Skip to content
Snippets Groups Projects
sync.c 9.91 KiB
Newer Older
  • Learn to ignore specific revisions
  • Kenneth Johansson's avatar
    Kenneth Johansson committed
    /*
     * High-level sync()-related operations
     */
    
    #include <linux/kernel.h>
    #include <linux/file.h>
    #include <linux/fs.h>
    #include <linux/slab.h>
    #include <linux/export.h>
    #include <linux/namei.h>
    #include <linux/sched.h>
    #include <linux/writeback.h>
    #include <linux/syscalls.h>
    #include <linux/linkage.h>
    #include <linux/pagemap.h>
    #include <linux/quotaops.h>
    #include <linux/backing-dev.h>
    #include "internal.h"
    
    #define VALID_FLAGS (SYNC_FILE_RANGE_WAIT_BEFORE|SYNC_FILE_RANGE_WRITE| \
    			SYNC_FILE_RANGE_WAIT_AFTER)
    
    /*
     * Do the filesystem syncing work. For simple filesystems
     * writeback_inodes_sb(sb) just dirties buffers with inodes so we have to
     * submit IO for these buffers via __sync_blockdev(). This also speeds up the
     * wait == 1 case since in that case write_inode() functions do
     * sync_dirty_buffer() and thus effectively write one block at a time.
     */
    static int __sync_filesystem(struct super_block *sb, int wait)
    {
    	if (wait)
    		sync_inodes_sb(sb);
    	else
    		writeback_inodes_sb(sb, WB_REASON_SYNC);
    
    	if (sb->s_op->sync_fs)
    		sb->s_op->sync_fs(sb, wait);
    	return __sync_blockdev(sb->s_bdev, wait);
    }
    
    /*
     * Write out and wait upon all dirty data associated with this
     * superblock.  Filesystem data as well as the underlying block
     * device.  Takes the superblock lock.
     */
    int sync_filesystem(struct super_block *sb)
    {
    	int ret;
    
    	/*
    	 * We need to be protected against the filesystem going from
    	 * r/o to r/w or vice versa.
    	 */
    	WARN_ON(!rwsem_is_locked(&sb->s_umount));
    
    	/*
    	 * No point in syncing out anything if the filesystem is read-only.
    	 */
    	if (sb->s_flags & MS_RDONLY)
    		return 0;
    
    	ret = __sync_filesystem(sb, 0);
    	if (ret < 0)
    		return ret;
    	return __sync_filesystem(sb, 1);
    }
    EXPORT_SYMBOL(sync_filesystem);
    
    static void sync_inodes_one_sb(struct super_block *sb, void *arg)
    {
    	if (!(sb->s_flags & MS_RDONLY))
    		sync_inodes_sb(sb);
    }
    
    static void sync_fs_one_sb(struct super_block *sb, void *arg)
    {
    	if (!(sb->s_flags & MS_RDONLY) && sb->s_op->sync_fs)
    		sb->s_op->sync_fs(sb, *(int *)arg);
    }
    
    static void fdatawrite_one_bdev(struct block_device *bdev, void *arg)
    {
    	filemap_fdatawrite(bdev->bd_inode->i_mapping);
    }
    
    static void fdatawait_one_bdev(struct block_device *bdev, void *arg)
    {
    	/*
    	 * We keep the error status of individual mapping so that
    	 * applications can catch the writeback error using fsync(2).
    	 * See filemap_fdatawait_keep_errors() for details.
    	 */
    	filemap_fdatawait_keep_errors(bdev->bd_inode->i_mapping);
    }
    
    /*
     * Sync everything. We start by waking flusher threads so that most of
     * writeback runs on all devices in parallel. Then we sync all inodes reliably
     * which effectively also waits for all flusher threads to finish doing
     * writeback. At this point all data is on disk so metadata should be stable
     * and we tell filesystems to sync their metadata via ->sync_fs() calls.
     * Finally, we writeout all block devices because some filesystems (e.g. ext2)
     * just write metadata (such as inodes or bitmaps) to block device page cache
     * and do not sync it on their own in ->sync_fs().
     */
    SYSCALL_DEFINE0(sync)
    {
    	int nowait = 0, wait = 1;
    
    	wakeup_flusher_threads(0, WB_REASON_SYNC);
    	iterate_supers(sync_inodes_one_sb, NULL);
    	iterate_supers(sync_fs_one_sb, &nowait);
    	iterate_supers(sync_fs_one_sb, &wait);
    	iterate_bdevs(fdatawrite_one_bdev, NULL);
    	iterate_bdevs(fdatawait_one_bdev, NULL);
    	if (unlikely(laptop_mode))
    		laptop_sync_completion();
    	return 0;
    }
    
    static void do_sync_work(struct work_struct *work)
    {
    	int nowait = 0;
    
    	/*
    	 * Sync twice to reduce the possibility we skipped some inodes / pages
    	 * because they were temporarily locked
    	 */
    	iterate_supers(sync_inodes_one_sb, &nowait);
    	iterate_supers(sync_fs_one_sb, &nowait);
    	iterate_bdevs(fdatawrite_one_bdev, NULL);
    	iterate_supers(sync_inodes_one_sb, &nowait);
    	iterate_supers(sync_fs_one_sb, &nowait);
    	iterate_bdevs(fdatawrite_one_bdev, NULL);
    	printk("Emergency Sync complete\n");
    	kfree(work);
    }
    
    void emergency_sync(void)
    {
    	struct work_struct *work;
    
    	work = kmalloc(sizeof(*work), GFP_ATOMIC);
    	if (work) {
    		INIT_WORK(work, do_sync_work);
    		schedule_work(work);
    	}
    }
    
    /*
     * sync a single super
     */
    SYSCALL_DEFINE1(syncfs, int, fd)
    {
    	struct fd f = fdget(fd);
    	struct super_block *sb;
    	int ret;
    
    	if (!f.file)
    		return -EBADF;
    	sb = f.file->f_path.dentry->d_sb;
    
    	down_read(&sb->s_umount);
    	ret = sync_filesystem(sb);
    	up_read(&sb->s_umount);
    
    	fdput(f);
    	return ret;
    }
    
    /**
     * vfs_fsync_range - helper to sync a range of data & metadata to disk
     * @file:		file to sync
     * @start:		offset in bytes of the beginning of data range to sync
     * @end:		offset in bytes of the end of data range (inclusive)
     * @datasync:		perform only datasync
     *
     * Write back data in range @start..@end and metadata for @file to disk.  If
     * @datasync is set only metadata needed to access modified file data is
     * written.
     */
    int vfs_fsync_range(struct file *file, loff_t start, loff_t end, int datasync)
    {
    	struct inode *inode = file->f_mapping->host;
    
    	if (!file->f_op->fsync)
    		return -EINVAL;
    	if (!datasync && (inode->i_state & I_DIRTY_TIME)) {
    		spin_lock(&inode->i_lock);
    		inode->i_state &= ~I_DIRTY_TIME;
    		spin_unlock(&inode->i_lock);
    		mark_inode_dirty_sync(inode);
    	}
    	return file->f_op->fsync(file, start, end, datasync);
    }
    EXPORT_SYMBOL(vfs_fsync_range);
    
    /**
     * vfs_fsync - perform a fsync or fdatasync on a file
     * @file:		file to sync
     * @datasync:		only perform a fdatasync operation
     *
     * Write back data and metadata for @file to disk.  If @datasync is
     * set only metadata needed to access modified file data is written.
     */
    int vfs_fsync(struct file *file, int datasync)
    {
    	return vfs_fsync_range(file, 0, LLONG_MAX, datasync);
    }
    EXPORT_SYMBOL(vfs_fsync);
    
    static int do_fsync(unsigned int fd, int datasync)
    {
    	struct fd f = fdget(fd);
    	int ret = -EBADF;
    
    	if (f.file) {
    		ret = vfs_fsync(f.file, datasync);
    		fdput(f);
    	}
    	return ret;
    }
    
    SYSCALL_DEFINE1(fsync, unsigned int, fd)
    {
    	return do_fsync(fd, 0);
    }
    
    SYSCALL_DEFINE1(fdatasync, unsigned int, fd)
    {
    	return do_fsync(fd, 1);
    }
    
    /*
     * sys_sync_file_range() permits finely controlled syncing over a segment of
     * a file in the range offset .. (offset+nbytes-1) inclusive.  If nbytes is
     * zero then sys_sync_file_range() will operate from offset out to EOF.
     *
     * The flag bits are:
     *
     * SYNC_FILE_RANGE_WAIT_BEFORE: wait upon writeout of all pages in the range
     * before performing the write.
     *
     * SYNC_FILE_RANGE_WRITE: initiate writeout of all those dirty pages in the
     * range which are not presently under writeback. Note that this may block for
     * significant periods due to exhaustion of disk request structures.
     *
     * SYNC_FILE_RANGE_WAIT_AFTER: wait upon writeout of all pages in the range
     * after performing the write.
     *
     * Useful combinations of the flag bits are:
     *
     * SYNC_FILE_RANGE_WAIT_BEFORE|SYNC_FILE_RANGE_WRITE: ensures that all pages
     * in the range which were dirty on entry to sys_sync_file_range() are placed
     * under writeout.  This is a start-write-for-data-integrity operation.
     *
     * SYNC_FILE_RANGE_WRITE: start writeout of all dirty pages in the range which
     * are not presently under writeout.  This is an asynchronous flush-to-disk
     * operation.  Not suitable for data integrity operations.
     *
     * SYNC_FILE_RANGE_WAIT_BEFORE (or SYNC_FILE_RANGE_WAIT_AFTER): wait for
     * completion of writeout of all pages in the range.  This will be used after an
     * earlier SYNC_FILE_RANGE_WAIT_BEFORE|SYNC_FILE_RANGE_WRITE operation to wait
     * for that operation to complete and to return the result.
     *
     * SYNC_FILE_RANGE_WAIT_BEFORE|SYNC_FILE_RANGE_WRITE|SYNC_FILE_RANGE_WAIT_AFTER:
     * a traditional sync() operation.  This is a write-for-data-integrity operation
     * which will ensure that all pages in the range which were dirty on entry to
     * sys_sync_file_range() are committed to disk.
     *
     *
     * SYNC_FILE_RANGE_WAIT_BEFORE and SYNC_FILE_RANGE_WAIT_AFTER will detect any
     * I/O errors or ENOSPC conditions and will return those to the caller, after
     * clearing the EIO and ENOSPC flags in the address_space.
     *
     * It should be noted that none of these operations write out the file's
     * metadata.  So unless the application is strictly performing overwrites of
     * already-instantiated disk blocks, there are no guarantees here that the data
     * will be available after a crash.
     */
    SYSCALL_DEFINE4(sync_file_range, int, fd, loff_t, offset, loff_t, nbytes,
    				unsigned int, flags)
    {
    	int ret;
    	struct fd f;
    	struct address_space *mapping;
    	loff_t endbyte;			/* inclusive */
    	umode_t i_mode;
    
    	ret = -EINVAL;
    	if (flags & ~VALID_FLAGS)
    		goto out;
    
    	endbyte = offset + nbytes;
    
    	if ((s64)offset < 0)
    		goto out;
    	if ((s64)endbyte < 0)
    		goto out;
    	if (endbyte < offset)
    		goto out;
    
    	if (sizeof(pgoff_t) == 4) {
    		if (offset >= (0x100000000ULL << PAGE_SHIFT)) {
    			/*
    			 * The range starts outside a 32 bit machine's
    			 * pagecache addressing capabilities.  Let it "succeed"
    			 */
    			ret = 0;
    			goto out;
    		}
    		if (endbyte >= (0x100000000ULL << PAGE_SHIFT)) {
    			/*
    			 * Out to EOF
    			 */
    			nbytes = 0;
    		}
    	}
    
    	if (nbytes == 0)
    		endbyte = LLONG_MAX;
    	else
    		endbyte--;		/* inclusive */
    
    	ret = -EBADF;
    	f = fdget(fd);
    	if (!f.file)
    		goto out;
    
    	i_mode = file_inode(f.file)->i_mode;
    	ret = -ESPIPE;
    	if (!S_ISREG(i_mode) && !S_ISBLK(i_mode) && !S_ISDIR(i_mode) &&
    			!S_ISLNK(i_mode))
    		goto out_put;
    
    	mapping = f.file->f_mapping;
    	if (!mapping) {
    		ret = -EINVAL;
    		goto out_put;
    	}
    
    	ret = 0;
    	if (flags & SYNC_FILE_RANGE_WAIT_BEFORE) {
    		ret = filemap_fdatawait_range(mapping, offset, endbyte);
    		if (ret < 0)
    			goto out_put;
    	}
    
    	if (flags & SYNC_FILE_RANGE_WRITE) {
    		ret = __filemap_fdatawrite_range(mapping, offset, endbyte,
    						 WB_SYNC_NONE);
    		if (ret < 0)
    			goto out_put;
    	}
    
    	if (flags & SYNC_FILE_RANGE_WAIT_AFTER)
    		ret = filemap_fdatawait_range(mapping, offset, endbyte);
    
    out_put:
    	fdput(f);
    out:
    	return ret;
    }
    
    /* It would be nice if people remember that not all the world's an i386
       when they introduce new system calls */
    SYSCALL_DEFINE4(sync_file_range2, int, fd, unsigned int, flags,
    				 loff_t, offset, loff_t, nbytes)
    {
    	return sys_sync_file_range(fd, offset, nbytes, flags);
    }