Skip to content
Snippets Groups Projects
inode.c 55 KiB
Newer Older
  • Learn to ignore specific revisions
  • Kenneth Johansson's avatar
    Kenneth Johansson committed
    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000
    /*
     * (C) 1997 Linus Torvalds
     * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation)
     */
    #include <linux/export.h>
    #include <linux/fs.h>
    #include <linux/mm.h>
    #include <linux/backing-dev.h>
    #include <linux/hash.h>
    #include <linux/swap.h>
    #include <linux/security.h>
    #include <linux/cdev.h>
    #include <linux/bootmem.h>
    #include <linux/fsnotify.h>
    #include <linux/mount.h>
    #include <linux/posix_acl.h>
    #include <linux/prefetch.h>
    #include <linux/buffer_head.h> /* for inode_has_buffers */
    #include <linux/ratelimit.h>
    #include <linux/list_lru.h>
    #include <trace/events/writeback.h>
    #include "internal.h"
    
    /*
     * Inode locking rules:
     *
     * inode->i_lock protects:
     *   inode->i_state, inode->i_hash, __iget()
     * Inode LRU list locks protect:
     *   inode->i_sb->s_inode_lru, inode->i_lru
     * inode->i_sb->s_inode_list_lock protects:
     *   inode->i_sb->s_inodes, inode->i_sb_list
     * bdi->wb.list_lock protects:
     *   bdi->wb.b_{dirty,io,more_io,dirty_time}, inode->i_io_list
     * inode_hash_lock protects:
     *   inode_hashtable, inode->i_hash
     *
     * Lock ordering:
     *
     * inode->i_sb->s_inode_list_lock
     *   inode->i_lock
     *     Inode LRU list locks
     *
     * bdi->wb.list_lock
     *   inode->i_lock
     *
     * inode_hash_lock
     *   inode->i_sb->s_inode_list_lock
     *   inode->i_lock
     *
     * iunique_lock
     *   inode_hash_lock
     */
    
    static unsigned int i_hash_mask __read_mostly;
    static unsigned int i_hash_shift __read_mostly;
    static struct hlist_head *inode_hashtable __read_mostly;
    static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock);
    
    /*
     * Empty aops. Can be used for the cases where the user does not
     * define any of the address_space operations.
     */
    const struct address_space_operations empty_aops = {
    };
    EXPORT_SYMBOL(empty_aops);
    
    /*
     * Statistics gathering..
     */
    struct inodes_stat_t inodes_stat;
    
    static DEFINE_PER_CPU(unsigned long, nr_inodes);
    static DEFINE_PER_CPU(unsigned long, nr_unused);
    
    static struct kmem_cache *inode_cachep __read_mostly;
    
    static long get_nr_inodes(void)
    {
    	int i;
    	long sum = 0;
    	for_each_possible_cpu(i)
    		sum += per_cpu(nr_inodes, i);
    	return sum < 0 ? 0 : sum;
    }
    
    static inline long get_nr_inodes_unused(void)
    {
    	int i;
    	long sum = 0;
    	for_each_possible_cpu(i)
    		sum += per_cpu(nr_unused, i);
    	return sum < 0 ? 0 : sum;
    }
    
    long get_nr_dirty_inodes(void)
    {
    	/* not actually dirty inodes, but a wild approximation */
    	long nr_dirty = get_nr_inodes() - get_nr_inodes_unused();
    	return nr_dirty > 0 ? nr_dirty : 0;
    }
    
    /*
     * Handle nr_inode sysctl
     */
    #ifdef CONFIG_SYSCTL
    int proc_nr_inodes(struct ctl_table *table, int write,
    		   void __user *buffer, size_t *lenp, loff_t *ppos)
    {
    	inodes_stat.nr_inodes = get_nr_inodes();
    	inodes_stat.nr_unused = get_nr_inodes_unused();
    	return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
    }
    #endif
    
    static int no_open(struct inode *inode, struct file *file)
    {
    	return -ENXIO;
    }
    
    /**
     * inode_init_always - perform inode structure intialisation
     * @sb: superblock inode belongs to
     * @inode: inode to initialise
     *
     * These are initializations that need to be done on every inode
     * allocation as the fields are not initialised by slab allocation.
     */
    int inode_init_always(struct super_block *sb, struct inode *inode)
    {
    	static const struct inode_operations empty_iops;
    	static const struct file_operations no_open_fops = {.open = no_open};
    	struct address_space *const mapping = &inode->i_data;
    
    	inode->i_sb = sb;
    	inode->i_blkbits = sb->s_blocksize_bits;
    	inode->i_flags = 0;
    	atomic_set(&inode->i_count, 1);
    	inode->i_op = &empty_iops;
    	inode->i_fop = &no_open_fops;
    	inode->__i_nlink = 1;
    	inode->i_opflags = 0;
    	if (sb->s_xattr)
    		inode->i_opflags |= IOP_XATTR;
    	i_uid_write(inode, 0);
    	i_gid_write(inode, 0);
    	atomic_set(&inode->i_writecount, 0);
    	inode->i_size = 0;
    	inode->i_blocks = 0;
    	inode->i_bytes = 0;
    	inode->i_generation = 0;
    	inode->i_pipe = NULL;
    	inode->i_bdev = NULL;
    	inode->i_cdev = NULL;
    	inode->i_link = NULL;
    	inode->i_dir_seq = 0;
    	inode->i_rdev = 0;
    	inode->dirtied_when = 0;
    
    #ifdef CONFIG_CGROUP_WRITEBACK
    	inode->i_wb_frn_winner = 0;
    	inode->i_wb_frn_avg_time = 0;
    	inode->i_wb_frn_history = 0;
    #endif
    
    	if (security_inode_alloc(inode))
    		goto out;
    	spin_lock_init(&inode->i_lock);
    	lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
    
    	init_rwsem(&inode->i_rwsem);
    	lockdep_set_class(&inode->i_rwsem, &sb->s_type->i_mutex_key);
    
    	atomic_set(&inode->i_dio_count, 0);
    
    	mapping->a_ops = &empty_aops;
    	mapping->host = inode;
    	mapping->flags = 0;
    	atomic_set(&mapping->i_mmap_writable, 0);
    	mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE);
    	mapping->private_data = NULL;
    	mapping->writeback_index = 0;
    	inode->i_private = NULL;
    	inode->i_mapping = mapping;
    	INIT_HLIST_HEAD(&inode->i_dentry);	/* buggered by rcu freeing */
    #ifdef CONFIG_FS_POSIX_ACL
    	inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED;
    #endif
    
    #ifdef CONFIG_FSNOTIFY
    	inode->i_fsnotify_mask = 0;
    #endif
    	inode->i_flctx = NULL;
    	this_cpu_inc(nr_inodes);
    
    	return 0;
    out:
    	return -ENOMEM;
    }
    EXPORT_SYMBOL(inode_init_always);
    
    static struct inode *alloc_inode(struct super_block *sb)
    {
    	struct inode *inode;
    
    	if (sb->s_op->alloc_inode)
    		inode = sb->s_op->alloc_inode(sb);
    	else
    		inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL);
    
    	if (!inode)
    		return NULL;
    
    	if (unlikely(inode_init_always(sb, inode))) {
    		if (inode->i_sb->s_op->destroy_inode)
    			inode->i_sb->s_op->destroy_inode(inode);
    		else
    			kmem_cache_free(inode_cachep, inode);
    		return NULL;
    	}
    
    	return inode;
    }
    
    void free_inode_nonrcu(struct inode *inode)
    {
    	kmem_cache_free(inode_cachep, inode);
    }
    EXPORT_SYMBOL(free_inode_nonrcu);
    
    void __destroy_inode(struct inode *inode)
    {
    	BUG_ON(inode_has_buffers(inode));
    	inode_detach_wb(inode);
    	security_inode_free(inode);
    	fsnotify_inode_delete(inode);
    	locks_free_lock_context(inode);
    	if (!inode->i_nlink) {
    		WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0);
    		atomic_long_dec(&inode->i_sb->s_remove_count);
    	}
    
    #ifdef CONFIG_FS_POSIX_ACL
    	if (inode->i_acl && !is_uncached_acl(inode->i_acl))
    		posix_acl_release(inode->i_acl);
    	if (inode->i_default_acl && !is_uncached_acl(inode->i_default_acl))
    		posix_acl_release(inode->i_default_acl);
    #endif
    	this_cpu_dec(nr_inodes);
    }
    EXPORT_SYMBOL(__destroy_inode);
    
    static void i_callback(struct rcu_head *head)
    {
    	struct inode *inode = container_of(head, struct inode, i_rcu);
    	kmem_cache_free(inode_cachep, inode);
    }
    
    static void destroy_inode(struct inode *inode)
    {
    	BUG_ON(!list_empty(&inode->i_lru));
    	__destroy_inode(inode);
    	if (inode->i_sb->s_op->destroy_inode)
    		inode->i_sb->s_op->destroy_inode(inode);
    	else
    		call_rcu(&inode->i_rcu, i_callback);
    }
    
    /**
     * drop_nlink - directly drop an inode's link count
     * @inode: inode
     *
     * This is a low-level filesystem helper to replace any
     * direct filesystem manipulation of i_nlink.  In cases
     * where we are attempting to track writes to the
     * filesystem, a decrement to zero means an imminent
     * write when the file is truncated and actually unlinked
     * on the filesystem.
     */
    void drop_nlink(struct inode *inode)
    {
    	WARN_ON(inode->i_nlink == 0);
    	inode->__i_nlink--;
    	if (!inode->i_nlink)
    		atomic_long_inc(&inode->i_sb->s_remove_count);
    }
    EXPORT_SYMBOL(drop_nlink);
    
    /**
     * clear_nlink - directly zero an inode's link count
     * @inode: inode
     *
     * This is a low-level filesystem helper to replace any
     * direct filesystem manipulation of i_nlink.  See
     * drop_nlink() for why we care about i_nlink hitting zero.
     */
    void clear_nlink(struct inode *inode)
    {
    	if (inode->i_nlink) {
    		inode->__i_nlink = 0;
    		atomic_long_inc(&inode->i_sb->s_remove_count);
    	}
    }
    EXPORT_SYMBOL(clear_nlink);
    
    /**
     * set_nlink - directly set an inode's link count
     * @inode: inode
     * @nlink: new nlink (should be non-zero)
     *
     * This is a low-level filesystem helper to replace any
     * direct filesystem manipulation of i_nlink.
     */
    void set_nlink(struct inode *inode, unsigned int nlink)
    {
    	if (!nlink) {
    		clear_nlink(inode);
    	} else {
    		/* Yes, some filesystems do change nlink from zero to one */
    		if (inode->i_nlink == 0)
    			atomic_long_dec(&inode->i_sb->s_remove_count);
    
    		inode->__i_nlink = nlink;
    	}
    }
    EXPORT_SYMBOL(set_nlink);
    
    /**
     * inc_nlink - directly increment an inode's link count
     * @inode: inode
     *
     * This is a low-level filesystem helper to replace any
     * direct filesystem manipulation of i_nlink.  Currently,
     * it is only here for parity with dec_nlink().
     */
    void inc_nlink(struct inode *inode)
    {
    	if (unlikely(inode->i_nlink == 0)) {
    		WARN_ON(!(inode->i_state & I_LINKABLE));
    		atomic_long_dec(&inode->i_sb->s_remove_count);
    	}
    
    	inode->__i_nlink++;
    }
    EXPORT_SYMBOL(inc_nlink);
    
    void address_space_init_once(struct address_space *mapping)
    {
    	memset(mapping, 0, sizeof(*mapping));
    	INIT_RADIX_TREE(&mapping->page_tree, GFP_ATOMIC | __GFP_ACCOUNT);
    	spin_lock_init(&mapping->tree_lock);
    	init_rwsem(&mapping->i_mmap_rwsem);
    	INIT_LIST_HEAD(&mapping->private_list);
    	spin_lock_init(&mapping->private_lock);
    	mapping->i_mmap = RB_ROOT;
    }
    EXPORT_SYMBOL(address_space_init_once);
    
    /*
     * These are initializations that only need to be done
     * once, because the fields are idempotent across use
     * of the inode, so let the slab aware of that.
     */
    void inode_init_once(struct inode *inode)
    {
    	memset(inode, 0, sizeof(*inode));
    	INIT_HLIST_NODE(&inode->i_hash);
    	INIT_LIST_HEAD(&inode->i_devices);
    	INIT_LIST_HEAD(&inode->i_io_list);
    	INIT_LIST_HEAD(&inode->i_wb_list);
    	INIT_LIST_HEAD(&inode->i_lru);
    	address_space_init_once(&inode->i_data);
    	i_size_ordered_init(inode);
    #ifdef CONFIG_FSNOTIFY
    	INIT_HLIST_HEAD(&inode->i_fsnotify_marks);
    #endif
    }
    EXPORT_SYMBOL(inode_init_once);
    
    static void init_once(void *foo)
    {
    	struct inode *inode = (struct inode *) foo;
    
    	inode_init_once(inode);
    }
    
    /*
     * inode->i_lock must be held
     */
    void __iget(struct inode *inode)
    {
    	atomic_inc(&inode->i_count);
    }
    
    /*
     * get additional reference to inode; caller must already hold one.
     */
    void ihold(struct inode *inode)
    {
    	WARN_ON(atomic_inc_return(&inode->i_count) < 2);
    }
    EXPORT_SYMBOL(ihold);
    
    static void inode_lru_list_add(struct inode *inode)
    {
    	if (list_lru_add(&inode->i_sb->s_inode_lru, &inode->i_lru))
    		this_cpu_inc(nr_unused);
    }
    
    /*
     * Add inode to LRU if needed (inode is unused and clean).
     *
     * Needs inode->i_lock held.
     */
    void inode_add_lru(struct inode *inode)
    {
    	if (!(inode->i_state & (I_DIRTY_ALL | I_SYNC |
    				I_FREEING | I_WILL_FREE)) &&
    	    !atomic_read(&inode->i_count) && inode->i_sb->s_flags & MS_ACTIVE)
    		inode_lru_list_add(inode);
    }
    
    
    static void inode_lru_list_del(struct inode *inode)
    {
    
    	if (list_lru_del(&inode->i_sb->s_inode_lru, &inode->i_lru))
    		this_cpu_dec(nr_unused);
    }
    
    /**
     * inode_sb_list_add - add inode to the superblock list of inodes
     * @inode: inode to add
     */
    void inode_sb_list_add(struct inode *inode)
    {
    	spin_lock(&inode->i_sb->s_inode_list_lock);
    	list_add(&inode->i_sb_list, &inode->i_sb->s_inodes);
    	spin_unlock(&inode->i_sb->s_inode_list_lock);
    }
    EXPORT_SYMBOL_GPL(inode_sb_list_add);
    
    static inline void inode_sb_list_del(struct inode *inode)
    {
    	if (!list_empty(&inode->i_sb_list)) {
    		spin_lock(&inode->i_sb->s_inode_list_lock);
    		list_del_init(&inode->i_sb_list);
    		spin_unlock(&inode->i_sb->s_inode_list_lock);
    	}
    }
    
    static unsigned long hash(struct super_block *sb, unsigned long hashval)
    {
    	unsigned long tmp;
    
    	tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
    			L1_CACHE_BYTES;
    	tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift);
    	return tmp & i_hash_mask;
    }
    
    /**
     *	__insert_inode_hash - hash an inode
     *	@inode: unhashed inode
     *	@hashval: unsigned long value used to locate this object in the
     *		inode_hashtable.
     *
     *	Add an inode to the inode hash for this superblock.
     */
    void __insert_inode_hash(struct inode *inode, unsigned long hashval)
    {
    	struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval);
    
    	spin_lock(&inode_hash_lock);
    	spin_lock(&inode->i_lock);
    	hlist_add_head(&inode->i_hash, b);
    	spin_unlock(&inode->i_lock);
    	spin_unlock(&inode_hash_lock);
    }
    EXPORT_SYMBOL(__insert_inode_hash);
    
    /**
     *	__remove_inode_hash - remove an inode from the hash
     *	@inode: inode to unhash
     *
     *	Remove an inode from the superblock.
     */
    void __remove_inode_hash(struct inode *inode)
    {
    	spin_lock(&inode_hash_lock);
    	spin_lock(&inode->i_lock);
    	hlist_del_init(&inode->i_hash);
    	spin_unlock(&inode->i_lock);
    	spin_unlock(&inode_hash_lock);
    }
    EXPORT_SYMBOL(__remove_inode_hash);
    
    void clear_inode(struct inode *inode)
    {
    	might_sleep();
    	/*
    	 * We have to cycle tree_lock here because reclaim can be still in the
    	 * process of removing the last page (in __delete_from_page_cache())
    	 * and we must not free mapping under it.
    	 */
    	spin_lock_irq(&inode->i_data.tree_lock);
    	BUG_ON(inode->i_data.nrpages);
    	BUG_ON(inode->i_data.nrexceptional);
    	spin_unlock_irq(&inode->i_data.tree_lock);
    	BUG_ON(!list_empty(&inode->i_data.private_list));
    	BUG_ON(!(inode->i_state & I_FREEING));
    	BUG_ON(inode->i_state & I_CLEAR);
    	BUG_ON(!list_empty(&inode->i_wb_list));
    	/* don't need i_lock here, no concurrent mods to i_state */
    	inode->i_state = I_FREEING | I_CLEAR;
    }
    EXPORT_SYMBOL(clear_inode);
    
    /*
     * Free the inode passed in, removing it from the lists it is still connected
     * to. We remove any pages still attached to the inode and wait for any IO that
     * is still in progress before finally destroying the inode.
     *
     * An inode must already be marked I_FREEING so that we avoid the inode being
     * moved back onto lists if we race with other code that manipulates the lists
     * (e.g. writeback_single_inode). The caller is responsible for setting this.
     *
     * An inode must already be removed from the LRU list before being evicted from
     * the cache. This should occur atomically with setting the I_FREEING state
     * flag, so no inodes here should ever be on the LRU when being evicted.
     */
    static void evict(struct inode *inode)
    {
    	const struct super_operations *op = inode->i_sb->s_op;
    
    	BUG_ON(!(inode->i_state & I_FREEING));
    	BUG_ON(!list_empty(&inode->i_lru));
    
    	if (!list_empty(&inode->i_io_list))
    		inode_io_list_del(inode);
    
    	inode_sb_list_del(inode);
    
    	/*
    	 * Wait for flusher thread to be done with the inode so that filesystem
    	 * does not start destroying it while writeback is still running. Since
    	 * the inode has I_FREEING set, flusher thread won't start new work on
    	 * the inode.  We just have to wait for running writeback to finish.
    	 */
    	inode_wait_for_writeback(inode);
    
    	if (op->evict_inode) {
    		op->evict_inode(inode);
    	} else {
    		truncate_inode_pages_final(&inode->i_data);
    		clear_inode(inode);
    	}
    	if (S_ISBLK(inode->i_mode) && inode->i_bdev)
    		bd_forget(inode);
    	if (S_ISCHR(inode->i_mode) && inode->i_cdev)
    		cd_forget(inode);
    
    	remove_inode_hash(inode);
    
    	spin_lock(&inode->i_lock);
    	wake_up_bit(&inode->i_state, __I_NEW);
    	BUG_ON(inode->i_state != (I_FREEING | I_CLEAR));
    	spin_unlock(&inode->i_lock);
    
    	destroy_inode(inode);
    }
    
    /*
     * dispose_list - dispose of the contents of a local list
     * @head: the head of the list to free
     *
     * Dispose-list gets a local list with local inodes in it, so it doesn't
     * need to worry about list corruption and SMP locks.
     */
    static void dispose_list(struct list_head *head)
    {
    	while (!list_empty(head)) {
    		struct inode *inode;
    
    		inode = list_first_entry(head, struct inode, i_lru);
    		list_del_init(&inode->i_lru);
    
    		evict(inode);
    		cond_resched();
    	}
    }
    
    /**
     * evict_inodes	- evict all evictable inodes for a superblock
     * @sb:		superblock to operate on
     *
     * Make sure that no inodes with zero refcount are retained.  This is
     * called by superblock shutdown after having MS_ACTIVE flag removed,
     * so any inode reaching zero refcount during or after that call will
     * be immediately evicted.
     */
    void evict_inodes(struct super_block *sb)
    {
    	struct inode *inode, *next;
    	LIST_HEAD(dispose);
    
    again:
    	spin_lock(&sb->s_inode_list_lock);
    	list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
    		if (atomic_read(&inode->i_count))
    			continue;
    
    		spin_lock(&inode->i_lock);
    		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
    			spin_unlock(&inode->i_lock);
    			continue;
    		}
    
    		inode->i_state |= I_FREEING;
    		inode_lru_list_del(inode);
    		spin_unlock(&inode->i_lock);
    		list_add(&inode->i_lru, &dispose);
    
    		/*
    		 * We can have a ton of inodes to evict at unmount time given
    		 * enough memory, check to see if we need to go to sleep for a
    		 * bit so we don't livelock.
    		 */
    		if (need_resched()) {
    			spin_unlock(&sb->s_inode_list_lock);
    			cond_resched();
    			dispose_list(&dispose);
    			goto again;
    		}
    	}
    	spin_unlock(&sb->s_inode_list_lock);
    
    	dispose_list(&dispose);
    }
    EXPORT_SYMBOL_GPL(evict_inodes);
    
    /**
     * invalidate_inodes	- attempt to free all inodes on a superblock
     * @sb:		superblock to operate on
     * @kill_dirty: flag to guide handling of dirty inodes
     *
     * Attempts to free all inodes for a given superblock.  If there were any
     * busy inodes return a non-zero value, else zero.
     * If @kill_dirty is set, discard dirty inodes too, otherwise treat
     * them as busy.
     */
    int invalidate_inodes(struct super_block *sb, bool kill_dirty)
    {
    	int busy = 0;
    	struct inode *inode, *next;
    	LIST_HEAD(dispose);
    
    	spin_lock(&sb->s_inode_list_lock);
    	list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
    		spin_lock(&inode->i_lock);
    		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
    			spin_unlock(&inode->i_lock);
    			continue;
    		}
    		if (inode->i_state & I_DIRTY_ALL && !kill_dirty) {
    			spin_unlock(&inode->i_lock);
    			busy = 1;
    			continue;
    		}
    		if (atomic_read(&inode->i_count)) {
    			spin_unlock(&inode->i_lock);
    			busy = 1;
    			continue;
    		}
    
    		inode->i_state |= I_FREEING;
    		inode_lru_list_del(inode);
    		spin_unlock(&inode->i_lock);
    		list_add(&inode->i_lru, &dispose);
    	}
    	spin_unlock(&sb->s_inode_list_lock);
    
    	dispose_list(&dispose);
    
    	return busy;
    }
    
    /*
     * Isolate the inode from the LRU in preparation for freeing it.
     *
     * Any inodes which are pinned purely because of attached pagecache have their
     * pagecache removed.  If the inode has metadata buffers attached to
     * mapping->private_list then try to remove them.
     *
     * If the inode has the I_REFERENCED flag set, then it means that it has been
     * used recently - the flag is set in iput_final(). When we encounter such an
     * inode, clear the flag and move it to the back of the LRU so it gets another
     * pass through the LRU before it gets reclaimed. This is necessary because of
     * the fact we are doing lazy LRU updates to minimise lock contention so the
     * LRU does not have strict ordering. Hence we don't want to reclaim inodes
     * with this flag set because they are the inodes that are out of order.
     */
    static enum lru_status inode_lru_isolate(struct list_head *item,
    		struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
    {
    	struct list_head *freeable = arg;
    	struct inode	*inode = container_of(item, struct inode, i_lru);
    
    	/*
    	 * we are inverting the lru lock/inode->i_lock here, so use a trylock.
    	 * If we fail to get the lock, just skip it.
    	 */
    	if (!spin_trylock(&inode->i_lock))
    		return LRU_SKIP;
    
    	/*
    	 * Referenced or dirty inodes are still in use. Give them another pass
    	 * through the LRU as we canot reclaim them now.
    	 */
    	if (atomic_read(&inode->i_count) ||
    	    (inode->i_state & ~I_REFERENCED)) {
    		list_lru_isolate(lru, &inode->i_lru);
    		spin_unlock(&inode->i_lock);
    		this_cpu_dec(nr_unused);
    		return LRU_REMOVED;
    	}
    
    	/* recently referenced inodes get one more pass */
    	if (inode->i_state & I_REFERENCED) {
    		inode->i_state &= ~I_REFERENCED;
    		spin_unlock(&inode->i_lock);
    		return LRU_ROTATE;
    	}
    
    	if (inode_has_buffers(inode) || inode->i_data.nrpages) {
    		__iget(inode);
    		spin_unlock(&inode->i_lock);
    		spin_unlock(lru_lock);
    		if (remove_inode_buffers(inode)) {
    			unsigned long reap;
    			reap = invalidate_mapping_pages(&inode->i_data, 0, -1);
    			if (current_is_kswapd())
    				__count_vm_events(KSWAPD_INODESTEAL, reap);
    			else
    				__count_vm_events(PGINODESTEAL, reap);
    			if (current->reclaim_state)
    				current->reclaim_state->reclaimed_slab += reap;
    		}
    		iput(inode);
    		spin_lock(lru_lock);
    		return LRU_RETRY;
    	}
    
    	WARN_ON(inode->i_state & I_NEW);
    	inode->i_state |= I_FREEING;
    	list_lru_isolate_move(lru, &inode->i_lru, freeable);
    	spin_unlock(&inode->i_lock);
    
    	this_cpu_dec(nr_unused);
    	return LRU_REMOVED;
    }
    
    /*
     * Walk the superblock inode LRU for freeable inodes and attempt to free them.
     * This is called from the superblock shrinker function with a number of inodes
     * to trim from the LRU. Inodes to be freed are moved to a temporary list and
     * then are freed outside inode_lock by dispose_list().
     */
    long prune_icache_sb(struct super_block *sb, struct shrink_control *sc)
    {
    	LIST_HEAD(freeable);
    	long freed;
    
    	freed = list_lru_shrink_walk(&sb->s_inode_lru, sc,
    				     inode_lru_isolate, &freeable);
    	dispose_list(&freeable);
    	return freed;
    }
    
    static void __wait_on_freeing_inode(struct inode *inode);
    /*
     * Called with the inode lock held.
     */
    static struct inode *find_inode(struct super_block *sb,
    				struct hlist_head *head,
    				int (*test)(struct inode *, void *),
    				void *data)
    {
    	struct inode *inode = NULL;
    
    repeat:
    	hlist_for_each_entry(inode, head, i_hash) {
    		if (inode->i_sb != sb)
    			continue;
    		if (!test(inode, data))
    			continue;
    		spin_lock(&inode->i_lock);
    		if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
    			__wait_on_freeing_inode(inode);
    			goto repeat;
    		}
    		__iget(inode);
    		spin_unlock(&inode->i_lock);
    		return inode;
    	}
    	return NULL;
    }
    
    /*
     * find_inode_fast is the fast path version of find_inode, see the comment at
     * iget_locked for details.
     */
    static struct inode *find_inode_fast(struct super_block *sb,
    				struct hlist_head *head, unsigned long ino)
    {
    	struct inode *inode = NULL;
    
    repeat:
    	hlist_for_each_entry(inode, head, i_hash) {
    		if (inode->i_ino != ino)
    			continue;
    		if (inode->i_sb != sb)
    			continue;
    		spin_lock(&inode->i_lock);
    		if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
    			__wait_on_freeing_inode(inode);
    			goto repeat;
    		}
    		__iget(inode);
    		spin_unlock(&inode->i_lock);
    		return inode;
    	}
    	return NULL;
    }
    
    /*
     * Each cpu owns a range of LAST_INO_BATCH numbers.
     * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations,
     * to renew the exhausted range.
     *
     * This does not significantly increase overflow rate because every CPU can
     * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is
     * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the
     * 2^32 range, and is a worst-case. Even a 50% wastage would only increase
     * overflow rate by 2x, which does not seem too significant.
     *
     * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
     * error if st_ino won't fit in target struct field. Use 32bit counter
     * here to attempt to avoid that.
     */
    #define LAST_INO_BATCH 1024
    static DEFINE_PER_CPU(unsigned int, last_ino);
    
    unsigned int get_next_ino(void)
    {
    	unsigned int *p = &get_cpu_var(last_ino);
    	unsigned int res = *p;
    
    #ifdef CONFIG_SMP
    	if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) {
    		static atomic_t shared_last_ino;
    		int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino);
    
    		res = next - LAST_INO_BATCH;
    	}
    #endif
    
    	res++;
    	/* get_next_ino should not provide a 0 inode number */
    	if (unlikely(!res))
    		res++;
    	*p = res;
    	put_cpu_var(last_ino);
    	return res;
    }
    EXPORT_SYMBOL(get_next_ino);
    
    /**
     *	new_inode_pseudo 	- obtain an inode
     *	@sb: superblock
     *
     *	Allocates a new inode for given superblock.
     *	Inode wont be chained in superblock s_inodes list
     *	This means :
     *	- fs can't be unmount
     *	- quotas, fsnotify, writeback can't work
     */
    struct inode *new_inode_pseudo(struct super_block *sb)
    {
    	struct inode *inode = alloc_inode(sb);
    
    	if (inode) {
    		spin_lock(&inode->i_lock);
    		inode->i_state = 0;
    		spin_unlock(&inode->i_lock);
    		INIT_LIST_HEAD(&inode->i_sb_list);
    	}
    	return inode;
    }
    
    /**
     *	new_inode 	- obtain an inode
     *	@sb: superblock
     *
     *	Allocates a new inode for given superblock. The default gfp_mask
     *	for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
     *	If HIGHMEM pages are unsuitable or it is known that pages allocated
     *	for the page cache are not reclaimable or migratable,
     *	mapping_set_gfp_mask() must be called with suitable flags on the
     *	newly created inode's mapping
     *
     */
    struct inode *new_inode(struct super_block *sb)
    {
    	struct inode *inode;
    
    	spin_lock_prefetch(&sb->s_inode_list_lock);
    
    	inode = new_inode_pseudo(sb);
    	if (inode)
    		inode_sb_list_add(inode);
    	return inode;
    }
    EXPORT_SYMBOL(new_inode);
    
    #ifdef CONFIG_DEBUG_LOCK_ALLOC
    void lockdep_annotate_inode_mutex_key(struct inode *inode)
    {
    	if (S_ISDIR(inode->i_mode)) {
    		struct file_system_type *type = inode->i_sb->s_type;
    
    		/* Set new key only if filesystem hasn't already changed it */
    		if (lockdep_match_class(&inode->i_rwsem, &type->i_mutex_key)) {
    			/*
    			 * ensure nobody is actually holding i_mutex
    			 */
    			// mutex_destroy(&inode->i_mutex);
    			init_rwsem(&inode->i_rwsem);
    			lockdep_set_class(&inode->i_rwsem,
    					  &type->i_mutex_dir_key);
    		}
    	}
    }
    EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key);
    #endif
    
    /**
     * unlock_new_inode - clear the I_NEW state and wake up any waiters
     * @inode:	new inode to unlock
     *
     * Called when the inode is fully initialised to clear the new state of the
     * inode and wake up anyone waiting for the inode to finish initialisation.
     */
    void unlock_new_inode(struct inode *inode)
    {
    	lockdep_annotate_inode_mutex_key(inode);
    	spin_lock(&inode->i_lock);
    	WARN_ON(!(inode->i_state & I_NEW));
    	inode->i_state &= ~I_NEW;
    	smp_mb();
    	wake_up_bit(&inode->i_state, __I_NEW);
    	spin_unlock(&inode->i_lock);
    }
    EXPORT_SYMBOL(unlock_new_inode);
    
    /**
     * lock_two_nondirectories - take two i_mutexes on non-directory objects
     *
     * Lock any non-NULL argument that is not a directory.
     * Zero, one or two objects may be locked by this function.
     *
     * @inode1: first inode to lock
     * @inode2: second inode to lock
     */
    void lock_two_nondirectories(struct inode *inode1, struct inode *inode2)
    {
    	if (inode1 > inode2)
    		swap(inode1, inode2);
    
    	if (inode1 && !S_ISDIR(inode1->i_mode))
    		inode_lock(inode1);
    	if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
    		inode_lock_nested(inode2, I_MUTEX_NONDIR2);
    }
    EXPORT_SYMBOL(lock_two_nondirectories);
    
    /**
     * unlock_two_nondirectories - release locks from lock_two_nondirectories()
     * @inode1: first inode to unlock
     * @inode2: second inode to unlock
     */
    void unlock_two_nondirectories(struct inode *inode1, struct inode *inode2)
    {
    	if (inode1 && !S_ISDIR(inode1->i_mode))
    		inode_unlock(inode1);
    	if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
    		inode_unlock(inode2);
    }
    EXPORT_SYMBOL(unlock_two_nondirectories);