Skip to content
Snippets Groups Projects
binfmt_elf.c 62.4 KiB
Newer Older
  • Learn to ignore specific revisions
  • Kenneth Johansson's avatar
    Kenneth Johansson committed
    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000
    /*
     * linux/fs/binfmt_elf.c
     *
     * These are the functions used to load ELF format executables as used
     * on SVr4 machines.  Information on the format may be found in the book
     * "UNIX SYSTEM V RELEASE 4 Programmers Guide: Ansi C and Programming Support
     * Tools".
     *
     * Copyright 1993, 1994: Eric Youngdale (ericy@cais.com).
     */
    
    #include <linux/module.h>
    #include <linux/kernel.h>
    #include <linux/fs.h>
    #include <linux/mm.h>
    #include <linux/mman.h>
    #include <linux/errno.h>
    #include <linux/signal.h>
    #include <linux/binfmts.h>
    #include <linux/string.h>
    #include <linux/file.h>
    #include <linux/slab.h>
    #include <linux/personality.h>
    #include <linux/elfcore.h>
    #include <linux/init.h>
    #include <linux/highuid.h>
    #include <linux/compiler.h>
    #include <linux/highmem.h>
    #include <linux/pagemap.h>
    #include <linux/vmalloc.h>
    #include <linux/security.h>
    #include <linux/random.h>
    #include <linux/elf.h>
    #include <linux/elf-randomize.h>
    #include <linux/utsname.h>
    #include <linux/coredump.h>
    #include <linux/sched.h>
    #include <linux/dax.h>
    #include <asm/uaccess.h>
    #include <asm/param.h>
    #include <asm/page.h>
    
    #ifndef user_long_t
    #define user_long_t long
    #endif
    #ifndef user_siginfo_t
    #define user_siginfo_t siginfo_t
    #endif
    
    static int load_elf_binary(struct linux_binprm *bprm);
    static unsigned long elf_map(struct file *, unsigned long, struct elf_phdr *,
    				int, int, unsigned long);
    
    #ifdef CONFIG_USELIB
    static int load_elf_library(struct file *);
    #else
    #define load_elf_library NULL
    #endif
    
    /*
     * If we don't support core dumping, then supply a NULL so we
     * don't even try.
     */
    #ifdef CONFIG_ELF_CORE
    static int elf_core_dump(struct coredump_params *cprm);
    #else
    #define elf_core_dump	NULL
    #endif
    
    #if ELF_EXEC_PAGESIZE > PAGE_SIZE
    #define ELF_MIN_ALIGN	ELF_EXEC_PAGESIZE
    #else
    #define ELF_MIN_ALIGN	PAGE_SIZE
    #endif
    
    #ifndef ELF_CORE_EFLAGS
    #define ELF_CORE_EFLAGS	0
    #endif
    
    #define ELF_PAGESTART(_v) ((_v) & ~(unsigned long)(ELF_MIN_ALIGN-1))
    #define ELF_PAGEOFFSET(_v) ((_v) & (ELF_MIN_ALIGN-1))
    #define ELF_PAGEALIGN(_v) (((_v) + ELF_MIN_ALIGN - 1) & ~(ELF_MIN_ALIGN - 1))
    
    static struct linux_binfmt elf_format = {
    	.module		= THIS_MODULE,
    	.load_binary	= load_elf_binary,
    	.load_shlib	= load_elf_library,
    	.core_dump	= elf_core_dump,
    	.min_coredump	= ELF_EXEC_PAGESIZE,
    };
    
    #define BAD_ADDR(x) ((unsigned long)(x) >= TASK_SIZE)
    
    static int set_brk(unsigned long start, unsigned long end)
    {
    	start = ELF_PAGEALIGN(start);
    	end = ELF_PAGEALIGN(end);
    	if (end > start) {
    		int error = vm_brk(start, end - start);
    		if (error)
    			return error;
    	}
    	current->mm->start_brk = current->mm->brk = end;
    	return 0;
    }
    
    /* We need to explicitly zero any fractional pages
       after the data section (i.e. bss).  This would
       contain the junk from the file that should not
       be in memory
     */
    static int padzero(unsigned long elf_bss)
    {
    	unsigned long nbyte;
    
    	nbyte = ELF_PAGEOFFSET(elf_bss);
    	if (nbyte) {
    		nbyte = ELF_MIN_ALIGN - nbyte;
    		if (clear_user((void __user *) elf_bss, nbyte))
    			return -EFAULT;
    	}
    	return 0;
    }
    
    /* Let's use some macros to make this stack manipulation a little clearer */
    #ifdef CONFIG_STACK_GROWSUP
    #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) + (items))
    #define STACK_ROUND(sp, items) \
    	((15 + (unsigned long) ((sp) + (items))) &~ 15UL)
    #define STACK_ALLOC(sp, len) ({ \
    	elf_addr_t __user *old_sp = (elf_addr_t __user *)sp; sp += len; \
    	old_sp; })
    #else
    #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) - (items))
    #define STACK_ROUND(sp, items) \
    	(((unsigned long) (sp - items)) &~ 15UL)
    #define STACK_ALLOC(sp, len) ({ sp -= len ; sp; })
    #endif
    
    #ifndef ELF_BASE_PLATFORM
    /*
     * AT_BASE_PLATFORM indicates the "real" hardware/microarchitecture.
     * If the arch defines ELF_BASE_PLATFORM (in asm/elf.h), the value
     * will be copied to the user stack in the same manner as AT_PLATFORM.
     */
    #define ELF_BASE_PLATFORM NULL
    #endif
    
    static int
    create_elf_tables(struct linux_binprm *bprm, struct elfhdr *exec,
    		unsigned long load_addr, unsigned long interp_load_addr)
    {
    	unsigned long p = bprm->p;
    	int argc = bprm->argc;
    	int envc = bprm->envc;
    	elf_addr_t __user *argv;
    	elf_addr_t __user *envp;
    	elf_addr_t __user *sp;
    	elf_addr_t __user *u_platform;
    	elf_addr_t __user *u_base_platform;
    	elf_addr_t __user *u_rand_bytes;
    	const char *k_platform = ELF_PLATFORM;
    	const char *k_base_platform = ELF_BASE_PLATFORM;
    	unsigned char k_rand_bytes[16];
    	int items;
    	elf_addr_t *elf_info;
    	int ei_index = 0;
    	const struct cred *cred = current_cred();
    	struct vm_area_struct *vma;
    
    	/*
    	 * In some cases (e.g. Hyper-Threading), we want to avoid L1
    	 * evictions by the processes running on the same package. One
    	 * thing we can do is to shuffle the initial stack for them.
    	 */
    
    	p = arch_align_stack(p);
    
    	/*
    	 * If this architecture has a platform capability string, copy it
    	 * to userspace.  In some cases (Sparc), this info is impossible
    	 * for userspace to get any other way, in others (i386) it is
    	 * merely difficult.
    	 */
    	u_platform = NULL;
    	if (k_platform) {
    		size_t len = strlen(k_platform) + 1;
    
    		u_platform = (elf_addr_t __user *)STACK_ALLOC(p, len);
    		if (__copy_to_user(u_platform, k_platform, len))
    			return -EFAULT;
    	}
    
    	/*
    	 * If this architecture has a "base" platform capability
    	 * string, copy it to userspace.
    	 */
    	u_base_platform = NULL;
    	if (k_base_platform) {
    		size_t len = strlen(k_base_platform) + 1;
    
    		u_base_platform = (elf_addr_t __user *)STACK_ALLOC(p, len);
    		if (__copy_to_user(u_base_platform, k_base_platform, len))
    			return -EFAULT;
    	}
    
    	/*
    	 * Generate 16 random bytes for userspace PRNG seeding.
    	 */
    	get_random_bytes(k_rand_bytes, sizeof(k_rand_bytes));
    	u_rand_bytes = (elf_addr_t __user *)
    		       STACK_ALLOC(p, sizeof(k_rand_bytes));
    	if (__copy_to_user(u_rand_bytes, k_rand_bytes, sizeof(k_rand_bytes)))
    		return -EFAULT;
    
    	/* Create the ELF interpreter info */
    	elf_info = (elf_addr_t *)current->mm->saved_auxv;
    	/* update AT_VECTOR_SIZE_BASE if the number of NEW_AUX_ENT() changes */
    #define NEW_AUX_ENT(id, val) \
    	do { \
    		elf_info[ei_index++] = id; \
    		elf_info[ei_index++] = val; \
    	} while (0)
    
    #ifdef ARCH_DLINFO
    	/* 
    	 * ARCH_DLINFO must come first so PPC can do its special alignment of
    	 * AUXV.
    	 * update AT_VECTOR_SIZE_ARCH if the number of NEW_AUX_ENT() in
    	 * ARCH_DLINFO changes
    	 */
    	ARCH_DLINFO;
    #endif
    	NEW_AUX_ENT(AT_HWCAP, ELF_HWCAP);
    	NEW_AUX_ENT(AT_PAGESZ, ELF_EXEC_PAGESIZE);
    	NEW_AUX_ENT(AT_CLKTCK, CLOCKS_PER_SEC);
    	NEW_AUX_ENT(AT_PHDR, load_addr + exec->e_phoff);
    	NEW_AUX_ENT(AT_PHENT, sizeof(struct elf_phdr));
    	NEW_AUX_ENT(AT_PHNUM, exec->e_phnum);
    	NEW_AUX_ENT(AT_BASE, interp_load_addr);
    	NEW_AUX_ENT(AT_FLAGS, 0);
    	NEW_AUX_ENT(AT_ENTRY, exec->e_entry);
    	NEW_AUX_ENT(AT_UID, from_kuid_munged(cred->user_ns, cred->uid));
    	NEW_AUX_ENT(AT_EUID, from_kuid_munged(cred->user_ns, cred->euid));
    	NEW_AUX_ENT(AT_GID, from_kgid_munged(cred->user_ns, cred->gid));
    	NEW_AUX_ENT(AT_EGID, from_kgid_munged(cred->user_ns, cred->egid));
     	NEW_AUX_ENT(AT_SECURE, security_bprm_secureexec(bprm));
    	NEW_AUX_ENT(AT_RANDOM, (elf_addr_t)(unsigned long)u_rand_bytes);
    #ifdef ELF_HWCAP2
    	NEW_AUX_ENT(AT_HWCAP2, ELF_HWCAP2);
    #endif
    	NEW_AUX_ENT(AT_EXECFN, bprm->exec);
    	if (k_platform) {
    		NEW_AUX_ENT(AT_PLATFORM,
    			    (elf_addr_t)(unsigned long)u_platform);
    	}
    	if (k_base_platform) {
    		NEW_AUX_ENT(AT_BASE_PLATFORM,
    			    (elf_addr_t)(unsigned long)u_base_platform);
    	}
    	if (bprm->interp_flags & BINPRM_FLAGS_EXECFD) {
    		NEW_AUX_ENT(AT_EXECFD, bprm->interp_data);
    	}
    #undef NEW_AUX_ENT
    	/* AT_NULL is zero; clear the rest too */
    	memset(&elf_info[ei_index], 0,
    	       sizeof current->mm->saved_auxv - ei_index * sizeof elf_info[0]);
    
    	/* And advance past the AT_NULL entry.  */
    	ei_index += 2;
    
    	sp = STACK_ADD(p, ei_index);
    
    	items = (argc + 1) + (envc + 1) + 1;
    	bprm->p = STACK_ROUND(sp, items);
    
    	/* Point sp at the lowest address on the stack */
    #ifdef CONFIG_STACK_GROWSUP
    	sp = (elf_addr_t __user *)bprm->p - items - ei_index;
    	bprm->exec = (unsigned long)sp; /* XXX: PARISC HACK */
    #else
    	sp = (elf_addr_t __user *)bprm->p;
    #endif
    
    
    	/*
    	 * Grow the stack manually; some architectures have a limit on how
    	 * far ahead a user-space access may be in order to grow the stack.
    	 */
    	vma = find_extend_vma(current->mm, bprm->p);
    	if (!vma)
    		return -EFAULT;
    
    	/* Now, let's put argc (and argv, envp if appropriate) on the stack */
    	if (__put_user(argc, sp++))
    		return -EFAULT;
    	argv = sp;
    	envp = argv + argc + 1;
    
    	/* Populate argv and envp */
    	p = current->mm->arg_end = current->mm->arg_start;
    	while (argc-- > 0) {
    		size_t len;
    		if (__put_user((elf_addr_t)p, argv++))
    			return -EFAULT;
    		len = strnlen_user((void __user *)p, MAX_ARG_STRLEN);
    		if (!len || len > MAX_ARG_STRLEN)
    			return -EINVAL;
    		p += len;
    	}
    	if (__put_user(0, argv))
    		return -EFAULT;
    	current->mm->arg_end = current->mm->env_start = p;
    	while (envc-- > 0) {
    		size_t len;
    		if (__put_user((elf_addr_t)p, envp++))
    			return -EFAULT;
    		len = strnlen_user((void __user *)p, MAX_ARG_STRLEN);
    		if (!len || len > MAX_ARG_STRLEN)
    			return -EINVAL;
    		p += len;
    	}
    	if (__put_user(0, envp))
    		return -EFAULT;
    	current->mm->env_end = p;
    
    	/* Put the elf_info on the stack in the right place.  */
    	sp = (elf_addr_t __user *)envp + 1;
    	if (copy_to_user(sp, elf_info, ei_index * sizeof(elf_addr_t)))
    		return -EFAULT;
    	return 0;
    }
    
    #ifndef elf_map
    
    static unsigned long elf_map(struct file *filep, unsigned long addr,
    		struct elf_phdr *eppnt, int prot, int type,
    		unsigned long total_size)
    {
    	unsigned long map_addr;
    	unsigned long size = eppnt->p_filesz + ELF_PAGEOFFSET(eppnt->p_vaddr);
    	unsigned long off = eppnt->p_offset - ELF_PAGEOFFSET(eppnt->p_vaddr);
    	addr = ELF_PAGESTART(addr);
    	size = ELF_PAGEALIGN(size);
    
    	/* mmap() will return -EINVAL if given a zero size, but a
    	 * segment with zero filesize is perfectly valid */
    	if (!size)
    		return addr;
    
    	/*
    	* total_size is the size of the ELF (interpreter) image.
    	* The _first_ mmap needs to know the full size, otherwise
    	* randomization might put this image into an overlapping
    	* position with the ELF binary image. (since size < total_size)
    	* So we first map the 'big' image - and unmap the remainder at
    	* the end. (which unmap is needed for ELF images with holes.)
    	*/
    	if (total_size) {
    		total_size = ELF_PAGEALIGN(total_size);
    		map_addr = vm_mmap(filep, addr, total_size, prot, type, off);
    		if (!BAD_ADDR(map_addr))
    			vm_munmap(map_addr+size, total_size-size);
    	} else
    		map_addr = vm_mmap(filep, addr, size, prot, type, off);
    
    	return(map_addr);
    }
    
    #endif /* !elf_map */
    
    static unsigned long total_mapping_size(struct elf_phdr *cmds, int nr)
    {
    	int i, first_idx = -1, last_idx = -1;
    
    	for (i = 0; i < nr; i++) {
    		if (cmds[i].p_type == PT_LOAD) {
    			last_idx = i;
    			if (first_idx == -1)
    				first_idx = i;
    		}
    	}
    	if (first_idx == -1)
    		return 0;
    
    	return cmds[last_idx].p_vaddr + cmds[last_idx].p_memsz -
    				ELF_PAGESTART(cmds[first_idx].p_vaddr);
    }
    
    /**
     * load_elf_phdrs() - load ELF program headers
     * @elf_ex:   ELF header of the binary whose program headers should be loaded
     * @elf_file: the opened ELF binary file
     *
     * Loads ELF program headers from the binary file elf_file, which has the ELF
     * header pointed to by elf_ex, into a newly allocated array. The caller is
     * responsible for freeing the allocated data. Returns an ERR_PTR upon failure.
     */
    static struct elf_phdr *load_elf_phdrs(struct elfhdr *elf_ex,
    				       struct file *elf_file)
    {
    	struct elf_phdr *elf_phdata = NULL;
    	int retval, size, err = -1;
    
    	/*
    	 * If the size of this structure has changed, then punt, since
    	 * we will be doing the wrong thing.
    	 */
    	if (elf_ex->e_phentsize != sizeof(struct elf_phdr))
    		goto out;
    
    	/* Sanity check the number of program headers... */
    	if (elf_ex->e_phnum < 1 ||
    		elf_ex->e_phnum > 65536U / sizeof(struct elf_phdr))
    		goto out;
    
    	/* ...and their total size. */
    	size = sizeof(struct elf_phdr) * elf_ex->e_phnum;
    	if (size > ELF_MIN_ALIGN)
    		goto out;
    
    	elf_phdata = kmalloc(size, GFP_KERNEL);
    	if (!elf_phdata)
    		goto out;
    
    	/* Read in the program headers */
    	retval = kernel_read(elf_file, elf_ex->e_phoff,
    			     (char *)elf_phdata, size);
    	if (retval != size) {
    		err = (retval < 0) ? retval : -EIO;
    		goto out;
    	}
    
    	/* Success! */
    	err = 0;
    out:
    	if (err) {
    		kfree(elf_phdata);
    		elf_phdata = NULL;
    	}
    	return elf_phdata;
    }
    
    #ifndef CONFIG_ARCH_BINFMT_ELF_STATE
    
    /**
     * struct arch_elf_state - arch-specific ELF loading state
     *
     * This structure is used to preserve architecture specific data during
     * the loading of an ELF file, throughout the checking of architecture
     * specific ELF headers & through to the point where the ELF load is
     * known to be proceeding (ie. SET_PERSONALITY).
     *
     * This implementation is a dummy for architectures which require no
     * specific state.
     */
    struct arch_elf_state {
    };
    
    #define INIT_ARCH_ELF_STATE {}
    
    /**
     * arch_elf_pt_proc() - check a PT_LOPROC..PT_HIPROC ELF program header
     * @ehdr:	The main ELF header
     * @phdr:	The program header to check
     * @elf:	The open ELF file
     * @is_interp:	True if the phdr is from the interpreter of the ELF being
     *		loaded, else false.
     * @state:	Architecture-specific state preserved throughout the process
     *		of loading the ELF.
     *
     * Inspects the program header phdr to validate its correctness and/or
     * suitability for the system. Called once per ELF program header in the
     * range PT_LOPROC to PT_HIPROC, for both the ELF being loaded and its
     * interpreter.
     *
     * Return: Zero to proceed with the ELF load, non-zero to fail the ELF load
     *         with that return code.
     */
    static inline int arch_elf_pt_proc(struct elfhdr *ehdr,
    				   struct elf_phdr *phdr,
    				   struct file *elf, bool is_interp,
    				   struct arch_elf_state *state)
    {
    	/* Dummy implementation, always proceed */
    	return 0;
    }
    
    /**
     * arch_check_elf() - check an ELF executable
     * @ehdr:	The main ELF header
     * @has_interp:	True if the ELF has an interpreter, else false.
     * @interp_ehdr: The interpreter's ELF header
     * @state:	Architecture-specific state preserved throughout the process
     *		of loading the ELF.
     *
     * Provides a final opportunity for architecture code to reject the loading
     * of the ELF & cause an exec syscall to return an error. This is called after
     * all program headers to be checked by arch_elf_pt_proc have been.
     *
     * Return: Zero to proceed with the ELF load, non-zero to fail the ELF load
     *         with that return code.
     */
    static inline int arch_check_elf(struct elfhdr *ehdr, bool has_interp,
    				 struct elfhdr *interp_ehdr,
    				 struct arch_elf_state *state)
    {
    	/* Dummy implementation, always proceed */
    	return 0;
    }
    
    #endif /* !CONFIG_ARCH_BINFMT_ELF_STATE */
    
    /* This is much more generalized than the library routine read function,
       so we keep this separate.  Technically the library read function
       is only provided so that we can read a.out libraries that have
       an ELF header */
    
    static unsigned long load_elf_interp(struct elfhdr *interp_elf_ex,
    		struct file *interpreter, unsigned long *interp_map_addr,
    		unsigned long no_base, struct elf_phdr *interp_elf_phdata)
    {
    	struct elf_phdr *eppnt;
    	unsigned long load_addr = 0;
    	int load_addr_set = 0;
    	unsigned long last_bss = 0, elf_bss = 0;
    	unsigned long error = ~0UL;
    	unsigned long total_size;
    	int i;
    
    	/* First of all, some simple consistency checks */
    	if (interp_elf_ex->e_type != ET_EXEC &&
    	    interp_elf_ex->e_type != ET_DYN)
    		goto out;
    	if (!elf_check_arch(interp_elf_ex))
    		goto out;
    	if (!interpreter->f_op->mmap)
    		goto out;
    
    	total_size = total_mapping_size(interp_elf_phdata,
    					interp_elf_ex->e_phnum);
    	if (!total_size) {
    		error = -EINVAL;
    		goto out;
    	}
    
    	eppnt = interp_elf_phdata;
    	for (i = 0; i < interp_elf_ex->e_phnum; i++, eppnt++) {
    		if (eppnt->p_type == PT_LOAD) {
    			int elf_type = MAP_PRIVATE | MAP_DENYWRITE;
    			int elf_prot = 0;
    			unsigned long vaddr = 0;
    			unsigned long k, map_addr;
    
    			if (eppnt->p_flags & PF_R)
    		    		elf_prot = PROT_READ;
    			if (eppnt->p_flags & PF_W)
    				elf_prot |= PROT_WRITE;
    			if (eppnt->p_flags & PF_X)
    				elf_prot |= PROT_EXEC;
    			vaddr = eppnt->p_vaddr;
    			if (interp_elf_ex->e_type == ET_EXEC || load_addr_set)
    				elf_type |= MAP_FIXED;
    			else if (no_base && interp_elf_ex->e_type == ET_DYN)
    				load_addr = -vaddr;
    
    			map_addr = elf_map(interpreter, load_addr + vaddr,
    					eppnt, elf_prot, elf_type, total_size);
    			total_size = 0;
    			if (!*interp_map_addr)
    				*interp_map_addr = map_addr;
    			error = map_addr;
    			if (BAD_ADDR(map_addr))
    				goto out;
    
    			if (!load_addr_set &&
    			    interp_elf_ex->e_type == ET_DYN) {
    				load_addr = map_addr - ELF_PAGESTART(vaddr);
    				load_addr_set = 1;
    			}
    
    			/*
    			 * Check to see if the section's size will overflow the
    			 * allowed task size. Note that p_filesz must always be
    			 * <= p_memsize so it's only necessary to check p_memsz.
    			 */
    			k = load_addr + eppnt->p_vaddr;
    			if (BAD_ADDR(k) ||
    			    eppnt->p_filesz > eppnt->p_memsz ||
    			    eppnt->p_memsz > TASK_SIZE ||
    			    TASK_SIZE - eppnt->p_memsz < k) {
    				error = -ENOMEM;
    				goto out;
    			}
    
    			/*
    			 * Find the end of the file mapping for this phdr, and
    			 * keep track of the largest address we see for this.
    			 */
    			k = load_addr + eppnt->p_vaddr + eppnt->p_filesz;
    			if (k > elf_bss)
    				elf_bss = k;
    
    			/*
    			 * Do the same thing for the memory mapping - between
    			 * elf_bss and last_bss is the bss section.
    			 */
    			k = load_addr + eppnt->p_vaddr + eppnt->p_memsz;
    			if (k > last_bss)
    				last_bss = k;
    		}
    	}
    
    	/*
    	 * Now fill out the bss section: first pad the last page from
    	 * the file up to the page boundary, and zero it from elf_bss
    	 * up to the end of the page.
    	 */
    	if (padzero(elf_bss)) {
    		error = -EFAULT;
    		goto out;
    	}
    	/*
    	 * Next, align both the file and mem bss up to the page size,
    	 * since this is where elf_bss was just zeroed up to, and where
    	 * last_bss will end after the vm_brk() below.
    	 */
    	elf_bss = ELF_PAGEALIGN(elf_bss);
    	last_bss = ELF_PAGEALIGN(last_bss);
    	/* Finally, if there is still more bss to allocate, do it. */
    	if (last_bss > elf_bss) {
    		error = vm_brk(elf_bss, last_bss - elf_bss);
    		if (error)
    			goto out;
    	}
    
    	error = load_addr;
    out:
    	return error;
    }
    
    /*
     * These are the functions used to load ELF style executables and shared
     * libraries.  There is no binary dependent code anywhere else.
     */
    
    #ifndef STACK_RND_MASK
    #define STACK_RND_MASK (0x7ff >> (PAGE_SHIFT - 12))	/* 8MB of VA */
    #endif
    
    static unsigned long randomize_stack_top(unsigned long stack_top)
    {
    	unsigned long random_variable = 0;
    
    	if ((current->flags & PF_RANDOMIZE) &&
    		!(current->personality & ADDR_NO_RANDOMIZE)) {
    		random_variable = get_random_long();
    		random_variable &= STACK_RND_MASK;
    		random_variable <<= PAGE_SHIFT;
    	}
    #ifdef CONFIG_STACK_GROWSUP
    	return PAGE_ALIGN(stack_top) + random_variable;
    #else
    	return PAGE_ALIGN(stack_top) - random_variable;
    #endif
    }
    
    static int load_elf_binary(struct linux_binprm *bprm)
    {
    	struct file *interpreter = NULL; /* to shut gcc up */
     	unsigned long load_addr = 0, load_bias = 0;
    	int load_addr_set = 0;
    	char * elf_interpreter = NULL;
    	unsigned long error;
    	struct elf_phdr *elf_ppnt, *elf_phdata, *interp_elf_phdata = NULL;
    	unsigned long elf_bss, elf_brk;
    	int retval, i;
    	unsigned long elf_entry;
    	unsigned long interp_load_addr = 0;
    	unsigned long start_code, end_code, start_data, end_data;
    	unsigned long reloc_func_desc __maybe_unused = 0;
    	int executable_stack = EXSTACK_DEFAULT;
    	struct pt_regs *regs = current_pt_regs();
    	struct {
    		struct elfhdr elf_ex;
    		struct elfhdr interp_elf_ex;
    	} *loc;
    	struct arch_elf_state arch_state = INIT_ARCH_ELF_STATE;
    
    	loc = kmalloc(sizeof(*loc), GFP_KERNEL);
    	if (!loc) {
    		retval = -ENOMEM;
    		goto out_ret;
    	}
    	
    	/* Get the exec-header */
    	loc->elf_ex = *((struct elfhdr *)bprm->buf);
    
    	retval = -ENOEXEC;
    	/* First of all, some simple consistency checks */
    	if (memcmp(loc->elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
    		goto out;
    
    	if (loc->elf_ex.e_type != ET_EXEC && loc->elf_ex.e_type != ET_DYN)
    		goto out;
    	if (!elf_check_arch(&loc->elf_ex))
    		goto out;
    	if (!bprm->file->f_op->mmap)
    		goto out;
    
    	elf_phdata = load_elf_phdrs(&loc->elf_ex, bprm->file);
    	if (!elf_phdata)
    		goto out;
    
    	elf_ppnt = elf_phdata;
    	elf_bss = 0;
    	elf_brk = 0;
    
    	start_code = ~0UL;
    	end_code = 0;
    	start_data = 0;
    	end_data = 0;
    
    	for (i = 0; i < loc->elf_ex.e_phnum; i++) {
    		if (elf_ppnt->p_type == PT_INTERP) {
    			/* This is the program interpreter used for
    			 * shared libraries - for now assume that this
    			 * is an a.out format binary
    			 */
    			retval = -ENOEXEC;
    			if (elf_ppnt->p_filesz > PATH_MAX || 
    			    elf_ppnt->p_filesz < 2)
    				goto out_free_ph;
    
    			retval = -ENOMEM;
    			elf_interpreter = kmalloc(elf_ppnt->p_filesz,
    						  GFP_KERNEL);
    			if (!elf_interpreter)
    				goto out_free_ph;
    
    			retval = kernel_read(bprm->file, elf_ppnt->p_offset,
    					     elf_interpreter,
    					     elf_ppnt->p_filesz);
    			if (retval != elf_ppnt->p_filesz) {
    				if (retval >= 0)
    					retval = -EIO;
    				goto out_free_interp;
    			}
    			/* make sure path is NULL terminated */
    			retval = -ENOEXEC;
    			if (elf_interpreter[elf_ppnt->p_filesz - 1] != '\0')
    				goto out_free_interp;
    
    			interpreter = open_exec(elf_interpreter);
    			retval = PTR_ERR(interpreter);
    			if (IS_ERR(interpreter))
    				goto out_free_interp;
    
    			/*
    			 * If the binary is not readable then enforce
    			 * mm->dumpable = 0 regardless of the interpreter's
    			 * permissions.
    			 */
    			would_dump(bprm, interpreter);
    
    			/* Get the exec headers */
    			retval = kernel_read(interpreter, 0,
    					     (void *)&loc->interp_elf_ex,
    					     sizeof(loc->interp_elf_ex));
    			if (retval != sizeof(loc->interp_elf_ex)) {
    				if (retval >= 0)
    					retval = -EIO;
    				goto out_free_dentry;
    			}
    
    			break;
    		}
    		elf_ppnt++;
    	}
    
    	elf_ppnt = elf_phdata;
    	for (i = 0; i < loc->elf_ex.e_phnum; i++, elf_ppnt++)
    		switch (elf_ppnt->p_type) {
    		case PT_GNU_STACK:
    			if (elf_ppnt->p_flags & PF_X)
    				executable_stack = EXSTACK_ENABLE_X;
    			else
    				executable_stack = EXSTACK_DISABLE_X;
    			break;
    
    		case PT_LOPROC ... PT_HIPROC:
    			retval = arch_elf_pt_proc(&loc->elf_ex, elf_ppnt,
    						  bprm->file, false,
    						  &arch_state);
    			if (retval)
    				goto out_free_dentry;
    			break;
    		}
    
    	/* Some simple consistency checks for the interpreter */
    	if (elf_interpreter) {
    		retval = -ELIBBAD;
    		/* Not an ELF interpreter */
    		if (memcmp(loc->interp_elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
    			goto out_free_dentry;
    		/* Verify the interpreter has a valid arch */
    		if (!elf_check_arch(&loc->interp_elf_ex))
    			goto out_free_dentry;
    
    		/* Load the interpreter program headers */
    		interp_elf_phdata = load_elf_phdrs(&loc->interp_elf_ex,
    						   interpreter);
    		if (!interp_elf_phdata)
    			goto out_free_dentry;
    
    		/* Pass PT_LOPROC..PT_HIPROC headers to arch code */
    		elf_ppnt = interp_elf_phdata;
    		for (i = 0; i < loc->interp_elf_ex.e_phnum; i++, elf_ppnt++)
    			switch (elf_ppnt->p_type) {
    			case PT_LOPROC ... PT_HIPROC:
    				retval = arch_elf_pt_proc(&loc->interp_elf_ex,
    							  elf_ppnt, interpreter,
    							  true, &arch_state);
    				if (retval)
    					goto out_free_dentry;
    				break;
    			}
    	}
    
    	/*
    	 * Allow arch code to reject the ELF at this point, whilst it's
    	 * still possible to return an error to the code that invoked
    	 * the exec syscall.
    	 */
    	retval = arch_check_elf(&loc->elf_ex,
    				!!interpreter, &loc->interp_elf_ex,
    				&arch_state);
    	if (retval)
    		goto out_free_dentry;
    
    	/* Flush all traces of the currently running executable */
    	retval = flush_old_exec(bprm);
    	if (retval)
    		goto out_free_dentry;
    
    	/* Do this immediately, since STACK_TOP as used in setup_arg_pages
    	   may depend on the personality.  */
    	SET_PERSONALITY2(loc->elf_ex, &arch_state);
    	if (elf_read_implies_exec(loc->elf_ex, executable_stack))
    		current->personality |= READ_IMPLIES_EXEC;
    
    	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
    		current->flags |= PF_RANDOMIZE;
    
    	setup_new_exec(bprm);
    	install_exec_creds(bprm);
    
    	/* Do this so that we can load the interpreter, if need be.  We will
    	   change some of these later */
    	retval = setup_arg_pages(bprm, randomize_stack_top(STACK_TOP),
    				 executable_stack);
    	if (retval < 0)
    		goto out_free_dentry;
    	
    	current->mm->start_stack = bprm->p;
    
    	/* Now we do a little grungy work by mmapping the ELF image into
    	   the correct location in memory. */
    	for(i = 0, elf_ppnt = elf_phdata;
    	    i < loc->elf_ex.e_phnum; i++, elf_ppnt++) {
    		int elf_prot = 0, elf_flags;
    		unsigned long k, vaddr;
    		unsigned long total_size = 0;
    
    		if (elf_ppnt->p_type != PT_LOAD)
    			continue;
    
    		if (unlikely (elf_brk > elf_bss)) {
    			unsigned long nbyte;
    	            
    			/* There was a PT_LOAD segment with p_memsz > p_filesz
    			   before this one. Map anonymous pages, if needed,
    			   and clear the area.  */
    			retval = set_brk(elf_bss + load_bias,
    					 elf_brk + load_bias);
    			if (retval)
    				goto out_free_dentry;
    			nbyte = ELF_PAGEOFFSET(elf_bss);
    			if (nbyte) {
    				nbyte = ELF_MIN_ALIGN - nbyte;
    				if (nbyte > elf_brk - elf_bss)
    					nbyte = elf_brk - elf_bss;
    				if (clear_user((void __user *)elf_bss +
    							load_bias, nbyte)) {
    					/*
    					 * This bss-zeroing can fail if the ELF
    					 * file specifies odd protections. So
    					 * we don't check the return value
    					 */
    				}
    			}
    		}
    
    		if (elf_ppnt->p_flags & PF_R)
    			elf_prot |= PROT_READ;
    		if (elf_ppnt->p_flags & PF_W)
    			elf_prot |= PROT_WRITE;
    		if (elf_ppnt->p_flags & PF_X)
    			elf_prot |= PROT_EXEC;
    
    		elf_flags = MAP_PRIVATE | MAP_DENYWRITE | MAP_EXECUTABLE;
    
    		vaddr = elf_ppnt->p_vaddr;
    		/*
    		 * If we are loading ET_EXEC or we have already performed
    		 * the ET_DYN load_addr calculations, proceed normally.
    		 */
    		if (loc->elf_ex.e_type == ET_EXEC || load_addr_set) {
    			elf_flags |= MAP_FIXED;
    		} else if (loc->elf_ex.e_type == ET_DYN) {
    			/*
    			 * This logic is run once for the first LOAD Program
    			 * Header for ET_DYN binaries to calculate the
    			 * randomization (load_bias) for all the LOAD
    			 * Program Headers, and to calculate the entire
    			 * size of the ELF mapping (total_size). (Note that
    			 * load_addr_set is set to true later once the
    			 * initial mapping is performed.)
    			 *
    			 * There are effectively two types of ET_DYN
    			 * binaries: programs (i.e. PIE: ET_DYN with INTERP)
    			 * and loaders (ET_DYN without INTERP, since they
    			 * _are_ the ELF interpreter). The loaders must
    			 * be loaded away from programs since the program
    			 * may otherwise collide with the loader (especially
    			 * for ET_EXEC which does not have a randomized
    			 * position). For example to handle invocations of
    			 * "./ld.so someprog" to test out a new version of
    			 * the loader, the subsequent program that the
    			 * loader loads must avoid the loader itself, so
    			 * they cannot share the same load range. Sufficient
    			 * room for the brk must be allocated with the
    			 * loader as well, since brk must be available with
    			 * the loader.
    			 *
    			 * Therefore, programs are loaded offset from
    			 * ELF_ET_DYN_BASE and loaders are loaded into the
    			 * independently randomized mmap region (0 load_bias
    			 * without MAP_FIXED).
    			 */
    			if (elf_interpreter) {
    				load_bias = ELF_ET_DYN_BASE;
    				if (current->flags & PF_RANDOMIZE)
    					load_bias += arch_mmap_rnd();
    				elf_flags |= MAP_FIXED;
    			} else
    				load_bias = 0;
    
    			/*
    			 * Since load_bias is used for all subsequent loading
    			 * calculations, we must lower it by the first vaddr
    			 * so that the remaining calculations based on the
    			 * ELF vaddrs will be correctly offset. The result
    			 * is then page aligned.
    			 */
    			load_bias = ELF_PAGESTART(load_bias - vaddr);
    
    			total_size = total_mapping_size(elf_phdata,
    							loc->elf_ex.e_phnum);
    			if (!total_size) {
    				retval = -EINVAL;
    				goto out_free_dentry;
    			}
    		}
    
    		error = elf_map(bprm->file, load_bias + vaddr, elf_ppnt,
    				elf_prot, elf_flags, total_size);
    		if (BAD_ADDR(error)) {
    			retval = IS_ERR((void *)error) ?
    				PTR_ERR((void*)error) : -EINVAL;
    			goto out_free_dentry;
    		}
    
    		if (!load_addr_set) {
    			load_addr_set = 1;
    			load_addr = (elf_ppnt->p_vaddr - elf_ppnt->p_offset);
    			if (loc->elf_ex.e_type == ET_DYN) {
    				load_bias += error -
    				             ELF_PAGESTART(load_bias + vaddr);
    				load_addr += load_bias;
    				reloc_func_desc = load_bias;
    			}
    		}
    		k = elf_ppnt->p_vaddr;
    		if (k < start_code)
    			start_code = k;
    		if (start_data < k)
    			start_data = k;
    
    		/*