Skip to content
Snippets Groups Projects
block_dev.c 49.8 KiB
Newer Older
  • Learn to ignore specific revisions
  • Kenneth Johansson's avatar
    Kenneth Johansson committed
    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000
    /*
     *  linux/fs/block_dev.c
     *
     *  Copyright (C) 1991, 1992  Linus Torvalds
     *  Copyright (C) 2001  Andrea Arcangeli <andrea@suse.de> SuSE
     */
    
    #include <linux/init.h>
    #include <linux/mm.h>
    #include <linux/fcntl.h>
    #include <linux/slab.h>
    #include <linux/kmod.h>
    #include <linux/major.h>
    #include <linux/device_cgroup.h>
    #include <linux/highmem.h>
    #include <linux/blkdev.h>
    #include <linux/backing-dev.h>
    #include <linux/module.h>
    #include <linux/blkpg.h>
    #include <linux/magic.h>
    #include <linux/buffer_head.h>
    #include <linux/swap.h>
    #include <linux/pagevec.h>
    #include <linux/writeback.h>
    #include <linux/mpage.h>
    #include <linux/mount.h>
    #include <linux/uio.h>
    #include <linux/namei.h>
    #include <linux/log2.h>
    #include <linux/cleancache.h>
    #include <linux/dax.h>
    #include <linux/badblocks.h>
    #include <linux/falloc.h>
    #include <asm/uaccess.h>
    #include "internal.h"
    
    struct bdev_inode {
    	struct block_device bdev;
    	struct inode vfs_inode;
    };
    
    static const struct address_space_operations def_blk_aops;
    
    static inline struct bdev_inode *BDEV_I(struct inode *inode)
    {
    	return container_of(inode, struct bdev_inode, vfs_inode);
    }
    
    struct block_device *I_BDEV(struct inode *inode)
    {
    	return &BDEV_I(inode)->bdev;
    }
    EXPORT_SYMBOL(I_BDEV);
    
    void __vfs_msg(struct super_block *sb, const char *prefix, const char *fmt, ...)
    {
    	struct va_format vaf;
    	va_list args;
    
    	va_start(args, fmt);
    	vaf.fmt = fmt;
    	vaf.va = &args;
    	printk_ratelimited("%sVFS (%s): %pV\n", prefix, sb->s_id, &vaf);
    	va_end(args);
    }
    
    static void bdev_write_inode(struct block_device *bdev)
    {
    	struct inode *inode = bdev->bd_inode;
    	int ret;
    
    	spin_lock(&inode->i_lock);
    	while (inode->i_state & I_DIRTY) {
    		spin_unlock(&inode->i_lock);
    		ret = write_inode_now(inode, true);
    		if (ret) {
    			char name[BDEVNAME_SIZE];
    			pr_warn_ratelimited("VFS: Dirty inode writeback failed "
    					    "for block device %s (err=%d).\n",
    					    bdevname(bdev, name), ret);
    		}
    		spin_lock(&inode->i_lock);
    	}
    	spin_unlock(&inode->i_lock);
    }
    
    /* Kill _all_ buffers and pagecache , dirty or not.. */
    void kill_bdev(struct block_device *bdev)
    {
    	struct address_space *mapping = bdev->bd_inode->i_mapping;
    
    	if (mapping->nrpages == 0 && mapping->nrexceptional == 0)
    		return;
    
    	invalidate_bh_lrus();
    	truncate_inode_pages(mapping, 0);
    }	
    EXPORT_SYMBOL(kill_bdev);
    
    /* Invalidate clean unused buffers and pagecache. */
    void invalidate_bdev(struct block_device *bdev)
    {
    	struct address_space *mapping = bdev->bd_inode->i_mapping;
    
    	if (mapping->nrpages) {
    		invalidate_bh_lrus();
    		lru_add_drain_all();	/* make sure all lru add caches are flushed */
    		invalidate_mapping_pages(mapping, 0, -1);
    	}
    	/* 99% of the time, we don't need to flush the cleancache on the bdev.
    	 * But, for the strange corners, lets be cautious
    	 */
    	cleancache_invalidate_inode(mapping);
    }
    EXPORT_SYMBOL(invalidate_bdev);
    
    int set_blocksize(struct block_device *bdev, int size)
    {
    	/* Size must be a power of two, and between 512 and PAGE_SIZE */
    	if (size > PAGE_SIZE || size < 512 || !is_power_of_2(size))
    		return -EINVAL;
    
    	/* Size cannot be smaller than the size supported by the device */
    	if (size < bdev_logical_block_size(bdev))
    		return -EINVAL;
    
    	/* Don't change the size if it is same as current */
    	if (bdev->bd_block_size != size) {
    		sync_blockdev(bdev);
    		bdev->bd_block_size = size;
    		bdev->bd_inode->i_blkbits = blksize_bits(size);
    		kill_bdev(bdev);
    	}
    	return 0;
    }
    
    EXPORT_SYMBOL(set_blocksize);
    
    int sb_set_blocksize(struct super_block *sb, int size)
    {
    	if (set_blocksize(sb->s_bdev, size))
    		return 0;
    	/* If we get here, we know size is power of two
    	 * and it's value is between 512 and PAGE_SIZE */
    	sb->s_blocksize = size;
    	sb->s_blocksize_bits = blksize_bits(size);
    	return sb->s_blocksize;
    }
    
    EXPORT_SYMBOL(sb_set_blocksize);
    
    int sb_min_blocksize(struct super_block *sb, int size)
    {
    	int minsize = bdev_logical_block_size(sb->s_bdev);
    	if (size < minsize)
    		size = minsize;
    	return sb_set_blocksize(sb, size);
    }
    
    EXPORT_SYMBOL(sb_min_blocksize);
    
    static int
    blkdev_get_block(struct inode *inode, sector_t iblock,
    		struct buffer_head *bh, int create)
    {
    	bh->b_bdev = I_BDEV(inode);
    	bh->b_blocknr = iblock;
    	set_buffer_mapped(bh);
    	return 0;
    }
    
    static struct inode *bdev_file_inode(struct file *file)
    {
    	return file->f_mapping->host;
    }
    
    static ssize_t
    blkdev_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
    {
    	struct file *file = iocb->ki_filp;
    	struct inode *inode = bdev_file_inode(file);
    
    	return __blockdev_direct_IO(iocb, inode, I_BDEV(inode), iter,
    				    blkdev_get_block, NULL, NULL,
    				    DIO_SKIP_DIO_COUNT);
    }
    
    int __sync_blockdev(struct block_device *bdev, int wait)
    {
    	if (!bdev)
    		return 0;
    	if (!wait)
    		return filemap_flush(bdev->bd_inode->i_mapping);
    	return filemap_write_and_wait(bdev->bd_inode->i_mapping);
    }
    
    /*
     * Write out and wait upon all the dirty data associated with a block
     * device via its mapping.  Does not take the superblock lock.
     */
    int sync_blockdev(struct block_device *bdev)
    {
    	return __sync_blockdev(bdev, 1);
    }
    EXPORT_SYMBOL(sync_blockdev);
    
    /*
     * Write out and wait upon all dirty data associated with this
     * device.   Filesystem data as well as the underlying block
     * device.  Takes the superblock lock.
     */
    int fsync_bdev(struct block_device *bdev)
    {
    	struct super_block *sb = get_super(bdev);
    	if (sb) {
    		int res = sync_filesystem(sb);
    		drop_super(sb);
    		return res;
    	}
    	return sync_blockdev(bdev);
    }
    EXPORT_SYMBOL(fsync_bdev);
    
    /**
     * freeze_bdev  --  lock a filesystem and force it into a consistent state
     * @bdev:	blockdevice to lock
     *
     * If a superblock is found on this device, we take the s_umount semaphore
     * on it to make sure nobody unmounts until the snapshot creation is done.
     * The reference counter (bd_fsfreeze_count) guarantees that only the last
     * unfreeze process can unfreeze the frozen filesystem actually when multiple
     * freeze requests arrive simultaneously. It counts up in freeze_bdev() and
     * count down in thaw_bdev(). When it becomes 0, thaw_bdev() will unfreeze
     * actually.
     */
    struct super_block *freeze_bdev(struct block_device *bdev)
    {
    	struct super_block *sb;
    	int error = 0;
    
    	mutex_lock(&bdev->bd_fsfreeze_mutex);
    	if (++bdev->bd_fsfreeze_count > 1) {
    		/*
    		 * We don't even need to grab a reference - the first call
    		 * to freeze_bdev grab an active reference and only the last
    		 * thaw_bdev drops it.
    		 */
    		sb = get_super(bdev);
    		if (sb)
    			drop_super(sb);
    		mutex_unlock(&bdev->bd_fsfreeze_mutex);
    		return sb;
    	}
    
    	sb = get_active_super(bdev);
    	if (!sb)
    		goto out;
    	if (sb->s_op->freeze_super)
    		error = sb->s_op->freeze_super(sb);
    	else
    		error = freeze_super(sb);
    	if (error) {
    		deactivate_super(sb);
    		bdev->bd_fsfreeze_count--;
    		mutex_unlock(&bdev->bd_fsfreeze_mutex);
    		return ERR_PTR(error);
    	}
    	deactivate_super(sb);
     out:
    	sync_blockdev(bdev);
    	mutex_unlock(&bdev->bd_fsfreeze_mutex);
    	return sb;	/* thaw_bdev releases s->s_umount */
    }
    EXPORT_SYMBOL(freeze_bdev);
    
    /**
     * thaw_bdev  -- unlock filesystem
     * @bdev:	blockdevice to unlock
     * @sb:		associated superblock
     *
     * Unlocks the filesystem and marks it writeable again after freeze_bdev().
     */
    int thaw_bdev(struct block_device *bdev, struct super_block *sb)
    {
    	int error = -EINVAL;
    
    	mutex_lock(&bdev->bd_fsfreeze_mutex);
    	if (!bdev->bd_fsfreeze_count)
    		goto out;
    
    	error = 0;
    	if (--bdev->bd_fsfreeze_count > 0)
    		goto out;
    
    	if (!sb)
    		goto out;
    
    	if (sb->s_op->thaw_super)
    		error = sb->s_op->thaw_super(sb);
    	else
    		error = thaw_super(sb);
    	if (error)
    		bdev->bd_fsfreeze_count++;
    out:
    	mutex_unlock(&bdev->bd_fsfreeze_mutex);
    	return error;
    }
    EXPORT_SYMBOL(thaw_bdev);
    
    static int blkdev_writepage(struct page *page, struct writeback_control *wbc)
    {
    	return block_write_full_page(page, blkdev_get_block, wbc);
    }
    
    static int blkdev_readpage(struct file * file, struct page * page)
    {
    	return block_read_full_page(page, blkdev_get_block);
    }
    
    static int blkdev_readpages(struct file *file, struct address_space *mapping,
    			struct list_head *pages, unsigned nr_pages)
    {
    	return mpage_readpages(mapping, pages, nr_pages, blkdev_get_block);
    }
    
    static int blkdev_write_begin(struct file *file, struct address_space *mapping,
    			loff_t pos, unsigned len, unsigned flags,
    			struct page **pagep, void **fsdata)
    {
    	return block_write_begin(mapping, pos, len, flags, pagep,
    				 blkdev_get_block);
    }
    
    static int blkdev_write_end(struct file *file, struct address_space *mapping,
    			loff_t pos, unsigned len, unsigned copied,
    			struct page *page, void *fsdata)
    {
    	int ret;
    	ret = block_write_end(file, mapping, pos, len, copied, page, fsdata);
    
    	unlock_page(page);
    	put_page(page);
    
    	return ret;
    }
    
    /*
     * private llseek:
     * for a block special file file_inode(file)->i_size is zero
     * so we compute the size by hand (just as in block_read/write above)
     */
    static loff_t block_llseek(struct file *file, loff_t offset, int whence)
    {
    	struct inode *bd_inode = bdev_file_inode(file);
    	loff_t retval;
    
    	inode_lock(bd_inode);
    	retval = fixed_size_llseek(file, offset, whence, i_size_read(bd_inode));
    	inode_unlock(bd_inode);
    	return retval;
    }
    	
    int blkdev_fsync(struct file *filp, loff_t start, loff_t end, int datasync)
    {
    	struct inode *bd_inode = bdev_file_inode(filp);
    	struct block_device *bdev = I_BDEV(bd_inode);
    	int error;
    	
    	error = filemap_write_and_wait_range(filp->f_mapping, start, end);
    	if (error)
    		return error;
    
    	/*
    	 * There is no need to serialise calls to blkdev_issue_flush with
    	 * i_mutex and doing so causes performance issues with concurrent
    	 * O_SYNC writers to a block device.
    	 */
    	error = blkdev_issue_flush(bdev, GFP_KERNEL, NULL);
    	if (error == -EOPNOTSUPP)
    		error = 0;
    
    	return error;
    }
    EXPORT_SYMBOL(blkdev_fsync);
    
    /**
     * bdev_read_page() - Start reading a page from a block device
     * @bdev: The device to read the page from
     * @sector: The offset on the device to read the page to (need not be aligned)
     * @page: The page to read
     *
     * On entry, the page should be locked.  It will be unlocked when the page
     * has been read.  If the block driver implements rw_page synchronously,
     * that will be true on exit from this function, but it need not be.
     *
     * Errors returned by this function are usually "soft", eg out of memory, or
     * queue full; callers should try a different route to read this page rather
     * than propagate an error back up the stack.
     *
     * Return: negative errno if an error occurs, 0 if submission was successful.
     */
    int bdev_read_page(struct block_device *bdev, sector_t sector,
    			struct page *page)
    {
    	const struct block_device_operations *ops = bdev->bd_disk->fops;
    	int result = -EOPNOTSUPP;
    
    	if (!ops->rw_page || bdev_get_integrity(bdev))
    		return result;
    
    	result = blk_queue_enter(bdev->bd_queue, false);
    	if (result)
    		return result;
    	result = ops->rw_page(bdev, sector + get_start_sect(bdev), page, false);
    	blk_queue_exit(bdev->bd_queue);
    	return result;
    }
    EXPORT_SYMBOL_GPL(bdev_read_page);
    
    /**
     * bdev_write_page() - Start writing a page to a block device
     * @bdev: The device to write the page to
     * @sector: The offset on the device to write the page to (need not be aligned)
     * @page: The page to write
     * @wbc: The writeback_control for the write
     *
     * On entry, the page should be locked and not currently under writeback.
     * On exit, if the write started successfully, the page will be unlocked and
     * under writeback.  If the write failed already (eg the driver failed to
     * queue the page to the device), the page will still be locked.  If the
     * caller is a ->writepage implementation, it will need to unlock the page.
     *
     * Errors returned by this function are usually "soft", eg out of memory, or
     * queue full; callers should try a different route to write this page rather
     * than propagate an error back up the stack.
     *
     * Return: negative errno if an error occurs, 0 if submission was successful.
     */
    int bdev_write_page(struct block_device *bdev, sector_t sector,
    			struct page *page, struct writeback_control *wbc)
    {
    	int result;
    	const struct block_device_operations *ops = bdev->bd_disk->fops;
    
    	if (!ops->rw_page || bdev_get_integrity(bdev))
    		return -EOPNOTSUPP;
    	result = blk_queue_enter(bdev->bd_queue, false);
    	if (result)
    		return result;
    
    	set_page_writeback(page);
    	result = ops->rw_page(bdev, sector + get_start_sect(bdev), page, true);
    	if (result) {
    		end_page_writeback(page);
    	} else {
    		clean_page_buffers(page);
    		unlock_page(page);
    	}
    	blk_queue_exit(bdev->bd_queue);
    	return result;
    }
    EXPORT_SYMBOL_GPL(bdev_write_page);
    
    /**
     * bdev_direct_access() - Get the address for directly-accessibly memory
     * @bdev: The device containing the memory
     * @dax: control and output parameters for ->direct_access
     *
     * If a block device is made up of directly addressable memory, this function
     * will tell the caller the PFN and the address of the memory.  The address
     * may be directly dereferenced within the kernel without the need to call
     * ioremap(), kmap() or similar.  The PFN is suitable for inserting into
     * page tables.
     *
     * Return: negative errno if an error occurs, otherwise the number of bytes
     * accessible at this address.
     */
    long bdev_direct_access(struct block_device *bdev, struct blk_dax_ctl *dax)
    {
    	sector_t sector = dax->sector;
    	long avail, size = dax->size;
    	const struct block_device_operations *ops = bdev->bd_disk->fops;
    
    	/*
    	 * The device driver is allowed to sleep, in order to make the
    	 * memory directly accessible.
    	 */
    	might_sleep();
    
    	if (size < 0)
    		return size;
    	if (!blk_queue_dax(bdev_get_queue(bdev)) || !ops->direct_access)
    		return -EOPNOTSUPP;
    	if ((sector + DIV_ROUND_UP(size, 512)) >
    					part_nr_sects_read(bdev->bd_part))
    		return -ERANGE;
    	sector += get_start_sect(bdev);
    	if (sector % (PAGE_SIZE / 512))
    		return -EINVAL;
    	avail = ops->direct_access(bdev, sector, &dax->addr, &dax->pfn, size);
    	if (!avail)
    		return -ERANGE;
    	if (avail > 0 && avail & ~PAGE_MASK)
    		return -ENXIO;
    	return min(avail, size);
    }
    EXPORT_SYMBOL_GPL(bdev_direct_access);
    
    /**
     * bdev_dax_supported() - Check if the device supports dax for filesystem
     * @sb: The superblock of the device
     * @blocksize: The block size of the device
     *
     * This is a library function for filesystems to check if the block device
     * can be mounted with dax option.
     *
     * Return: negative errno if unsupported, 0 if supported.
     */
    int bdev_dax_supported(struct super_block *sb, int blocksize)
    {
    	struct blk_dax_ctl dax = {
    		.sector = 0,
    		.size = PAGE_SIZE,
    	};
    	int err;
    
    	if (blocksize != PAGE_SIZE) {
    		vfs_msg(sb, KERN_ERR, "error: unsupported blocksize for dax");
    		return -EINVAL;
    	}
    
    	err = bdev_direct_access(sb->s_bdev, &dax);
    	if (err < 0) {
    		switch (err) {
    		case -EOPNOTSUPP:
    			vfs_msg(sb, KERN_ERR,
    				"error: device does not support dax");
    			break;
    		case -EINVAL:
    			vfs_msg(sb, KERN_ERR,
    				"error: unaligned partition for dax");
    			break;
    		default:
    			vfs_msg(sb, KERN_ERR,
    				"error: dax access failed (%d)", err);
    		}
    		return err;
    	}
    
    	return 0;
    }
    EXPORT_SYMBOL_GPL(bdev_dax_supported);
    
    /**
     * bdev_dax_capable() - Return if the raw device is capable for dax
     * @bdev: The device for raw block device access
     */
    bool bdev_dax_capable(struct block_device *bdev)
    {
    	struct blk_dax_ctl dax = {
    		.size = PAGE_SIZE,
    	};
    
    	if (!IS_ENABLED(CONFIG_FS_DAX))
    		return false;
    
    	dax.sector = 0;
    	if (bdev_direct_access(bdev, &dax) < 0)
    		return false;
    
    	dax.sector = bdev->bd_part->nr_sects - (PAGE_SIZE / 512);
    	if (bdev_direct_access(bdev, &dax) < 0)
    		return false;
    
    	return true;
    }
    
    /*
     * pseudo-fs
     */
    
    static  __cacheline_aligned_in_smp DEFINE_SPINLOCK(bdev_lock);
    static struct kmem_cache * bdev_cachep __read_mostly;
    
    static struct inode *bdev_alloc_inode(struct super_block *sb)
    {
    	struct bdev_inode *ei = kmem_cache_alloc(bdev_cachep, GFP_KERNEL);
    	if (!ei)
    		return NULL;
    	return &ei->vfs_inode;
    }
    
    static void bdev_i_callback(struct rcu_head *head)
    {
    	struct inode *inode = container_of(head, struct inode, i_rcu);
    	struct bdev_inode *bdi = BDEV_I(inode);
    
    	kmem_cache_free(bdev_cachep, bdi);
    }
    
    static void bdev_destroy_inode(struct inode *inode)
    {
    	call_rcu(&inode->i_rcu, bdev_i_callback);
    }
    
    static void init_once(void *foo)
    {
    	struct bdev_inode *ei = (struct bdev_inode *) foo;
    	struct block_device *bdev = &ei->bdev;
    
    	memset(bdev, 0, sizeof(*bdev));
    	mutex_init(&bdev->bd_mutex);
    	INIT_LIST_HEAD(&bdev->bd_list);
    #ifdef CONFIG_SYSFS
    	INIT_LIST_HEAD(&bdev->bd_holder_disks);
    #endif
    	inode_init_once(&ei->vfs_inode);
    	/* Initialize mutex for freeze. */
    	mutex_init(&bdev->bd_fsfreeze_mutex);
    }
    
    static void bdev_evict_inode(struct inode *inode)
    {
    	struct block_device *bdev = &BDEV_I(inode)->bdev;
    	truncate_inode_pages_final(&inode->i_data);
    	invalidate_inode_buffers(inode); /* is it needed here? */
    	clear_inode(inode);
    	spin_lock(&bdev_lock);
    	list_del_init(&bdev->bd_list);
    	spin_unlock(&bdev_lock);
    }
    
    static const struct super_operations bdev_sops = {
    	.statfs = simple_statfs,
    	.alloc_inode = bdev_alloc_inode,
    	.destroy_inode = bdev_destroy_inode,
    	.drop_inode = generic_delete_inode,
    	.evict_inode = bdev_evict_inode,
    };
    
    static struct dentry *bd_mount(struct file_system_type *fs_type,
    	int flags, const char *dev_name, void *data)
    {
    	struct dentry *dent;
    	dent = mount_pseudo(fs_type, "bdev:", &bdev_sops, NULL, BDEVFS_MAGIC);
    	if (!IS_ERR(dent))
    		dent->d_sb->s_iflags |= SB_I_CGROUPWB;
    	return dent;
    }
    
    static struct file_system_type bd_type = {
    	.name		= "bdev",
    	.mount		= bd_mount,
    	.kill_sb	= kill_anon_super,
    };
    
    struct super_block *blockdev_superblock __read_mostly;
    EXPORT_SYMBOL_GPL(blockdev_superblock);
    
    void __init bdev_cache_init(void)
    {
    	int err;
    	static struct vfsmount *bd_mnt;
    
    	bdev_cachep = kmem_cache_create("bdev_cache", sizeof(struct bdev_inode),
    			0, (SLAB_HWCACHE_ALIGN|SLAB_RECLAIM_ACCOUNT|
    				SLAB_MEM_SPREAD|SLAB_ACCOUNT|SLAB_PANIC),
    			init_once);
    	err = register_filesystem(&bd_type);
    	if (err)
    		panic("Cannot register bdev pseudo-fs");
    	bd_mnt = kern_mount(&bd_type);
    	if (IS_ERR(bd_mnt))
    		panic("Cannot create bdev pseudo-fs");
    	blockdev_superblock = bd_mnt->mnt_sb;   /* For writeback */
    }
    
    /*
     * Most likely _very_ bad one - but then it's hardly critical for small
     * /dev and can be fixed when somebody will need really large one.
     * Keep in mind that it will be fed through icache hash function too.
     */
    static inline unsigned long hash(dev_t dev)
    {
    	return MAJOR(dev)+MINOR(dev);
    }
    
    static int bdev_test(struct inode *inode, void *data)
    {
    	return BDEV_I(inode)->bdev.bd_dev == *(dev_t *)data;
    }
    
    static int bdev_set(struct inode *inode, void *data)
    {
    	BDEV_I(inode)->bdev.bd_dev = *(dev_t *)data;
    	return 0;
    }
    
    static LIST_HEAD(all_bdevs);
    
    struct block_device *bdget(dev_t dev)
    {
    	struct block_device *bdev;
    	struct inode *inode;
    
    	inode = iget5_locked(blockdev_superblock, hash(dev),
    			bdev_test, bdev_set, &dev);
    
    	if (!inode)
    		return NULL;
    
    	bdev = &BDEV_I(inode)->bdev;
    
    	if (inode->i_state & I_NEW) {
    		bdev->bd_contains = NULL;
    		bdev->bd_super = NULL;
    		bdev->bd_inode = inode;
    		bdev->bd_block_size = i_blocksize(inode);
    		bdev->bd_part_count = 0;
    		bdev->bd_invalidated = 0;
    		inode->i_mode = S_IFBLK;
    		inode->i_rdev = dev;
    		inode->i_bdev = bdev;
    		inode->i_data.a_ops = &def_blk_aops;
    		mapping_set_gfp_mask(&inode->i_data, GFP_USER);
    		spin_lock(&bdev_lock);
    		list_add(&bdev->bd_list, &all_bdevs);
    		spin_unlock(&bdev_lock);
    		unlock_new_inode(inode);
    	}
    	return bdev;
    }
    
    EXPORT_SYMBOL(bdget);
    
    /**
     * bdgrab -- Grab a reference to an already referenced block device
     * @bdev:	Block device to grab a reference to.
     */
    struct block_device *bdgrab(struct block_device *bdev)
    {
    	ihold(bdev->bd_inode);
    	return bdev;
    }
    EXPORT_SYMBOL(bdgrab);
    
    long nr_blockdev_pages(void)
    {
    	struct block_device *bdev;
    	long ret = 0;
    	spin_lock(&bdev_lock);
    	list_for_each_entry(bdev, &all_bdevs, bd_list) {
    		ret += bdev->bd_inode->i_mapping->nrpages;
    	}
    	spin_unlock(&bdev_lock);
    	return ret;
    }
    
    void bdput(struct block_device *bdev)
    {
    	iput(bdev->bd_inode);
    }
    
    EXPORT_SYMBOL(bdput);
     
    static struct block_device *bd_acquire(struct inode *inode)
    {
    	struct block_device *bdev;
    
    	spin_lock(&bdev_lock);
    	bdev = inode->i_bdev;
    	if (bdev) {
    		bdgrab(bdev);
    		spin_unlock(&bdev_lock);
    		return bdev;
    	}
    	spin_unlock(&bdev_lock);
    
    	bdev = bdget(inode->i_rdev);
    	if (bdev) {
    		spin_lock(&bdev_lock);
    		if (!inode->i_bdev) {
    			/*
    			 * We take an additional reference to bd_inode,
    			 * and it's released in clear_inode() of inode.
    			 * So, we can access it via ->i_mapping always
    			 * without igrab().
    			 */
    			bdgrab(bdev);
    			inode->i_bdev = bdev;
    			inode->i_mapping = bdev->bd_inode->i_mapping;
    		}
    		spin_unlock(&bdev_lock);
    	}
    	return bdev;
    }
    
    /* Call when you free inode */
    
    void bd_forget(struct inode *inode)
    {
    	struct block_device *bdev = NULL;
    
    	spin_lock(&bdev_lock);
    	if (!sb_is_blkdev_sb(inode->i_sb))
    		bdev = inode->i_bdev;
    	inode->i_bdev = NULL;
    	inode->i_mapping = &inode->i_data;
    	spin_unlock(&bdev_lock);
    
    	if (bdev)
    		bdput(bdev);
    }
    
    /**
     * bd_may_claim - test whether a block device can be claimed
     * @bdev: block device of interest
     * @whole: whole block device containing @bdev, may equal @bdev
     * @holder: holder trying to claim @bdev
     *
     * Test whether @bdev can be claimed by @holder.
     *
     * CONTEXT:
     * spin_lock(&bdev_lock).
     *
     * RETURNS:
     * %true if @bdev can be claimed, %false otherwise.
     */
    static bool bd_may_claim(struct block_device *bdev, struct block_device *whole,
    			 void *holder)
    {
    	if (bdev->bd_holder == holder)
    		return true;	 /* already a holder */
    	else if (bdev->bd_holder != NULL)
    		return false; 	 /* held by someone else */
    	else if (whole == bdev)
    		return true;  	 /* is a whole device which isn't held */
    
    	else if (whole->bd_holder == bd_may_claim)
    		return true; 	 /* is a partition of a device that is being partitioned */
    	else if (whole->bd_holder != NULL)
    		return false;	 /* is a partition of a held device */
    	else
    		return true;	 /* is a partition of an un-held device */
    }
    
    /**
     * bd_prepare_to_claim - prepare to claim a block device
     * @bdev: block device of interest
     * @whole: the whole device containing @bdev, may equal @bdev
     * @holder: holder trying to claim @bdev
     *
     * Prepare to claim @bdev.  This function fails if @bdev is already
     * claimed by another holder and waits if another claiming is in
     * progress.  This function doesn't actually claim.  On successful
     * return, the caller has ownership of bd_claiming and bd_holder[s].
     *
     * CONTEXT:
     * spin_lock(&bdev_lock).  Might release bdev_lock, sleep and regrab
     * it multiple times.
     *
     * RETURNS:
     * 0 if @bdev can be claimed, -EBUSY otherwise.
     */
    static int bd_prepare_to_claim(struct block_device *bdev,
    			       struct block_device *whole, void *holder)
    {
    retry:
    	/* if someone else claimed, fail */
    	if (!bd_may_claim(bdev, whole, holder))
    		return -EBUSY;
    
    	/* if claiming is already in progress, wait for it to finish */
    	if (whole->bd_claiming) {
    		wait_queue_head_t *wq = bit_waitqueue(&whole->bd_claiming, 0);
    		DEFINE_WAIT(wait);
    
    		prepare_to_wait(wq, &wait, TASK_UNINTERRUPTIBLE);
    		spin_unlock(&bdev_lock);
    		schedule();
    		finish_wait(wq, &wait);
    		spin_lock(&bdev_lock);
    		goto retry;
    	}
    
    	/* yay, all mine */
    	return 0;
    }
    
    /**
     * bd_start_claiming - start claiming a block device
     * @bdev: block device of interest
     * @holder: holder trying to claim @bdev
     *
     * @bdev is about to be opened exclusively.  Check @bdev can be opened
     * exclusively and mark that an exclusive open is in progress.  Each
     * successful call to this function must be matched with a call to
     * either bd_finish_claiming() or bd_abort_claiming() (which do not
     * fail).
     *
     * This function is used to gain exclusive access to the block device
     * without actually causing other exclusive open attempts to fail. It
     * should be used when the open sequence itself requires exclusive
     * access but may subsequently fail.
     *
     * CONTEXT:
     * Might sleep.
     *
     * RETURNS:
     * Pointer to the block device containing @bdev on success, ERR_PTR()
     * value on failure.
     */
    static struct block_device *bd_start_claiming(struct block_device *bdev,
    					      void *holder)
    {
    	struct gendisk *disk;
    	struct block_device *whole;
    	int partno, err;
    
    	might_sleep();
    
    	/*
    	 * @bdev might not have been initialized properly yet, look up
    	 * and grab the outer block device the hard way.
    	 */
    	disk = get_gendisk(bdev->bd_dev, &partno);
    	if (!disk)
    		return ERR_PTR(-ENXIO);
    
    	/*
    	 * Normally, @bdev should equal what's returned from bdget_disk()
    	 * if partno is 0; however, some drivers (floppy) use multiple
    	 * bdev's for the same physical device and @bdev may be one of the
    	 * aliases.  Keep @bdev if partno is 0.  This means claimer
    	 * tracking is broken for those devices but it has always been that
    	 * way.
    	 */
    	if (partno)
    		whole = bdget_disk(disk, 0);
    	else
    		whole = bdgrab(bdev);
    
    	module_put(disk->fops->owner);
    	put_disk(disk);
    	if (!whole)
    		return ERR_PTR(-ENOMEM);
    
    	/* prepare to claim, if successful, mark claiming in progress */
    	spin_lock(&bdev_lock);
    
    	err = bd_prepare_to_claim(bdev, whole, holder);
    	if (err == 0) {
    		whole->bd_claiming = holder;
    		spin_unlock(&bdev_lock);
    		return whole;
    	} else {
    		spin_unlock(&bdev_lock);
    		bdput(whole);
    		return ERR_PTR(err);
    	}
    }
    
    #ifdef CONFIG_SYSFS
    struct bd_holder_disk {
    	struct list_head	list;
    	struct gendisk		*disk;
    	int			refcnt;
    };
    
    static struct bd_holder_disk *bd_find_holder_disk(struct block_device *bdev,
    						  struct gendisk *disk)
    {
    	struct bd_holder_disk *holder;
    
    	list_for_each_entry(holder, &bdev->bd_holder_disks, list)
    		if (holder->disk == disk)
    			return holder;
    	return NULL;
    }
    
    static int add_symlink(struct kobject *from, struct kobject *to)
    {
    	return sysfs_create_link(from, to, kobject_name(to));
    }
    
    static void del_symlink(struct kobject *from, struct kobject *to)
    {
    	sysfs_remove_link(from, kobject_name(to));
    }
    
    /**
     * bd_link_disk_holder - create symlinks between holding disk and slave bdev
     * @bdev: the claimed slave bdev
     * @disk: the holding disk
     *
     * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT.
     *
     * This functions creates the following sysfs symlinks.
     *
     * - from "slaves" directory of the holder @disk to the claimed @bdev