Skip to content
Snippets Groups Projects
buffer.c 90.3 KiB
Newer Older
  • Learn to ignore specific revisions
  • Kenneth Johansson's avatar
    Kenneth Johansson committed
    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000
    /*
     *  linux/fs/buffer.c
     *
     *  Copyright (C) 1991, 1992, 2002  Linus Torvalds
     */
    
    /*
     * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
     *
     * Removed a lot of unnecessary code and simplified things now that
     * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
     *
     * Speed up hash, lru, and free list operations.  Use gfp() for allocating
     * hash table, use SLAB cache for buffer heads. SMP threading.  -DaveM
     *
     * Added 32k buffer block sizes - these are required older ARM systems. - RMK
     *
     * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
     */
    
    #include <linux/kernel.h>
    #include <linux/syscalls.h>
    #include <linux/fs.h>
    #include <linux/iomap.h>
    #include <linux/mm.h>
    #include <linux/percpu.h>
    #include <linux/slab.h>
    #include <linux/capability.h>
    #include <linux/blkdev.h>
    #include <linux/file.h>
    #include <linux/quotaops.h>
    #include <linux/highmem.h>
    #include <linux/export.h>
    #include <linux/backing-dev.h>
    #include <linux/writeback.h>
    #include <linux/hash.h>
    #include <linux/suspend.h>
    #include <linux/buffer_head.h>
    #include <linux/task_io_accounting_ops.h>
    #include <linux/bio.h>
    #include <linux/notifier.h>
    #include <linux/cpu.h>
    #include <linux/bitops.h>
    #include <linux/mpage.h>
    #include <linux/bit_spinlock.h>
    #include <trace/events/block.h>
    
    static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
    static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh,
    			 unsigned long bio_flags,
    			 struct writeback_control *wbc);
    
    #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
    
    void init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private)
    {
    	bh->b_end_io = handler;
    	bh->b_private = private;
    }
    EXPORT_SYMBOL(init_buffer);
    
    inline void touch_buffer(struct buffer_head *bh)
    {
    	trace_block_touch_buffer(bh);
    	mark_page_accessed(bh->b_page);
    }
    EXPORT_SYMBOL(touch_buffer);
    
    void __lock_buffer(struct buffer_head *bh)
    {
    	wait_on_bit_lock_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
    }
    EXPORT_SYMBOL(__lock_buffer);
    
    void unlock_buffer(struct buffer_head *bh)
    {
    	clear_bit_unlock(BH_Lock, &bh->b_state);
    	smp_mb__after_atomic();
    	wake_up_bit(&bh->b_state, BH_Lock);
    }
    EXPORT_SYMBOL(unlock_buffer);
    
    /*
     * Returns if the page has dirty or writeback buffers. If all the buffers
     * are unlocked and clean then the PageDirty information is stale. If
     * any of the pages are locked, it is assumed they are locked for IO.
     */
    void buffer_check_dirty_writeback(struct page *page,
    				     bool *dirty, bool *writeback)
    {
    	struct buffer_head *head, *bh;
    	*dirty = false;
    	*writeback = false;
    
    	BUG_ON(!PageLocked(page));
    
    	if (!page_has_buffers(page))
    		return;
    
    	if (PageWriteback(page))
    		*writeback = true;
    
    	head = page_buffers(page);
    	bh = head;
    	do {
    		if (buffer_locked(bh))
    			*writeback = true;
    
    		if (buffer_dirty(bh))
    			*dirty = true;
    
    		bh = bh->b_this_page;
    	} while (bh != head);
    }
    EXPORT_SYMBOL(buffer_check_dirty_writeback);
    
    /*
     * Block until a buffer comes unlocked.  This doesn't stop it
     * from becoming locked again - you have to lock it yourself
     * if you want to preserve its state.
     */
    void __wait_on_buffer(struct buffer_head * bh)
    {
    	wait_on_bit_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
    }
    EXPORT_SYMBOL(__wait_on_buffer);
    
    static void
    __clear_page_buffers(struct page *page)
    {
    	ClearPagePrivate(page);
    	set_page_private(page, 0);
    	put_page(page);
    }
    
    static void buffer_io_error(struct buffer_head *bh, char *msg)
    {
    	if (!test_bit(BH_Quiet, &bh->b_state))
    		printk_ratelimited(KERN_ERR
    			"Buffer I/O error on dev %pg, logical block %llu%s\n",
    			bh->b_bdev, (unsigned long long)bh->b_blocknr, msg);
    }
    
    /*
     * End-of-IO handler helper function which does not touch the bh after
     * unlocking it.
     * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
     * a race there is benign: unlock_buffer() only use the bh's address for
     * hashing after unlocking the buffer, so it doesn't actually touch the bh
     * itself.
     */
    static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
    {
    	if (uptodate) {
    		set_buffer_uptodate(bh);
    	} else {
    		/* This happens, due to failed read-ahead attempts. */
    		clear_buffer_uptodate(bh);
    	}
    	unlock_buffer(bh);
    }
    
    /*
     * Default synchronous end-of-IO handler..  Just mark it up-to-date and
     * unlock the buffer. This is what ll_rw_block uses too.
     */
    void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
    {
    	__end_buffer_read_notouch(bh, uptodate);
    	put_bh(bh);
    }
    EXPORT_SYMBOL(end_buffer_read_sync);
    
    void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
    {
    	if (uptodate) {
    		set_buffer_uptodate(bh);
    	} else {
    		buffer_io_error(bh, ", lost sync page write");
    		set_buffer_write_io_error(bh);
    		clear_buffer_uptodate(bh);
    	}
    	unlock_buffer(bh);
    	put_bh(bh);
    }
    EXPORT_SYMBOL(end_buffer_write_sync);
    
    /*
     * Various filesystems appear to want __find_get_block to be non-blocking.
     * But it's the page lock which protects the buffers.  To get around this,
     * we get exclusion from try_to_free_buffers with the blockdev mapping's
     * private_lock.
     *
     * Hack idea: for the blockdev mapping, i_bufferlist_lock contention
     * may be quite high.  This code could TryLock the page, and if that
     * succeeds, there is no need to take private_lock. (But if
     * private_lock is contended then so is mapping->tree_lock).
     */
    static struct buffer_head *
    __find_get_block_slow(struct block_device *bdev, sector_t block)
    {
    	struct inode *bd_inode = bdev->bd_inode;
    	struct address_space *bd_mapping = bd_inode->i_mapping;
    	struct buffer_head *ret = NULL;
    	pgoff_t index;
    	struct buffer_head *bh;
    	struct buffer_head *head;
    	struct page *page;
    	int all_mapped = 1;
    
    	index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
    	page = find_get_page_flags(bd_mapping, index, FGP_ACCESSED);
    	if (!page)
    		goto out;
    
    	spin_lock(&bd_mapping->private_lock);
    	if (!page_has_buffers(page))
    		goto out_unlock;
    	head = page_buffers(page);
    	bh = head;
    	do {
    		if (!buffer_mapped(bh))
    			all_mapped = 0;
    		else if (bh->b_blocknr == block) {
    			ret = bh;
    			get_bh(bh);
    			goto out_unlock;
    		}
    		bh = bh->b_this_page;
    	} while (bh != head);
    
    	/* we might be here because some of the buffers on this page are
    	 * not mapped.  This is due to various races between
    	 * file io on the block device and getblk.  It gets dealt with
    	 * elsewhere, don't buffer_error if we had some unmapped buffers
    	 */
    	if (all_mapped) {
    		printk("__find_get_block_slow() failed. "
    			"block=%llu, b_blocknr=%llu\n",
    			(unsigned long long)block,
    			(unsigned long long)bh->b_blocknr);
    		printk("b_state=0x%08lx, b_size=%zu\n",
    			bh->b_state, bh->b_size);
    		printk("device %pg blocksize: %d\n", bdev,
    			1 << bd_inode->i_blkbits);
    	}
    out_unlock:
    	spin_unlock(&bd_mapping->private_lock);
    	put_page(page);
    out:
    	return ret;
    }
    
    /*
     * Kick the writeback threads then try to free up some ZONE_NORMAL memory.
     */
    static void free_more_memory(void)
    {
    	struct zoneref *z;
    	int nid;
    
    	wakeup_flusher_threads(1024, WB_REASON_FREE_MORE_MEM);
    	yield();
    
    	for_each_online_node(nid) {
    
    		z = first_zones_zonelist(node_zonelist(nid, GFP_NOFS),
    						gfp_zone(GFP_NOFS), NULL);
    		if (z->zone)
    			try_to_free_pages(node_zonelist(nid, GFP_NOFS), 0,
    						GFP_NOFS, NULL);
    	}
    }
    
    /*
     * I/O completion handler for block_read_full_page() - pages
     * which come unlocked at the end of I/O.
     */
    static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
    {
    	unsigned long flags;
    	struct buffer_head *first;
    	struct buffer_head *tmp;
    	struct page *page;
    	int page_uptodate = 1;
    
    	BUG_ON(!buffer_async_read(bh));
    
    	page = bh->b_page;
    	if (uptodate) {
    		set_buffer_uptodate(bh);
    	} else {
    		clear_buffer_uptodate(bh);
    		buffer_io_error(bh, ", async page read");
    		SetPageError(page);
    	}
    
    	/*
    	 * Be _very_ careful from here on. Bad things can happen if
    	 * two buffer heads end IO at almost the same time and both
    	 * decide that the page is now completely done.
    	 */
    	first = page_buffers(page);
    	local_irq_save(flags);
    	bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
    	clear_buffer_async_read(bh);
    	unlock_buffer(bh);
    	tmp = bh;
    	do {
    		if (!buffer_uptodate(tmp))
    			page_uptodate = 0;
    		if (buffer_async_read(tmp)) {
    			BUG_ON(!buffer_locked(tmp));
    			goto still_busy;
    		}
    		tmp = tmp->b_this_page;
    	} while (tmp != bh);
    	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
    	local_irq_restore(flags);
    
    	/*
    	 * If none of the buffers had errors and they are all
    	 * uptodate then we can set the page uptodate.
    	 */
    	if (page_uptodate && !PageError(page))
    		SetPageUptodate(page);
    	unlock_page(page);
    	return;
    
    still_busy:
    	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
    	local_irq_restore(flags);
    	return;
    }
    
    /*
     * Completion handler for block_write_full_page() - pages which are unlocked
     * during I/O, and which have PageWriteback cleared upon I/O completion.
     */
    void end_buffer_async_write(struct buffer_head *bh, int uptodate)
    {
    	unsigned long flags;
    	struct buffer_head *first;
    	struct buffer_head *tmp;
    	struct page *page;
    
    	BUG_ON(!buffer_async_write(bh));
    
    	page = bh->b_page;
    	if (uptodate) {
    		set_buffer_uptodate(bh);
    	} else {
    		buffer_io_error(bh, ", lost async page write");
    		mapping_set_error(page->mapping, -EIO);
    		set_buffer_write_io_error(bh);
    		clear_buffer_uptodate(bh);
    		SetPageError(page);
    	}
    
    	first = page_buffers(page);
    	local_irq_save(flags);
    	bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
    
    	clear_buffer_async_write(bh);
    	unlock_buffer(bh);
    	tmp = bh->b_this_page;
    	while (tmp != bh) {
    		if (buffer_async_write(tmp)) {
    			BUG_ON(!buffer_locked(tmp));
    			goto still_busy;
    		}
    		tmp = tmp->b_this_page;
    	}
    	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
    	local_irq_restore(flags);
    	end_page_writeback(page);
    	return;
    
    still_busy:
    	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
    	local_irq_restore(flags);
    	return;
    }
    EXPORT_SYMBOL(end_buffer_async_write);
    
    /*
     * If a page's buffers are under async readin (end_buffer_async_read
     * completion) then there is a possibility that another thread of
     * control could lock one of the buffers after it has completed
     * but while some of the other buffers have not completed.  This
     * locked buffer would confuse end_buffer_async_read() into not unlocking
     * the page.  So the absence of BH_Async_Read tells end_buffer_async_read()
     * that this buffer is not under async I/O.
     *
     * The page comes unlocked when it has no locked buffer_async buffers
     * left.
     *
     * PageLocked prevents anyone starting new async I/O reads any of
     * the buffers.
     *
     * PageWriteback is used to prevent simultaneous writeout of the same
     * page.
     *
     * PageLocked prevents anyone from starting writeback of a page which is
     * under read I/O (PageWriteback is only ever set against a locked page).
     */
    static void mark_buffer_async_read(struct buffer_head *bh)
    {
    	bh->b_end_io = end_buffer_async_read;
    	set_buffer_async_read(bh);
    }
    
    static void mark_buffer_async_write_endio(struct buffer_head *bh,
    					  bh_end_io_t *handler)
    {
    	bh->b_end_io = handler;
    	set_buffer_async_write(bh);
    }
    
    void mark_buffer_async_write(struct buffer_head *bh)
    {
    	mark_buffer_async_write_endio(bh, end_buffer_async_write);
    }
    EXPORT_SYMBOL(mark_buffer_async_write);
    
    
    /*
     * fs/buffer.c contains helper functions for buffer-backed address space's
     * fsync functions.  A common requirement for buffer-based filesystems is
     * that certain data from the backing blockdev needs to be written out for
     * a successful fsync().  For example, ext2 indirect blocks need to be
     * written back and waited upon before fsync() returns.
     *
     * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
     * inode_has_buffers() and invalidate_inode_buffers() are provided for the
     * management of a list of dependent buffers at ->i_mapping->private_list.
     *
     * Locking is a little subtle: try_to_free_buffers() will remove buffers
     * from their controlling inode's queue when they are being freed.  But
     * try_to_free_buffers() will be operating against the *blockdev* mapping
     * at the time, not against the S_ISREG file which depends on those buffers.
     * So the locking for private_list is via the private_lock in the address_space
     * which backs the buffers.  Which is different from the address_space 
     * against which the buffers are listed.  So for a particular address_space,
     * mapping->private_lock does *not* protect mapping->private_list!  In fact,
     * mapping->private_list will always be protected by the backing blockdev's
     * ->private_lock.
     *
     * Which introduces a requirement: all buffers on an address_space's
     * ->private_list must be from the same address_space: the blockdev's.
     *
     * address_spaces which do not place buffers at ->private_list via these
     * utility functions are free to use private_lock and private_list for
     * whatever they want.  The only requirement is that list_empty(private_list)
     * be true at clear_inode() time.
     *
     * FIXME: clear_inode should not call invalidate_inode_buffers().  The
     * filesystems should do that.  invalidate_inode_buffers() should just go
     * BUG_ON(!list_empty).
     *
     * FIXME: mark_buffer_dirty_inode() is a data-plane operation.  It should
     * take an address_space, not an inode.  And it should be called
     * mark_buffer_dirty_fsync() to clearly define why those buffers are being
     * queued up.
     *
     * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
     * list if it is already on a list.  Because if the buffer is on a list,
     * it *must* already be on the right one.  If not, the filesystem is being
     * silly.  This will save a ton of locking.  But first we have to ensure
     * that buffers are taken *off* the old inode's list when they are freed
     * (presumably in truncate).  That requires careful auditing of all
     * filesystems (do it inside bforget()).  It could also be done by bringing
     * b_inode back.
     */
    
    /*
     * The buffer's backing address_space's private_lock must be held
     */
    static void __remove_assoc_queue(struct buffer_head *bh)
    {
    	list_del_init(&bh->b_assoc_buffers);
    	WARN_ON(!bh->b_assoc_map);
    	if (buffer_write_io_error(bh))
    		set_bit(AS_EIO, &bh->b_assoc_map->flags);
    	bh->b_assoc_map = NULL;
    }
    
    int inode_has_buffers(struct inode *inode)
    {
    	return !list_empty(&inode->i_data.private_list);
    }
    
    /*
     * osync is designed to support O_SYNC io.  It waits synchronously for
     * all already-submitted IO to complete, but does not queue any new
     * writes to the disk.
     *
     * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
     * you dirty the buffers, and then use osync_inode_buffers to wait for
     * completion.  Any other dirty buffers which are not yet queued for
     * write will not be flushed to disk by the osync.
     */
    static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
    {
    	struct buffer_head *bh;
    	struct list_head *p;
    	int err = 0;
    
    	spin_lock(lock);
    repeat:
    	list_for_each_prev(p, list) {
    		bh = BH_ENTRY(p);
    		if (buffer_locked(bh)) {
    			get_bh(bh);
    			spin_unlock(lock);
    			wait_on_buffer(bh);
    			if (!buffer_uptodate(bh))
    				err = -EIO;
    			brelse(bh);
    			spin_lock(lock);
    			goto repeat;
    		}
    	}
    	spin_unlock(lock);
    	return err;
    }
    
    static void do_thaw_one(struct super_block *sb, void *unused)
    {
    	while (sb->s_bdev && !thaw_bdev(sb->s_bdev, sb))
    		printk(KERN_WARNING "Emergency Thaw on %pg\n", sb->s_bdev);
    }
    
    static void do_thaw_all(struct work_struct *work)
    {
    	iterate_supers(do_thaw_one, NULL);
    	kfree(work);
    	printk(KERN_WARNING "Emergency Thaw complete\n");
    }
    
    /**
     * emergency_thaw_all -- forcibly thaw every frozen filesystem
     *
     * Used for emergency unfreeze of all filesystems via SysRq
     */
    void emergency_thaw_all(void)
    {
    	struct work_struct *work;
    
    	work = kmalloc(sizeof(*work), GFP_ATOMIC);
    	if (work) {
    		INIT_WORK(work, do_thaw_all);
    		schedule_work(work);
    	}
    }
    
    /**
     * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
     * @mapping: the mapping which wants those buffers written
     *
     * Starts I/O against the buffers at mapping->private_list, and waits upon
     * that I/O.
     *
     * Basically, this is a convenience function for fsync().
     * @mapping is a file or directory which needs those buffers to be written for
     * a successful fsync().
     */
    int sync_mapping_buffers(struct address_space *mapping)
    {
    	struct address_space *buffer_mapping = mapping->private_data;
    
    	if (buffer_mapping == NULL || list_empty(&mapping->private_list))
    		return 0;
    
    	return fsync_buffers_list(&buffer_mapping->private_lock,
    					&mapping->private_list);
    }
    EXPORT_SYMBOL(sync_mapping_buffers);
    
    /*
     * Called when we've recently written block `bblock', and it is known that
     * `bblock' was for a buffer_boundary() buffer.  This means that the block at
     * `bblock + 1' is probably a dirty indirect block.  Hunt it down and, if it's
     * dirty, schedule it for IO.  So that indirects merge nicely with their data.
     */
    void write_boundary_block(struct block_device *bdev,
    			sector_t bblock, unsigned blocksize)
    {
    	struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
    	if (bh) {
    		if (buffer_dirty(bh))
    			ll_rw_block(REQ_OP_WRITE, 0, 1, &bh);
    		put_bh(bh);
    	}
    }
    
    void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
    {
    	struct address_space *mapping = inode->i_mapping;
    	struct address_space *buffer_mapping = bh->b_page->mapping;
    
    	mark_buffer_dirty(bh);
    	if (!mapping->private_data) {
    		mapping->private_data = buffer_mapping;
    	} else {
    		BUG_ON(mapping->private_data != buffer_mapping);
    	}
    	if (!bh->b_assoc_map) {
    		spin_lock(&buffer_mapping->private_lock);
    		list_move_tail(&bh->b_assoc_buffers,
    				&mapping->private_list);
    		bh->b_assoc_map = mapping;
    		spin_unlock(&buffer_mapping->private_lock);
    	}
    }
    EXPORT_SYMBOL(mark_buffer_dirty_inode);
    
    /*
     * Mark the page dirty, and set it dirty in the radix tree, and mark the inode
     * dirty.
     *
     * If warn is true, then emit a warning if the page is not uptodate and has
     * not been truncated.
     *
     * The caller must hold lock_page_memcg().
     */
    static void __set_page_dirty(struct page *page, struct address_space *mapping,
    			     int warn)
    {
    	unsigned long flags;
    
    	spin_lock_irqsave(&mapping->tree_lock, flags);
    	if (page->mapping) {	/* Race with truncate? */
    		WARN_ON_ONCE(warn && !PageUptodate(page));
    		account_page_dirtied(page, mapping);
    		radix_tree_tag_set(&mapping->page_tree,
    				page_index(page), PAGECACHE_TAG_DIRTY);
    	}
    	spin_unlock_irqrestore(&mapping->tree_lock, flags);
    }
    
    /*
     * Add a page to the dirty page list.
     *
     * It is a sad fact of life that this function is called from several places
     * deeply under spinlocking.  It may not sleep.
     *
     * If the page has buffers, the uptodate buffers are set dirty, to preserve
     * dirty-state coherency between the page and the buffers.  It the page does
     * not have buffers then when they are later attached they will all be set
     * dirty.
     *
     * The buffers are dirtied before the page is dirtied.  There's a small race
     * window in which a writepage caller may see the page cleanness but not the
     * buffer dirtiness.  That's fine.  If this code were to set the page dirty
     * before the buffers, a concurrent writepage caller could clear the page dirty
     * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
     * page on the dirty page list.
     *
     * We use private_lock to lock against try_to_free_buffers while using the
     * page's buffer list.  Also use this to protect against clean buffers being
     * added to the page after it was set dirty.
     *
     * FIXME: may need to call ->reservepage here as well.  That's rather up to the
     * address_space though.
     */
    int __set_page_dirty_buffers(struct page *page)
    {
    	int newly_dirty;
    	struct address_space *mapping = page_mapping(page);
    
    	if (unlikely(!mapping))
    		return !TestSetPageDirty(page);
    
    	spin_lock(&mapping->private_lock);
    	if (page_has_buffers(page)) {
    		struct buffer_head *head = page_buffers(page);
    		struct buffer_head *bh = head;
    
    		do {
    			set_buffer_dirty(bh);
    			bh = bh->b_this_page;
    		} while (bh != head);
    	}
    	/*
    	 * Lock out page->mem_cgroup migration to keep PageDirty
    	 * synchronized with per-memcg dirty page counters.
    	 */
    	lock_page_memcg(page);
    	newly_dirty = !TestSetPageDirty(page);
    	spin_unlock(&mapping->private_lock);
    
    	if (newly_dirty)
    		__set_page_dirty(page, mapping, 1);
    
    	unlock_page_memcg(page);
    
    	if (newly_dirty)
    		__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
    
    	return newly_dirty;
    }
    EXPORT_SYMBOL(__set_page_dirty_buffers);
    
    /*
     * Write out and wait upon a list of buffers.
     *
     * We have conflicting pressures: we want to make sure that all
     * initially dirty buffers get waited on, but that any subsequently
     * dirtied buffers don't.  After all, we don't want fsync to last
     * forever if somebody is actively writing to the file.
     *
     * Do this in two main stages: first we copy dirty buffers to a
     * temporary inode list, queueing the writes as we go.  Then we clean
     * up, waiting for those writes to complete.
     * 
     * During this second stage, any subsequent updates to the file may end
     * up refiling the buffer on the original inode's dirty list again, so
     * there is a chance we will end up with a buffer queued for write but
     * not yet completed on that list.  So, as a final cleanup we go through
     * the osync code to catch these locked, dirty buffers without requeuing
     * any newly dirty buffers for write.
     */
    static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
    {
    	struct buffer_head *bh;
    	struct list_head tmp;
    	struct address_space *mapping;
    	int err = 0, err2;
    	struct blk_plug plug;
    
    	INIT_LIST_HEAD(&tmp);
    	blk_start_plug(&plug);
    
    	spin_lock(lock);
    	while (!list_empty(list)) {
    		bh = BH_ENTRY(list->next);
    		mapping = bh->b_assoc_map;
    		__remove_assoc_queue(bh);
    		/* Avoid race with mark_buffer_dirty_inode() which does
    		 * a lockless check and we rely on seeing the dirty bit */
    		smp_mb();
    		if (buffer_dirty(bh) || buffer_locked(bh)) {
    			list_add(&bh->b_assoc_buffers, &tmp);
    			bh->b_assoc_map = mapping;
    			if (buffer_dirty(bh)) {
    				get_bh(bh);
    				spin_unlock(lock);
    				/*
    				 * Ensure any pending I/O completes so that
    				 * write_dirty_buffer() actually writes the
    				 * current contents - it is a noop if I/O is
    				 * still in flight on potentially older
    				 * contents.
    				 */
    				write_dirty_buffer(bh, WRITE_SYNC);
    
    				/*
    				 * Kick off IO for the previous mapping. Note
    				 * that we will not run the very last mapping,
    				 * wait_on_buffer() will do that for us
    				 * through sync_buffer().
    				 */
    				brelse(bh);
    				spin_lock(lock);
    			}
    		}
    	}
    
    	spin_unlock(lock);
    	blk_finish_plug(&plug);
    	spin_lock(lock);
    
    	while (!list_empty(&tmp)) {
    		bh = BH_ENTRY(tmp.prev);
    		get_bh(bh);
    		mapping = bh->b_assoc_map;
    		__remove_assoc_queue(bh);
    		/* Avoid race with mark_buffer_dirty_inode() which does
    		 * a lockless check and we rely on seeing the dirty bit */
    		smp_mb();
    		if (buffer_dirty(bh)) {
    			list_add(&bh->b_assoc_buffers,
    				 &mapping->private_list);
    			bh->b_assoc_map = mapping;
    		}
    		spin_unlock(lock);
    		wait_on_buffer(bh);
    		if (!buffer_uptodate(bh))
    			err = -EIO;
    		brelse(bh);
    		spin_lock(lock);
    	}
    	
    	spin_unlock(lock);
    	err2 = osync_buffers_list(lock, list);
    	if (err)
    		return err;
    	else
    		return err2;
    }
    
    /*
     * Invalidate any and all dirty buffers on a given inode.  We are
     * probably unmounting the fs, but that doesn't mean we have already
     * done a sync().  Just drop the buffers from the inode list.
     *
     * NOTE: we take the inode's blockdev's mapping's private_lock.  Which
     * assumes that all the buffers are against the blockdev.  Not true
     * for reiserfs.
     */
    void invalidate_inode_buffers(struct inode *inode)
    {
    	if (inode_has_buffers(inode)) {
    		struct address_space *mapping = &inode->i_data;
    		struct list_head *list = &mapping->private_list;
    		struct address_space *buffer_mapping = mapping->private_data;
    
    		spin_lock(&buffer_mapping->private_lock);
    		while (!list_empty(list))
    			__remove_assoc_queue(BH_ENTRY(list->next));
    		spin_unlock(&buffer_mapping->private_lock);
    	}
    }
    EXPORT_SYMBOL(invalidate_inode_buffers);
    
    /*
     * Remove any clean buffers from the inode's buffer list.  This is called
     * when we're trying to free the inode itself.  Those buffers can pin it.
     *
     * Returns true if all buffers were removed.
     */
    int remove_inode_buffers(struct inode *inode)
    {
    	int ret = 1;
    
    	if (inode_has_buffers(inode)) {
    		struct address_space *mapping = &inode->i_data;
    		struct list_head *list = &mapping->private_list;
    		struct address_space *buffer_mapping = mapping->private_data;
    
    		spin_lock(&buffer_mapping->private_lock);
    		while (!list_empty(list)) {
    			struct buffer_head *bh = BH_ENTRY(list->next);
    			if (buffer_dirty(bh)) {
    				ret = 0;
    				break;
    			}
    			__remove_assoc_queue(bh);
    		}
    		spin_unlock(&buffer_mapping->private_lock);
    	}
    	return ret;
    }
    
    /*
     * Create the appropriate buffers when given a page for data area and
     * the size of each buffer.. Use the bh->b_this_page linked list to
     * follow the buffers created.  Return NULL if unable to create more
     * buffers.
     *
     * The retry flag is used to differentiate async IO (paging, swapping)
     * which may not fail from ordinary buffer allocations.
     */
    struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
    		int retry)
    {
    	struct buffer_head *bh, *head;
    	long offset;
    
    try_again:
    	head = NULL;
    	offset = PAGE_SIZE;
    	while ((offset -= size) >= 0) {
    		bh = alloc_buffer_head(GFP_NOFS);
    		if (!bh)
    			goto no_grow;
    
    		bh->b_this_page = head;
    		bh->b_blocknr = -1;
    		head = bh;
    
    		bh->b_size = size;
    
    		/* Link the buffer to its page */
    		set_bh_page(bh, page, offset);
    	}
    	return head;
    /*
     * In case anything failed, we just free everything we got.
     */
    no_grow:
    	if (head) {
    		do {
    			bh = head;
    			head = head->b_this_page;
    			free_buffer_head(bh);
    		} while (head);
    	}
    
    	/*
    	 * Return failure for non-async IO requests.  Async IO requests
    	 * are not allowed to fail, so we have to wait until buffer heads
    	 * become available.  But we don't want tasks sleeping with 
    	 * partially complete buffers, so all were released above.
    	 */
    	if (!retry)
    		return NULL;
    
    	/* We're _really_ low on memory. Now we just
    	 * wait for old buffer heads to become free due to
    	 * finishing IO.  Since this is an async request and
    	 * the reserve list is empty, we're sure there are 
    	 * async buffer heads in use.
    	 */
    	free_more_memory();
    	goto try_again;
    }
    EXPORT_SYMBOL_GPL(alloc_page_buffers);
    
    static inline void
    link_dev_buffers(struct page *page, struct buffer_head *head)
    {
    	struct buffer_head *bh, *tail;
    
    	bh = head;
    	do {
    		tail = bh;
    		bh = bh->b_this_page;
    	} while (bh);
    	tail->b_this_page = head;
    	attach_page_buffers(page, head);
    }
    
    static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size)
    {
    	sector_t retval = ~((sector_t)0);
    	loff_t sz = i_size_read(bdev->bd_inode);
    
    	if (sz) {
    		unsigned int sizebits = blksize_bits(size);
    		retval = (sz >> sizebits);
    	}
    	return retval;
    }
    
    /*
     * Initialise the state of a blockdev page's buffers.
     */ 
    static sector_t
    init_page_buffers(struct page *page, struct block_device *bdev,
    			sector_t block, int size)
    {
    	struct buffer_head *head = page_buffers(page);
    	struct buffer_head *bh = head;
    	int uptodate = PageUptodate(page);
    	sector_t end_block = blkdev_max_block(I_BDEV(bdev->bd_inode), size);
    
    	do {
    		if (!buffer_mapped(bh)) {
    			init_buffer(bh, NULL, NULL);
    			bh->b_bdev = bdev;
    			bh->b_blocknr = block;
    			if (uptodate)
    				set_buffer_uptodate(bh);
    			if (block < end_block)
    				set_buffer_mapped(bh);
    		}
    		block++;
    		bh = bh->b_this_page;
    	} while (bh != head);
    
    	/*
    	 * Caller needs to validate requested block against end of device.
    	 */
    	return end_block;
    }
    
    /*
     * Create the page-cache page that contains the requested block.
     *
     * This is used purely for blockdev mappings.
     */
    static int
    grow_dev_page(struct block_device *bdev, sector_t block,
    	      pgoff_t index, int size, int sizebits, gfp_t gfp)
    {
    	struct inode *inode = bdev->bd_inode;
    	struct page *page;
    	struct buffer_head *bh;
    	sector_t end_block;
    	int ret = 0;		/* Will call free_more_memory() */
    	gfp_t gfp_mask;
    
    	gfp_mask = mapping_gfp_constraint(inode->i_mapping, ~__GFP_FS) | gfp;
    
    	/*
    	 * XXX: __getblk_slow() can not really deal with failure and
    	 * will endlessly loop on improvised global reclaim.  Prefer
    	 * looping in the allocator rather than here, at least that