Skip to content
Snippets Groups Projects
fs-writeback.c 70.4 KiB
Newer Older
  • Learn to ignore specific revisions
  • Kenneth Johansson's avatar
    Kenneth Johansson committed
    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000
    /*
     * fs/fs-writeback.c
     *
     * Copyright (C) 2002, Linus Torvalds.
     *
     * Contains all the functions related to writing back and waiting
     * upon dirty inodes against superblocks, and writing back dirty
     * pages against inodes.  ie: data writeback.  Writeout of the
     * inode itself is not handled here.
     *
     * 10Apr2002	Andrew Morton
     *		Split out of fs/inode.c
     *		Additions for address_space-based writeback
     */
    
    #include <linux/kernel.h>
    #include <linux/export.h>
    #include <linux/spinlock.h>
    #include <linux/slab.h>
    #include <linux/sched.h>
    #include <linux/fs.h>
    #include <linux/mm.h>
    #include <linux/pagemap.h>
    #include <linux/kthread.h>
    #include <linux/writeback.h>
    #include <linux/blkdev.h>
    #include <linux/backing-dev.h>
    #include <linux/tracepoint.h>
    #include <linux/device.h>
    #include <linux/memcontrol.h>
    #include "internal.h"
    
    /*
     * 4MB minimal write chunk size
     */
    #define MIN_WRITEBACK_PAGES	(4096UL >> (PAGE_SHIFT - 10))
    
    struct wb_completion {
    	atomic_t		cnt;
    };
    
    /*
     * Passed into wb_writeback(), essentially a subset of writeback_control
     */
    struct wb_writeback_work {
    	long nr_pages;
    	struct super_block *sb;
    	unsigned long *older_than_this;
    	enum writeback_sync_modes sync_mode;
    	unsigned int tagged_writepages:1;
    	unsigned int for_kupdate:1;
    	unsigned int range_cyclic:1;
    	unsigned int for_background:1;
    	unsigned int for_sync:1;	/* sync(2) WB_SYNC_ALL writeback */
    	unsigned int auto_free:1;	/* free on completion */
    	enum wb_reason reason;		/* why was writeback initiated? */
    
    	struct list_head list;		/* pending work list */
    	struct wb_completion *done;	/* set if the caller waits */
    };
    
    /*
     * If one wants to wait for one or more wb_writeback_works, each work's
     * ->done should be set to a wb_completion defined using the following
     * macro.  Once all work items are issued with wb_queue_work(), the caller
     * can wait for the completion of all using wb_wait_for_completion().  Work
     * items which are waited upon aren't freed automatically on completion.
     */
    #define DEFINE_WB_COMPLETION_ONSTACK(cmpl)				\
    	struct wb_completion cmpl = {					\
    		.cnt		= ATOMIC_INIT(1),			\
    	}
    
    
    /*
     * If an inode is constantly having its pages dirtied, but then the
     * updates stop dirtytime_expire_interval seconds in the past, it's
     * possible for the worst case time between when an inode has its
     * timestamps updated and when they finally get written out to be two
     * dirtytime_expire_intervals.  We set the default to 12 hours (in
     * seconds), which means most of the time inodes will have their
     * timestamps written to disk after 12 hours, but in the worst case a
     * few inodes might not their timestamps updated for 24 hours.
     */
    unsigned int dirtytime_expire_interval = 12 * 60 * 60;
    
    static inline struct inode *wb_inode(struct list_head *head)
    {
    	return list_entry(head, struct inode, i_io_list);
    }
    
    /*
     * Include the creation of the trace points after defining the
     * wb_writeback_work structure and inline functions so that the definition
     * remains local to this file.
     */
    #define CREATE_TRACE_POINTS
    #include <trace/events/writeback.h>
    
    EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage);
    
    static bool wb_io_lists_populated(struct bdi_writeback *wb)
    {
    	if (wb_has_dirty_io(wb)) {
    		return false;
    	} else {
    		set_bit(WB_has_dirty_io, &wb->state);
    		WARN_ON_ONCE(!wb->avg_write_bandwidth);
    		atomic_long_add(wb->avg_write_bandwidth,
    				&wb->bdi->tot_write_bandwidth);
    		return true;
    	}
    }
    
    static void wb_io_lists_depopulated(struct bdi_writeback *wb)
    {
    	if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) &&
    	    list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) {
    		clear_bit(WB_has_dirty_io, &wb->state);
    		WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth,
    					&wb->bdi->tot_write_bandwidth) < 0);
    	}
    }
    
    /**
     * inode_io_list_move_locked - move an inode onto a bdi_writeback IO list
     * @inode: inode to be moved
     * @wb: target bdi_writeback
     * @head: one of @wb->b_{dirty|io|more_io}
     *
     * Move @inode->i_io_list to @list of @wb and set %WB_has_dirty_io.
     * Returns %true if @inode is the first occupant of the !dirty_time IO
     * lists; otherwise, %false.
     */
    static bool inode_io_list_move_locked(struct inode *inode,
    				      struct bdi_writeback *wb,
    				      struct list_head *head)
    {
    	assert_spin_locked(&wb->list_lock);
    
    	list_move(&inode->i_io_list, head);
    
    	/* dirty_time doesn't count as dirty_io until expiration */
    	if (head != &wb->b_dirty_time)
    		return wb_io_lists_populated(wb);
    
    	wb_io_lists_depopulated(wb);
    	return false;
    }
    
    /**
     * inode_io_list_del_locked - remove an inode from its bdi_writeback IO list
     * @inode: inode to be removed
     * @wb: bdi_writeback @inode is being removed from
     *
     * Remove @inode which may be on one of @wb->b_{dirty|io|more_io} lists and
     * clear %WB_has_dirty_io if all are empty afterwards.
     */
    static void inode_io_list_del_locked(struct inode *inode,
    				     struct bdi_writeback *wb)
    {
    	assert_spin_locked(&wb->list_lock);
    
    	list_del_init(&inode->i_io_list);
    	wb_io_lists_depopulated(wb);
    }
    
    static void wb_wakeup(struct bdi_writeback *wb)
    {
    	spin_lock_bh(&wb->work_lock);
    	if (test_bit(WB_registered, &wb->state))
    		mod_delayed_work(bdi_wq, &wb->dwork, 0);
    	spin_unlock_bh(&wb->work_lock);
    }
    
    static void wb_queue_work(struct bdi_writeback *wb,
    			  struct wb_writeback_work *work)
    {
    	trace_writeback_queue(wb, work);
    
    	spin_lock_bh(&wb->work_lock);
    	if (!test_bit(WB_registered, &wb->state))
    		goto out_unlock;
    	if (work->done)
    		atomic_inc(&work->done->cnt);
    	list_add_tail(&work->list, &wb->work_list);
    	mod_delayed_work(bdi_wq, &wb->dwork, 0);
    out_unlock:
    	spin_unlock_bh(&wb->work_lock);
    }
    
    /**
     * wb_wait_for_completion - wait for completion of bdi_writeback_works
     * @bdi: bdi work items were issued to
     * @done: target wb_completion
     *
     * Wait for one or more work items issued to @bdi with their ->done field
     * set to @done, which should have been defined with
     * DEFINE_WB_COMPLETION_ONSTACK().  This function returns after all such
     * work items are completed.  Work items which are waited upon aren't freed
     * automatically on completion.
     */
    static void wb_wait_for_completion(struct backing_dev_info *bdi,
    				   struct wb_completion *done)
    {
    	atomic_dec(&done->cnt);		/* put down the initial count */
    	wait_event(bdi->wb_waitq, !atomic_read(&done->cnt));
    }
    
    #ifdef CONFIG_CGROUP_WRITEBACK
    
    /* parameters for foreign inode detection, see wb_detach_inode() */
    #define WB_FRN_TIME_SHIFT	13	/* 1s = 2^13, upto 8 secs w/ 16bit */
    #define WB_FRN_TIME_AVG_SHIFT	3	/* avg = avg * 7/8 + new * 1/8 */
    #define WB_FRN_TIME_CUT_DIV	2	/* ignore rounds < avg / 2 */
    #define WB_FRN_TIME_PERIOD	(2 * (1 << WB_FRN_TIME_SHIFT))	/* 2s */
    
    #define WB_FRN_HIST_SLOTS	16	/* inode->i_wb_frn_history is 16bit */
    #define WB_FRN_HIST_UNIT	(WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS)
    					/* each slot's duration is 2s / 16 */
    #define WB_FRN_HIST_THR_SLOTS	(WB_FRN_HIST_SLOTS / 2)
    					/* if foreign slots >= 8, switch */
    #define WB_FRN_HIST_MAX_SLOTS	(WB_FRN_HIST_THR_SLOTS / 2 + 1)
    					/* one round can affect upto 5 slots */
    
    static atomic_t isw_nr_in_flight = ATOMIC_INIT(0);
    static struct workqueue_struct *isw_wq;
    
    void __inode_attach_wb(struct inode *inode, struct page *page)
    {
    	struct backing_dev_info *bdi = inode_to_bdi(inode);
    	struct bdi_writeback *wb = NULL;
    
    	if (inode_cgwb_enabled(inode)) {
    		struct cgroup_subsys_state *memcg_css;
    
    		if (page) {
    			memcg_css = mem_cgroup_css_from_page(page);
    			wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
    		} else {
    			/* must pin memcg_css, see wb_get_create() */
    			memcg_css = task_get_css(current, memory_cgrp_id);
    			wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
    			css_put(memcg_css);
    		}
    	}
    
    	if (!wb)
    		wb = &bdi->wb;
    
    	/*
    	 * There may be multiple instances of this function racing to
    	 * update the same inode.  Use cmpxchg() to tell the winner.
    	 */
    	if (unlikely(cmpxchg(&inode->i_wb, NULL, wb)))
    		wb_put(wb);
    }
    
    /**
     * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it
     * @inode: inode of interest with i_lock held
     *
     * Returns @inode's wb with its list_lock held.  @inode->i_lock must be
     * held on entry and is released on return.  The returned wb is guaranteed
     * to stay @inode's associated wb until its list_lock is released.
     */
    static struct bdi_writeback *
    locked_inode_to_wb_and_lock_list(struct inode *inode)
    	__releases(&inode->i_lock)
    	__acquires(&wb->list_lock)
    {
    	while (true) {
    		struct bdi_writeback *wb = inode_to_wb(inode);
    
    		/*
    		 * inode_to_wb() association is protected by both
    		 * @inode->i_lock and @wb->list_lock but list_lock nests
    		 * outside i_lock.  Drop i_lock and verify that the
    		 * association hasn't changed after acquiring list_lock.
    		 */
    		wb_get(wb);
    		spin_unlock(&inode->i_lock);
    		spin_lock(&wb->list_lock);
    
    		/* i_wb may have changed inbetween, can't use inode_to_wb() */
    		if (likely(wb == inode->i_wb)) {
    			wb_put(wb);	/* @inode already has ref */
    			return wb;
    		}
    
    		spin_unlock(&wb->list_lock);
    		wb_put(wb);
    		cpu_relax();
    		spin_lock(&inode->i_lock);
    	}
    }
    
    /**
     * inode_to_wb_and_lock_list - determine an inode's wb and lock it
     * @inode: inode of interest
     *
     * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held
     * on entry.
     */
    static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
    	__acquires(&wb->list_lock)
    {
    	spin_lock(&inode->i_lock);
    	return locked_inode_to_wb_and_lock_list(inode);
    }
    
    struct inode_switch_wbs_context {
    	struct inode		*inode;
    	struct bdi_writeback	*new_wb;
    
    	struct rcu_head		rcu_head;
    	struct work_struct	work;
    };
    
    static void inode_switch_wbs_work_fn(struct work_struct *work)
    {
    	struct inode_switch_wbs_context *isw =
    		container_of(work, struct inode_switch_wbs_context, work);
    	struct inode *inode = isw->inode;
    	struct address_space *mapping = inode->i_mapping;
    	struct bdi_writeback *old_wb = inode->i_wb;
    	struct bdi_writeback *new_wb = isw->new_wb;
    	struct radix_tree_iter iter;
    	bool switched = false;
    	void **slot;
    
    	/*
    	 * By the time control reaches here, RCU grace period has passed
    	 * since I_WB_SWITCH assertion and all wb stat update transactions
    	 * between unlocked_inode_to_wb_begin/end() are guaranteed to be
    	 * synchronizing against mapping->tree_lock.
    	 *
    	 * Grabbing old_wb->list_lock, inode->i_lock and mapping->tree_lock
    	 * gives us exclusion against all wb related operations on @inode
    	 * including IO list manipulations and stat updates.
    	 */
    	if (old_wb < new_wb) {
    		spin_lock(&old_wb->list_lock);
    		spin_lock_nested(&new_wb->list_lock, SINGLE_DEPTH_NESTING);
    	} else {
    		spin_lock(&new_wb->list_lock);
    		spin_lock_nested(&old_wb->list_lock, SINGLE_DEPTH_NESTING);
    	}
    	spin_lock(&inode->i_lock);
    	spin_lock_irq(&mapping->tree_lock);
    
    	/*
    	 * Once I_FREEING is visible under i_lock, the eviction path owns
    	 * the inode and we shouldn't modify ->i_io_list.
    	 */
    	if (unlikely(inode->i_state & I_FREEING))
    		goto skip_switch;
    
    	/*
    	 * Count and transfer stats.  Note that PAGECACHE_TAG_DIRTY points
    	 * to possibly dirty pages while PAGECACHE_TAG_WRITEBACK points to
    	 * pages actually under underwriteback.
    	 */
    	radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter, 0,
    				   PAGECACHE_TAG_DIRTY) {
    		struct page *page = radix_tree_deref_slot_protected(slot,
    							&mapping->tree_lock);
    		if (likely(page) && PageDirty(page)) {
    			__dec_wb_stat(old_wb, WB_RECLAIMABLE);
    			__inc_wb_stat(new_wb, WB_RECLAIMABLE);
    		}
    	}
    
    	radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter, 0,
    				   PAGECACHE_TAG_WRITEBACK) {
    		struct page *page = radix_tree_deref_slot_protected(slot,
    							&mapping->tree_lock);
    		if (likely(page)) {
    			WARN_ON_ONCE(!PageWriteback(page));
    			__dec_wb_stat(old_wb, WB_WRITEBACK);
    			__inc_wb_stat(new_wb, WB_WRITEBACK);
    		}
    	}
    
    	wb_get(new_wb);
    
    	/*
    	 * Transfer to @new_wb's IO list if necessary.  The specific list
    	 * @inode was on is ignored and the inode is put on ->b_dirty which
    	 * is always correct including from ->b_dirty_time.  The transfer
    	 * preserves @inode->dirtied_when ordering.
    	 */
    	if (!list_empty(&inode->i_io_list)) {
    		struct inode *pos;
    
    		inode_io_list_del_locked(inode, old_wb);
    		inode->i_wb = new_wb;
    		list_for_each_entry(pos, &new_wb->b_dirty, i_io_list)
    			if (time_after_eq(inode->dirtied_when,
    					  pos->dirtied_when))
    				break;
    		inode_io_list_move_locked(inode, new_wb, pos->i_io_list.prev);
    	} else {
    		inode->i_wb = new_wb;
    	}
    
    	/* ->i_wb_frn updates may race wbc_detach_inode() but doesn't matter */
    	inode->i_wb_frn_winner = 0;
    	inode->i_wb_frn_avg_time = 0;
    	inode->i_wb_frn_history = 0;
    	switched = true;
    skip_switch:
    	/*
    	 * Paired with load_acquire in unlocked_inode_to_wb_begin() and
    	 * ensures that the new wb is visible if they see !I_WB_SWITCH.
    	 */
    	smp_store_release(&inode->i_state, inode->i_state & ~I_WB_SWITCH);
    
    	spin_unlock_irq(&mapping->tree_lock);
    	spin_unlock(&inode->i_lock);
    	spin_unlock(&new_wb->list_lock);
    	spin_unlock(&old_wb->list_lock);
    
    	if (switched) {
    		wb_wakeup(new_wb);
    		wb_put(old_wb);
    	}
    	wb_put(new_wb);
    
    	iput(inode);
    	kfree(isw);
    
    	atomic_dec(&isw_nr_in_flight);
    }
    
    static void inode_switch_wbs_rcu_fn(struct rcu_head *rcu_head)
    {
    	struct inode_switch_wbs_context *isw = container_of(rcu_head,
    				struct inode_switch_wbs_context, rcu_head);
    
    	/* needs to grab bh-unsafe locks, bounce to work item */
    	INIT_WORK(&isw->work, inode_switch_wbs_work_fn);
    	queue_work(isw_wq, &isw->work);
    }
    
    /**
     * inode_switch_wbs - change the wb association of an inode
     * @inode: target inode
     * @new_wb_id: ID of the new wb
     *
     * Switch @inode's wb association to the wb identified by @new_wb_id.  The
     * switching is performed asynchronously and may fail silently.
     */
    static void inode_switch_wbs(struct inode *inode, int new_wb_id)
    {
    	struct backing_dev_info *bdi = inode_to_bdi(inode);
    	struct cgroup_subsys_state *memcg_css;
    	struct inode_switch_wbs_context *isw;
    
    	/* noop if seems to be already in progress */
    	if (inode->i_state & I_WB_SWITCH)
    		return;
    
    	isw = kzalloc(sizeof(*isw), GFP_ATOMIC);
    	if (!isw)
    		return;
    
    	/* find and pin the new wb */
    	rcu_read_lock();
    	memcg_css = css_from_id(new_wb_id, &memory_cgrp_subsys);
    	if (memcg_css)
    		isw->new_wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
    	rcu_read_unlock();
    	if (!isw->new_wb)
    		goto out_free;
    
    	/* while holding I_WB_SWITCH, no one else can update the association */
    	spin_lock(&inode->i_lock);
    	if (!(inode->i_sb->s_flags & MS_ACTIVE) ||
    	    inode->i_state & (I_WB_SWITCH | I_FREEING) ||
    	    inode_to_wb(inode) == isw->new_wb) {
    		spin_unlock(&inode->i_lock);
    		goto out_free;
    	}
    	inode->i_state |= I_WB_SWITCH;
    	__iget(inode);
    	spin_unlock(&inode->i_lock);
    
    	isw->inode = inode;
    
    	atomic_inc(&isw_nr_in_flight);
    
    	/*
    	 * In addition to synchronizing among switchers, I_WB_SWITCH tells
    	 * the RCU protected stat update paths to grab the mapping's
    	 * tree_lock so that stat transfer can synchronize against them.
    	 * Let's continue after I_WB_SWITCH is guaranteed to be visible.
    	 */
    	call_rcu(&isw->rcu_head, inode_switch_wbs_rcu_fn);
    	return;
    
    out_free:
    	if (isw->new_wb)
    		wb_put(isw->new_wb);
    	kfree(isw);
    }
    
    /**
     * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it
     * @wbc: writeback_control of interest
     * @inode: target inode
     *
     * @inode is locked and about to be written back under the control of @wbc.
     * Record @inode's writeback context into @wbc and unlock the i_lock.  On
     * writeback completion, wbc_detach_inode() should be called.  This is used
     * to track the cgroup writeback context.
     */
    void wbc_attach_and_unlock_inode(struct writeback_control *wbc,
    				 struct inode *inode)
    {
    	if (!inode_cgwb_enabled(inode)) {
    		spin_unlock(&inode->i_lock);
    		return;
    	}
    
    	wbc->wb = inode_to_wb(inode);
    	wbc->inode = inode;
    
    	wbc->wb_id = wbc->wb->memcg_css->id;
    	wbc->wb_lcand_id = inode->i_wb_frn_winner;
    	wbc->wb_tcand_id = 0;
    	wbc->wb_bytes = 0;
    	wbc->wb_lcand_bytes = 0;
    	wbc->wb_tcand_bytes = 0;
    
    	wb_get(wbc->wb);
    	spin_unlock(&inode->i_lock);
    
    	/*
    	 * A dying wb indicates that the memcg-blkcg mapping has changed
    	 * and a new wb is already serving the memcg.  Switch immediately.
    	 */
    	if (unlikely(wb_dying(wbc->wb)))
    		inode_switch_wbs(inode, wbc->wb_id);
    }
    
    /**
     * wbc_detach_inode - disassociate wbc from inode and perform foreign detection
     * @wbc: writeback_control of the just finished writeback
     *
     * To be called after a writeback attempt of an inode finishes and undoes
     * wbc_attach_and_unlock_inode().  Can be called under any context.
     *
     * As concurrent write sharing of an inode is expected to be very rare and
     * memcg only tracks page ownership on first-use basis severely confining
     * the usefulness of such sharing, cgroup writeback tracks ownership
     * per-inode.  While the support for concurrent write sharing of an inode
     * is deemed unnecessary, an inode being written to by different cgroups at
     * different points in time is a lot more common, and, more importantly,
     * charging only by first-use can too readily lead to grossly incorrect
     * behaviors (single foreign page can lead to gigabytes of writeback to be
     * incorrectly attributed).
     *
     * To resolve this issue, cgroup writeback detects the majority dirtier of
     * an inode and transfers the ownership to it.  To avoid unnnecessary
     * oscillation, the detection mechanism keeps track of history and gives
     * out the switch verdict only if the foreign usage pattern is stable over
     * a certain amount of time and/or writeback attempts.
     *
     * On each writeback attempt, @wbc tries to detect the majority writer
     * using Boyer-Moore majority vote algorithm.  In addition to the byte
     * count from the majority voting, it also counts the bytes written for the
     * current wb and the last round's winner wb (max of last round's current
     * wb, the winner from two rounds ago, and the last round's majority
     * candidate).  Keeping track of the historical winner helps the algorithm
     * to semi-reliably detect the most active writer even when it's not the
     * absolute majority.
     *
     * Once the winner of the round is determined, whether the winner is
     * foreign or not and how much IO time the round consumed is recorded in
     * inode->i_wb_frn_history.  If the amount of recorded foreign IO time is
     * over a certain threshold, the switch verdict is given.
     */
    void wbc_detach_inode(struct writeback_control *wbc)
    {
    	struct bdi_writeback *wb = wbc->wb;
    	struct inode *inode = wbc->inode;
    	unsigned long avg_time, max_bytes, max_time;
    	u16 history;
    	int max_id;
    
    	if (!wb)
    		return;
    
    	history = inode->i_wb_frn_history;
    	avg_time = inode->i_wb_frn_avg_time;
    
    	/* pick the winner of this round */
    	if (wbc->wb_bytes >= wbc->wb_lcand_bytes &&
    	    wbc->wb_bytes >= wbc->wb_tcand_bytes) {
    		max_id = wbc->wb_id;
    		max_bytes = wbc->wb_bytes;
    	} else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) {
    		max_id = wbc->wb_lcand_id;
    		max_bytes = wbc->wb_lcand_bytes;
    	} else {
    		max_id = wbc->wb_tcand_id;
    		max_bytes = wbc->wb_tcand_bytes;
    	}
    
    	/*
    	 * Calculate the amount of IO time the winner consumed and fold it
    	 * into the running average kept per inode.  If the consumed IO
    	 * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for
    	 * deciding whether to switch or not.  This is to prevent one-off
    	 * small dirtiers from skewing the verdict.
    	 */
    	max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT,
    				wb->avg_write_bandwidth);
    	if (avg_time)
    		avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) -
    			    (avg_time >> WB_FRN_TIME_AVG_SHIFT);
    	else
    		avg_time = max_time;	/* immediate catch up on first run */
    
    	if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) {
    		int slots;
    
    		/*
    		 * The switch verdict is reached if foreign wb's consume
    		 * more than a certain proportion of IO time in a
    		 * WB_FRN_TIME_PERIOD.  This is loosely tracked by 16 slot
    		 * history mask where each bit represents one sixteenth of
    		 * the period.  Determine the number of slots to shift into
    		 * history from @max_time.
    		 */
    		slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT),
    			    (unsigned long)WB_FRN_HIST_MAX_SLOTS);
    		history <<= slots;
    		if (wbc->wb_id != max_id)
    			history |= (1U << slots) - 1;
    
    		/*
    		 * Switch if the current wb isn't the consistent winner.
    		 * If there are multiple closely competing dirtiers, the
    		 * inode may switch across them repeatedly over time, which
    		 * is okay.  The main goal is avoiding keeping an inode on
    		 * the wrong wb for an extended period of time.
    		 */
    		if (hweight32(history) > WB_FRN_HIST_THR_SLOTS)
    			inode_switch_wbs(inode, max_id);
    	}
    
    	/*
    	 * Multiple instances of this function may race to update the
    	 * following fields but we don't mind occassional inaccuracies.
    	 */
    	inode->i_wb_frn_winner = max_id;
    	inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX);
    	inode->i_wb_frn_history = history;
    
    	wb_put(wbc->wb);
    	wbc->wb = NULL;
    }
    
    /**
     * wbc_account_io - account IO issued during writeback
     * @wbc: writeback_control of the writeback in progress
     * @page: page being written out
     * @bytes: number of bytes being written out
     *
     * @bytes from @page are about to written out during the writeback
     * controlled by @wbc.  Keep the book for foreign inode detection.  See
     * wbc_detach_inode().
     */
    void wbc_account_io(struct writeback_control *wbc, struct page *page,
    		    size_t bytes)
    {
    	int id;
    
    	/*
    	 * pageout() path doesn't attach @wbc to the inode being written
    	 * out.  This is intentional as we don't want the function to block
    	 * behind a slow cgroup.  Ultimately, we want pageout() to kick off
    	 * regular writeback instead of writing things out itself.
    	 */
    	if (!wbc->wb)
    		return;
    
    	id = mem_cgroup_css_from_page(page)->id;
    
    	if (id == wbc->wb_id) {
    		wbc->wb_bytes += bytes;
    		return;
    	}
    
    	if (id == wbc->wb_lcand_id)
    		wbc->wb_lcand_bytes += bytes;
    
    	/* Boyer-Moore majority vote algorithm */
    	if (!wbc->wb_tcand_bytes)
    		wbc->wb_tcand_id = id;
    	if (id == wbc->wb_tcand_id)
    		wbc->wb_tcand_bytes += bytes;
    	else
    		wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes);
    }
    EXPORT_SYMBOL_GPL(wbc_account_io);
    
    /**
     * inode_congested - test whether an inode is congested
     * @inode: inode to test for congestion (may be NULL)
     * @cong_bits: mask of WB_[a]sync_congested bits to test
     *
     * Tests whether @inode is congested.  @cong_bits is the mask of congestion
     * bits to test and the return value is the mask of set bits.
     *
     * If cgroup writeback is enabled for @inode, the congestion state is
     * determined by whether the cgwb (cgroup bdi_writeback) for the blkcg
     * associated with @inode is congested; otherwise, the root wb's congestion
     * state is used.
     *
     * @inode is allowed to be NULL as this function is often called on
     * mapping->host which is NULL for the swapper space.
     */
    int inode_congested(struct inode *inode, int cong_bits)
    {
    	/*
    	 * Once set, ->i_wb never becomes NULL while the inode is alive.
    	 * Start transaction iff ->i_wb is visible.
    	 */
    	if (inode && inode_to_wb_is_valid(inode)) {
    		struct bdi_writeback *wb;
    		bool locked, congested;
    
    		wb = unlocked_inode_to_wb_begin(inode, &locked);
    		congested = wb_congested(wb, cong_bits);
    		unlocked_inode_to_wb_end(inode, locked);
    		return congested;
    	}
    
    	return wb_congested(&inode_to_bdi(inode)->wb, cong_bits);
    }
    EXPORT_SYMBOL_GPL(inode_congested);
    
    /**
     * wb_split_bdi_pages - split nr_pages to write according to bandwidth
     * @wb: target bdi_writeback to split @nr_pages to
     * @nr_pages: number of pages to write for the whole bdi
     *
     * Split @wb's portion of @nr_pages according to @wb's write bandwidth in
     * relation to the total write bandwidth of all wb's w/ dirty inodes on
     * @wb->bdi.
     */
    static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
    {
    	unsigned long this_bw = wb->avg_write_bandwidth;
    	unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
    
    	if (nr_pages == LONG_MAX)
    		return LONG_MAX;
    
    	/*
    	 * This may be called on clean wb's and proportional distribution
    	 * may not make sense, just use the original @nr_pages in those
    	 * cases.  In general, we wanna err on the side of writing more.
    	 */
    	if (!tot_bw || this_bw >= tot_bw)
    		return nr_pages;
    	else
    		return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw);
    }
    
    /**
     * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi
     * @bdi: target backing_dev_info
     * @base_work: wb_writeback_work to issue
     * @skip_if_busy: skip wb's which already have writeback in progress
     *
     * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which
     * have dirty inodes.  If @base_work->nr_page isn't %LONG_MAX, it's
     * distributed to the busy wbs according to each wb's proportion in the
     * total active write bandwidth of @bdi.
     */
    static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
    				  struct wb_writeback_work *base_work,
    				  bool skip_if_busy)
    {
    	struct bdi_writeback *last_wb = NULL;
    	struct bdi_writeback *wb = list_entry(&bdi->wb_list,
    					      struct bdi_writeback, bdi_node);
    
    	might_sleep();
    restart:
    	rcu_read_lock();
    	list_for_each_entry_continue_rcu(wb, &bdi->wb_list, bdi_node) {
    		DEFINE_WB_COMPLETION_ONSTACK(fallback_work_done);
    		struct wb_writeback_work fallback_work;
    		struct wb_writeback_work *work;
    		long nr_pages;
    
    		if (last_wb) {
    			wb_put(last_wb);
    			last_wb = NULL;
    		}
    
    		/* SYNC_ALL writes out I_DIRTY_TIME too */
    		if (!wb_has_dirty_io(wb) &&
    		    (base_work->sync_mode == WB_SYNC_NONE ||
    		     list_empty(&wb->b_dirty_time)))
    			continue;
    		if (skip_if_busy && writeback_in_progress(wb))
    			continue;
    
    		nr_pages = wb_split_bdi_pages(wb, base_work->nr_pages);
    
    		work = kmalloc(sizeof(*work), GFP_ATOMIC);
    		if (work) {
    			*work = *base_work;
    			work->nr_pages = nr_pages;
    			work->auto_free = 1;
    			wb_queue_work(wb, work);
    			continue;
    		}
    
    		/* alloc failed, execute synchronously using on-stack fallback */
    		work = &fallback_work;
    		*work = *base_work;
    		work->nr_pages = nr_pages;
    		work->auto_free = 0;
    		work->done = &fallback_work_done;
    
    		wb_queue_work(wb, work);
    
    		/*
    		 * Pin @wb so that it stays on @bdi->wb_list.  This allows
    		 * continuing iteration from @wb after dropping and
    		 * regrabbing rcu read lock.
    		 */
    		wb_get(wb);
    		last_wb = wb;
    
    		rcu_read_unlock();
    		wb_wait_for_completion(bdi, &fallback_work_done);
    		goto restart;
    	}
    	rcu_read_unlock();
    
    	if (last_wb)
    		wb_put(last_wb);
    }
    
    /**
     * cgroup_writeback_umount - flush inode wb switches for umount
     *
     * This function is called when a super_block is about to be destroyed and
     * flushes in-flight inode wb switches.  An inode wb switch goes through
     * RCU and then workqueue, so the two need to be flushed in order to ensure
     * that all previously scheduled switches are finished.  As wb switches are
     * rare occurrences and synchronize_rcu() can take a while, perform
     * flushing iff wb switches are in flight.
     */
    void cgroup_writeback_umount(void)
    {
    	if (atomic_read(&isw_nr_in_flight)) {
    		synchronize_rcu();
    		flush_workqueue(isw_wq);
    	}
    }
    
    static int __init cgroup_writeback_init(void)
    {
    	isw_wq = alloc_workqueue("inode_switch_wbs", 0, 0);
    	if (!isw_wq)
    		return -ENOMEM;
    	return 0;
    }
    fs_initcall(cgroup_writeback_init);
    
    #else	/* CONFIG_CGROUP_WRITEBACK */
    
    static struct bdi_writeback *
    locked_inode_to_wb_and_lock_list(struct inode *inode)
    	__releases(&inode->i_lock)
    	__acquires(&wb->list_lock)
    {
    	struct bdi_writeback *wb = inode_to_wb(inode);
    
    	spin_unlock(&inode->i_lock);
    	spin_lock(&wb->list_lock);
    	return wb;
    }
    
    static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
    	__acquires(&wb->list_lock)
    {
    	struct bdi_writeback *wb = inode_to_wb(inode);
    
    	spin_lock(&wb->list_lock);
    	return wb;
    }
    
    static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
    {
    	return nr_pages;
    }
    
    static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
    				  struct wb_writeback_work *base_work,
    				  bool skip_if_busy)
    {
    	might_sleep();
    
    	if (!skip_if_busy || !writeback_in_progress(&bdi->wb)) {
    		base_work->auto_free = 0;
    		wb_queue_work(&bdi->wb, base_work);
    	}
    }
    
    #endif	/* CONFIG_CGROUP_WRITEBACK */
    
    void wb_start_writeback(struct bdi_writeback *wb, long nr_pages,
    			bool range_cyclic, enum wb_reason reason)
    {
    	struct wb_writeback_work *work;
    
    	if (!wb_has_dirty_io(wb))
    		return;
    
    	/*
    	 * This is WB_SYNC_NONE writeback, so if allocation fails just
    	 * wakeup the thread for old dirty data writeback
    	 */
    	work = kzalloc(sizeof(*work),
    		       GFP_NOWAIT | __GFP_NOMEMALLOC | __GFP_NOWARN);
    	if (!work) {
    		trace_writeback_nowork(wb);
    		wb_wakeup(wb);
    		return;
    	}
    
    	work->sync_mode	= WB_SYNC_NONE;
    	work->nr_pages	= nr_pages;
    	work->range_cyclic = range_cyclic;
    	work->reason	= reason;
    	work->auto_free	= 1;
    
    	wb_queue_work(wb, work);
    }
    
    /**
     * wb_start_background_writeback - start background writeback
     * @wb: bdi_writback to write from
     *
     * Description:
     *   This makes sure WB_SYNC_NONE background writeback happens. When
     *   this function returns, it is only guaranteed that for given wb
     *   some IO is happening if we are over background dirty threshold.
     *   Caller need not hold sb s_umount semaphore.
     */
    void wb_start_background_writeback(struct bdi_writeback *wb)
    {
    	/*
    	 * We just wake up the flusher thread. It will perform background
    	 * writeback as soon as there is no other work to do.
    	 */
    	trace_writeback_wake_background(wb);
    	wb_wakeup(wb);
    }
    
    /*
     * Remove the inode from the writeback list it is on.
     */
    void inode_io_list_del(struct inode *inode)
    {
    	struct bdi_writeback *wb;
    
    	wb = inode_to_wb_and_lock_list(inode);
    	inode_io_list_del_locked(inode, wb);
    	spin_unlock(&wb->list_lock);
    }
    
    /*
     * mark an inode as under writeback on the sb
     */
    void sb_mark_inode_writeback(struct inode *inode)
    {
    	struct super_block *sb = inode->i_sb;
    	unsigned long flags;
    
    	if (list_empty(&inode->i_wb_list)) {
    		spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
    		if (list_empty(&inode->i_wb_list)) {
    			list_add_tail(&inode->i_wb_list, &sb->s_inodes_wb);
    			trace_sb_mark_inode_writeback(inode);
    		}
    		spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
    	}
    }