KERNEL))
    		goto err;
    
    	ctx->cpu = alloc_percpu(struct kioctx_cpu);
    	if (!ctx->cpu)
    		goto err;
    
    	err = aio_setup_ring(ctx);
    	if (err < 0)
    		goto err;
    
    	atomic_set(&ctx->reqs_available, ctx->nr_events - 1);
    	ctx->req_batch = (ctx->nr_events - 1) / (num_possible_cpus() * 4);
    	if (ctx->req_batch < 1)
    		ctx->req_batch = 1;
    
    	/* limit the number of system wide aios */
    	spin_lock(&aio_nr_lock);
    	if (aio_nr + nr_events > (aio_max_nr * 2UL) ||
    	    aio_nr + nr_events < aio_nr) {
    		spin_unlock(&aio_nr_lock);
    		err = -EAGAIN;
    		goto err_ctx;
    	}
    	aio_nr += ctx->max_reqs;
    	spin_unlock(&aio_nr_lock);
    
    	percpu_ref_get(&ctx->users);	/* io_setup() will drop this ref */
    	percpu_ref_get(&ctx->reqs);	/* free_ioctx_users() will drop this */
    
    	err = ioctx_add_table(ctx, mm);
    	if (err)
    		goto err_cleanup;
    
    	/* Release the ring_lock mutex now that all setup is complete. */
    	mutex_unlock(&ctx->ring_lock);
    
    	pr_debug("allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
    		 ctx, ctx->user_id, mm, ctx->nr_events);
    	return ctx;
    
    err_cleanup:
    	aio_nr_sub(ctx->max_reqs);
    err_ctx:
    	atomic_set(&ctx->dead, 1);
    	if (ctx->mmap_size)
    		vm_munmap(ctx->mmap_base, ctx->mmap_size);
    	aio_free_ring(ctx);
    err:
    	mutex_unlock(&ctx->ring_lock);
    	free_percpu(ctx->cpu);
    	percpu_ref_exit(&ctx->reqs);
    	percpu_ref_exit(&ctx->users);
    	kmem_cache_free(kioctx_cachep, ctx);
    	pr_debug("error allocating ioctx %d\n", err);
    	return ERR_PTR(err);
    }
    
    /* kill_ioctx
     *	Cancels all outstanding aio requests on an aio context.  Used
     *	when the processes owning a context have all exited to encourage
     *	the rapid destruction of the kioctx.
     */
    static int kill_ioctx(struct mm_struct *mm, struct kioctx *ctx,
    		      struct ctx_rq_wait *wait)
    {
    	struct kioctx_table *table;
    
    	spin_lock(&mm->ioctx_lock);
    	if (atomic_xchg(&ctx->dead, 1)) {
    		spin_unlock(&mm->ioctx_lock);
    		return -EINVAL;
    	}
    
    	table = rcu_dereference_raw(mm->ioctx_table);
    	WARN_ON(ctx != table->table[ctx->id]);
    	table->table[ctx->id] = NULL;
    	spin_unlock(&mm->ioctx_lock);
    
    	/* percpu_ref_kill() will do the necessary call_rcu() */
    	wake_up_all(&ctx->wait);
    
    	/*
    	 * It'd be more correct to do this in free_ioctx(), after all
    	 * the outstanding kiocbs have finished - but by then io_destroy
    	 * has already returned, so io_setup() could potentially return
    	 * -EAGAIN with no ioctxs actually in use (as far as userspace
    	 *  could tell).
    	 */
    	aio_nr_sub(ctx->max_reqs);
    
    	if (ctx->mmap_size)
    		vm_munmap(ctx->mmap_base, ctx->mmap_size);
    
    	ctx->rq_wait = wait;
    	percpu_ref_kill(&ctx->users);
    	return 0;
    }
    
    /*
     * exit_aio: called when the last user of mm goes away.  At this point, there is
     * no way for any new requests to be submited or any of the io_* syscalls to be
     * called on the context.
     *
     * There may be outstanding kiocbs, but free_ioctx() will explicitly wait on
     * them.
     */
    void exit_aio(struct mm_struct *mm)
    {
    	struct kioctx_table *table = rcu_dereference_raw(mm->ioctx_table);
    	struct ctx_rq_wait wait;
    	int i, skipped;
    
    	if (!table)
    		return;
    
    	atomic_set(&wait.count, table->nr);
    	init_completion(&wait.comp);
    
    	skipped = 0;
    	for (i = 0; i < table->nr; ++i) {
    		struct kioctx *ctx = table->table[i];
    
    		if (!ctx) {
    			skipped++;
    			continue;
    		}
    
    		/*
    		 * We don't need to bother with munmap() here - exit_mmap(mm)
    		 * is coming and it'll unmap everything. And we simply can't,
    		 * this is not necessarily our ->mm.
    		 * Since kill_ioctx() uses non-zero ->mmap_size as indicator
    		 * that it needs to unmap the area, just set it to 0.
    		 */
    		ctx->mmap_size = 0;
    		kill_ioctx(mm, ctx, &wait);
    	}
    
    	if (!atomic_sub_and_test(skipped, &wait.count)) {
    		/* Wait until all IO for the context are done. */
    		wait_for_completion(&wait.comp);
    	}
    
    	RCU_INIT_POINTER(mm->ioctx_table, NULL);
    	kfree(table);
    }
    
    static void put_reqs_available(struct kioctx *ctx, unsigned nr)
    {
    	struct kioctx_cpu *kcpu;
    	unsigned long flags;
    
    	local_irq_save(flags);
    	kcpu = this_cpu_ptr(ctx->cpu);
    	kcpu->reqs_available += nr;
    
    	while (kcpu->reqs_available >= ctx->req_batch * 2) {
    		kcpu->reqs_available -= ctx->req_batch;
    		atomic_add(ctx->req_batch, &ctx->reqs_available);
    	}
    
    	local_irq_restore(flags);
    }
    
    static bool get_reqs_available(struct kioctx *ctx)
    {
    	struct kioctx_cpu *kcpu;
    	bool ret = false;
    	unsigned long flags;
    
    	local_irq_save(flags);
    	kcpu = this_cpu_ptr(ctx->cpu);
    	if (!kcpu->reqs_available) {
    		int old, avail = atomic_read(&ctx->reqs_available);
    
    		do {
    			if (avail < ctx->req_batch)
    				goto out;
    
    			old = avail;
    			avail = atomic_cmpxchg(&ctx->reqs_available,
    					       avail, avail - ctx->req_batch);
    		} while (avail != old);
    
    		kcpu->reqs_available += ctx->req_batch;
    	}
    
    	ret = true;
    	kcpu->reqs_available--;
    out:
    	local_irq_restore(flags);
    	return ret;
    }
    
    /* refill_reqs_available
     *	Updates the reqs_available reference counts used for tracking the
     *	number of free slots in the completion ring.  This can be called
     *	from aio_complete() (to optimistically update reqs_available) or
     *	from aio_get_req() (the we're out of events case).  It must be
     *	called holding ctx->completion_lock.
     */
    static void refill_reqs_available(struct kioctx *ctx, unsigned head,
                                      unsigned tail)
    {
    	unsigned events_in_ring, completed;
    
    	/* Clamp head since userland can write to it. */
    	head %= ctx->nr_events;
    	if (head <= tail)
    		events_in_ring = tail - head;
    	else
    		events_in_ring = ctx->nr_events - (head - tail);
    
    	completed = ctx->completed_events;
    	if (events_in_ring < completed)
    		completed -= events_in_ring;
    	else
    		completed = 0;
    
    	if (!completed)
    		return;
    
    	ctx->completed_events -= completed;
    	put_reqs_available(ctx, completed);
    }
    
    /* user_refill_reqs_available
     *	Called to refill reqs_available when aio_get_req() encounters an
     *	out of space in the completion ring.
     */
    static void user_refill_reqs_available(struct kioctx *ctx)
    {
    	spin_lock_irq(&ctx->completion_lock);
    	if (ctx->completed_events) {
    		struct aio_ring *ring;
    		unsigned head;
    
    		/* Access of ring->head may race with aio_read_events_ring()
    		 * here, but that's okay since whether we read the old version
    		 * or the new version, and either will be valid.  The important
    		 * part is that head cannot pass tail since we prevent
    		 * aio_complete() from updating tail by holding
    		 * ctx->completion_lock.  Even if head is invalid, the check
    		 * against ctx->completed_events below will make sure we do the
    		 * safe/right thing.
    		 */
    		ring = kmap_atomic(ctx->ring_pages[0]);
    		head = ring->head;
    		kunmap_atomic(ring);
    
    		refill_reqs_available(ctx, head, ctx->tail);