Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
/*
* Driver for Cadence QSPI Controller
*
* Copyright Altera Corporation (C) 2012-2014. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <linux/clk.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/errno.h>
#include <linux/spi/spi.h>
#include <linux/delay.h>
#include <linux/io.h>
#include <linux/of.h>
#include <linux/of_platform.h>
#include <linux/of_address.h>
#include <linux/of_irq.h>
#include <linux/dma-mapping.h>
#include <linux/dmaengine.h>
#include "spi-cadence-qspi.h"
#include "spi-cadence-qspi-apb.h"
#define CADENCE_QSPI_NAME "cadence-qspi"
#include "qspi.h"
#include <linux/clk.h>
unsigned int cadence_qspi_init_timeout(const unsigned long timeout_in_ms)
{
return jiffies + msecs_to_jiffies(timeout_in_ms);
}
unsigned int cadence_qspi_check_timeout(const unsigned long timeout)
{
return time_before(jiffies, timeout);
}
static irqreturn_t cadence_qspi_irq_handler(int this_irq, void *dev)
{
struct struct_cqspi *cadence_qspi = dev;
/* Read interrupt status */
cadence_qspi->irq_status = CQSPI_READ_IRQ_STATUS(cadence_qspi->iobase);
/* Clear interrupt */
CQSPI_CLEAR_IRQ(cadence_qspi->iobase, cadence_qspi->irq_status);
wake_up(&cadence_qspi->waitqueue);
return IRQ_HANDLED;
}
static void cadence_qspi_work(struct work_struct *work)
{
struct struct_cqspi *cadence_qspi
= container_of(work, struct struct_cqspi, work);
unsigned long flags;
pr_debug("%s\n", __func__);
spin_lock_irqsave(&cadence_qspi->lock, flags);
while ((!list_empty(&cadence_qspi->msg_queue)) &&
cadence_qspi->running) {
struct spi_message *spi_msg;
struct spi_device *spi;
struct spi_transfer *spi_xfer;
struct spi_transfer *xfer[CQSPI_MAX_TRANS];
int status = 0;
int n_trans = 0;
int skip_xfer = 0;
spi_msg = container_of(cadence_qspi->msg_queue.next,
struct spi_message, queue);
list_del_init(&spi_msg->queue);
spin_unlock_irqrestore(&cadence_qspi->lock, flags);
spi = spi_msg->spi;
list_for_each_entry(spi_xfer, &spi_msg->transfers,
transfer_list) {
if (n_trans >= CQSPI_MAX_TRANS) {
pr_debug("[%s]n_trans=%d CQSPI_MAX_TRANS=%d\n",
__func__, n_trans, CQSPI_MAX_TRANS);
dev_err(&spi->dev, "ERROR: Number of SPI "
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
"transfer is more than %d.\n",
CQSPI_MAX_TRANS);
/* Skip process the queue if number of
* transaction is greater than max 2. */
skip_xfer = 1;
break;
}
xfer[n_trans++] = spi_xfer;
}
pr_debug("[%s]n_trans=%d CQSPI_MAX_TRANS=%d\n",
__func__, n_trans, CQSPI_MAX_TRANS);
if (!skip_xfer) {
status = cadence_qspi_apb_process_queue(cadence_qspi,
spi, n_trans, xfer);
if (!status) {
spi_msg->actual_length += xfer[0]->len;
if (n_trans > 1)
spi_msg->actual_length += xfer[1]->len;
}
spi_msg->status = status;
spi_msg->complete(spi_msg->context);
}
spin_lock_irqsave(&cadence_qspi->lock, flags);
}
spin_unlock_irqrestore(&cadence_qspi->lock, flags);
}
static int cadence_qspi_transfer(struct spi_device *spi,
struct spi_message *msg)
{
struct struct_cqspi *cadence_qspi =
spi_master_get_devdata(spi->master);
struct spi_transfer *spi_xfer;
struct platform_device *pdev = cadence_qspi->pdev;
struct cqspi_platform_data *pdata = pdev->dev.platform_data;
unsigned long flags;
pr_debug("%s\n", __func__);
list_for_each_entry(spi_xfer, &msg->transfers, transfer_list) {
if (spi_xfer->speed_hz > (pdata->master_ref_clk_hz / 2)) {
dev_err(&spi->dev, "speed_hz%d greater than "
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
"maximum %dHz\n",
spi_xfer->speed_hz,
(pdata->master_ref_clk_hz / 2));
msg->status = -EINVAL;
return -EINVAL;
}
}
spin_lock_irqsave(&cadence_qspi->lock, flags);
if (!cadence_qspi->running) {
spin_unlock_irqrestore(&cadence_qspi->lock, flags);
return -ESHUTDOWN;
}
msg->status = -EINPROGRESS;
msg->actual_length = 0;
list_add_tail(&msg->queue, &cadence_qspi->msg_queue);
queue_work(cadence_qspi->workqueue, &cadence_qspi->work);
spin_unlock_irqrestore(&cadence_qspi->lock, flags);
return 0;
}
static int cadence_qspi_setup(struct spi_device *spi)
{
pr_debug("%s\n", __func__);
if (spi->chip_select > spi->master->num_chipselect) {
dev_err(&spi->dev, "%d chip select is out of range\n",
spi->chip_select);
return -EINVAL;
}
pr_debug("cadence_qspi : bits per word %d, chip select %d, "
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
"speed %d KHz\n", spi->bits_per_word, spi->chip_select,
spi->max_speed_hz);
return 0;
}
static int cadence_qspi_start_queue(struct struct_cqspi *cadence_qspi)
{
unsigned long flags;
pr_debug("%s\n", __func__);
spin_lock_irqsave(&cadence_qspi->lock, flags);
if (cadence_qspi->running) {
spin_unlock_irqrestore(&cadence_qspi->lock, flags);
return -EBUSY;
}
if (!cadence_qspi_apb_is_controller_ready(cadence_qspi->iobase)) {
spin_unlock_irqrestore(&cadence_qspi->lock, flags);
return -EBUSY;
}
cadence_qspi->running = true;
spin_unlock_irqrestore(&cadence_qspi->lock, flags);
queue_work(cadence_qspi->workqueue, &cadence_qspi->work);
return 0;
}
static int cadence_qspi_stop_queue(struct struct_cqspi *cadence_qspi)
{
unsigned long flags;
unsigned limit = 500;
int status = 0;
spin_lock_irqsave(&cadence_qspi->lock, flags);
cadence_qspi->running = false;
/* We will wait until controller process all the queue and ensure the
* controller is not busy. */
while ((!list_empty(&cadence_qspi->msg_queue) ||
!cadence_qspi_apb_is_controller_ready(cadence_qspi->iobase))
&& limit--) {
spin_unlock_irqrestore(&cadence_qspi->lock, flags);
msleep(20);
spin_lock_irqsave(&cadence_qspi->lock, flags);
}
if (!list_empty(&cadence_qspi->msg_queue) ||
!cadence_qspi_apb_is_controller_ready(cadence_qspi->iobase))
status = -EBUSY;
spin_unlock_irqrestore(&cadence_qspi->lock, flags);
return status;
}
static int cadence_qspi_of_get_pdata(struct platform_device *pdev)
{
struct device_node *np = pdev->dev.of_node;
struct device_node *nc;
struct cqspi_platform_data *pdata = pdev->dev.platform_data;
struct cqspi_flash_pdata *f_pdata;
unsigned int cs;
unsigned int prop;
/* this function works with device tree information */
if (of_property_read_u32(np, "lantiq,qspi-phyaddr", &prop)) {
dev_err(&pdev->dev,
"couldn't determine lantiq,qspi-phyaddr\n");
return -ENXIO;
}
pdata->qspi_ahb_phy = prop;
if (of_property_read_u32(np, "bus-num", &prop)) {
dev_err(&pdev->dev, "couldn't determine bus-num\n");
return -ENXIO;
}
pdata->bus_num = prop;
if (of_property_read_u32(np, "num-chipselect", &prop)) {
dev_err(&pdev->dev, "couldn't determine num-chipselect\n");
return -ENXIO;
}
pdata->num_chipselect = prop;
if (of_property_read_u32(np, "fifo-depth", &prop)) {
dev_err(&pdev->dev, "couldn't determine fifo-depth\n");
return -ENXIO;
}
pdata->fifo_depth = prop;
/*
if (of_property_read_u32(np, "ext-decoder", &prop)) {
dev_err(&pdev->dev, "couldn't determine ext-decoder\n");
return -ENXIO;
}
pdata->ext_decoder = prop;
pdata->enable_dma = of_property_read_bool(np, "dmas");
dev_info(&pdev->dev, "DMA %senabled\n",
pdata->enable_dma ? "" : "NOT ");
*/
/* Get flash devices platform data */
for_each_child_of_node(np, nc) {
if (of_property_read_u32(nc, "reg", &cs)) {
dev_err(&pdev->dev, "couldn't determine reg\n");
return -ENXIO;
}
f_pdata = &(pdata->f_pdata[cs]);
if (of_property_read_u32(nc, "flash-type", &prop)) {
dev_err(&pdev->dev, "couldn't determine flash-type\n");
return -ENXIO;
}
pr_debug("[%s]cs=%d flash-type=%d\n", __func__, cs, prop);
f_pdata->flash_type = prop;
if (of_property_read_u32(nc, "quad", &prop)) {
dev_err(&pdev->dev, "couldn't determine quad\n");
return -ENXIO;
}
pr_debug("[%s]cs=%d quad=%d\n", __func__, cs, prop);
f_pdata->quad = prop;
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
if (of_property_read_u32(nc, "page-size", &prop)) {
dev_err(&pdev->dev, "couldn't determine page-size\n");
return -ENXIO;
}
f_pdata->page_size = prop;
if (of_property_read_u32(nc, "block-size", &prop)) {
dev_err(&pdev->dev, "couldn't determine block-size\n");
return -ENXIO;
}
f_pdata->block_size = prop;
/*
if (of_property_read_u32(nc, "read-delay", &prop)) {
dev_err(&pdev->dev, "couldn't determine read-delay\n");
return -ENXIO;
}
f_pdata->read_delay = prop;
if (of_property_read_u32(nc, "tshsl-ns", &prop)) {
dev_err(&pdev->dev, "couldn't determine tshsl-ns\n");
return -ENXIO;
}
f_pdata->tshsl_ns = prop;
if (of_property_read_u32(nc, "tsd2d-ns", &prop)) {
dev_err(&pdev->dev, "couldn't determine tsd2d-ns\n");
return -ENXIO;
}
f_pdata->tsd2d_ns = prop;
if (of_property_read_u32(nc, "tchsh-ns", &prop)) {
dev_err(&pdev->dev, "couldn't determine tchsh-ns\n");
return -ENXIO;
}
f_pdata->tchsh_ns = prop;
if (of_property_read_u32(nc, "tslch-ns", &prop)) {
dev_err(&pdev->dev, "couldn't determine tslch-ns\n");
return -ENXIO;
}
f_pdata->tslch_ns = prop;
*/
}
return 0;
}
static void cadence_qspi_rst(struct struct_cqspi *cadence_qspi,
struct platform_device *pdev)
{
cadence_qspi->reset = devm_reset_control_get(&pdev->dev, "qspi");
if (IS_ERR(cadence_qspi->reset))
dev_err(&pdev->dev, "qspi get reset fail.\n");
reset_control_assert(cadence_qspi->reset);
reset_control_deassert(cadence_qspi->reset);
}
static int cadence_qspi_probe(struct platform_device *pdev)
{
struct spi_master *master;
struct struct_cqspi *cadence_qspi;
struct resource *res;
struct resource *res_ahb;
struct cqspi_platform_data *pdata;
int status;
struct device *dev = &pdev->dev;
struct device_node *np = dev->of_node;
struct cqspi_flash_pdata *f_pdata;
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
pr_debug("%s %s %s\n", __func__,
pdev->name, pdev->id_entry->name);
master = spi_alloc_master(&pdev->dev, sizeof(*cadence_qspi));
if (master == NULL) {
dev_err(&pdev->dev, "spi_alloc_master failed\n");
return -ENOMEM;
}
master->mode_bits = SPI_CS_HIGH | SPI_CPOL | SPI_CPHA;
master->setup = cadence_qspi_setup;
master->transfer = cadence_qspi_transfer;
master->dev.of_node = pdev->dev.of_node;
cadence_qspi = spi_master_get_devdata(master);
cadence_qspi->pdev = pdev;
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
cadence_qspi->iobase = devm_ioremap_resource(&pdev->dev, res);
if (!cadence_qspi->iobase) {
dev_err(&pdev->dev, "devm_ioremap_resource res 0 failed\n");
status = -EADDRNOTAVAIL;
goto err_ioremap;
}
pdata = kmalloc(sizeof(struct cqspi_platform_data), GFP_KERNEL);
if (!pdata) {
status = -ENOMEM;
goto err_pdata;
}
pdev->dev.platform_data = pdata;
cadence_qspi->clk = devm_clk_get(&pdev->dev, "qspi");
if (IS_ERR(cadence_qspi->clk)) {
dev_err(&pdev->dev, "cannot get qspi clk\n");
return PTR_ERR(cadence_qspi->clk);
}
cadence_qspi->fpi_clk = devm_clk_get(&pdev->dev, "freq");
if (IS_ERR(cadence_qspi->fpi_clk)) {
dev_err(&pdev->dev, "cannot get qspi fpi_clk\n");
return PTR_ERR(cadence_qspi->fpi_clk);
}
pdata->master_ref_clk_hz = clk_get_rate(cadence_qspi->fpi_clk);
status = clk_prepare_enable(cadence_qspi->clk);
if (status < 0) {
dev_err(&pdev->dev,
"failed to enable qspi clock: %d\n", status);
return status;
}
status = cadence_qspi_of_get_pdata(pdev);
if (status) {
dev_err(&pdev->dev, "Get platform data failed.\n");
goto err_of;
}
f_pdata = &(pdata->f_pdata[cadence_qspi->current_cs]);
pr_debug("[%s]cs=%d flash_type=%d\n", __func__, cadence_qspi->current_cs, f_pdata->flash_type);
pr_debug("[%s]block_size=%d page_size=%d\n", __func__, f_pdata->block_size, f_pdata->page_size);
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
cadence_qspi->res = res;
cadence_qspi->qspi_ahb_virt = phys_to_virt(pdata->qspi_ahb_phy);
if (!cadence_qspi->qspi_ahb_virt) {
dev_err(&pdev->dev, "devm_ioremap_resource res 1 failed\n");
status = -EADDRNOTAVAIL;
goto err_ahbremap;
}
cadence_qspi_rst(cadence_qspi, pdev);
cadence_qspi->workqueue =
create_singlethread_workqueue(dev_name(master->dev.parent));
if (!cadence_qspi->workqueue) {
dev_err(&pdev->dev, "create_workqueue failed\n");
status = -ENOMEM;
goto err_wq;
}
cadence_qspi->running = false;
INIT_WORK(&cadence_qspi->work, cadence_qspi_work);
spin_lock_init(&cadence_qspi->lock);
INIT_LIST_HEAD(&cadence_qspi->msg_queue);
init_waitqueue_head(&cadence_qspi->waitqueue);
status = cadence_qspi_start_queue(cadence_qspi);
if (status) {
dev_err(&pdev->dev, "problem starting queue.\n");
goto err_start_q;
}
cadence_qspi->irq = platform_get_irq(pdev, 0);
if (cadence_qspi->irq < 0) {
dev_err(&pdev->dev, "platform_get_irq failed\n");
status = -ENXIO;
goto err_irq;
}
status = request_irq(cadence_qspi->irq, cadence_qspi_irq_handler,
0, pdev->name, cadence_qspi);
if (status) {
dev_err(&pdev->dev, "request_irq failed\n");
goto err_irq;
}
master->bus_num = pdata->bus_num;
master->num_chipselect = pdata->num_chipselect;
platform_set_drvdata(pdev, master);
cadence_qspi_apb_controller_init(cadence_qspi);
cadence_qspi->current_cs = 0;
status = spi_register_master(master);
if (status) {
dev_err(&pdev->dev, "spi_register_master=%d failed\n", status);
goto err_of;
}
dev_info(&pdev->dev, "Cadence QSPI controller driver\n");
return 0;
err_of:
kfree(pdata);
err_pdata:
free_irq(cadence_qspi->irq, cadence_qspi);
err_start_q:
err_irq:
destroy_workqueue(cadence_qspi->workqueue);
err_wq:
err_ahbremap:
err_ioremap:
spi_master_put(master);
dev_err(&pdev->dev, "Cadence QSPI controller probe failed\n");
return status;
}
static int cadence_qspi_remove(struct platform_device *pdev)
{
struct spi_master *master = platform_get_drvdata(pdev);
struct struct_cqspi *cadence_qspi = spi_master_get_devdata(master);
cadence_qspi_apb_controller_disable(cadence_qspi->iobase);
platform_set_drvdata(pdev, NULL);
destroy_workqueue(cadence_qspi->workqueue);
free_irq(cadence_qspi->irq, cadence_qspi);
iounmap(cadence_qspi->iobase);
iounmap(cadence_qspi->qspi_ahb_virt);
release_mem_region(cadence_qspi->res->start,
resource_size(cadence_qspi->res));
kfree(pdev->dev.platform_data);
spi_unregister_master(master);
spi_master_put(master);
return 0;
}
#ifdef CONFIG_PM
static int cadence_qspi_suspend(struct device *dev)
{
struct spi_master *master = dev_get_drvdata(dev);
struct struct_cqspi *cadence_qspi = spi_master_get_devdata(master);
int status = 0;
/* Stop the queue */
status = cadence_qspi_stop_queue(cadence_qspi);
if (status != 0)
return status;
/* Disable the controller to conserve the power */
cadence_qspi_apb_controller_disable(cadence_qspi->iobase);
return 0;
}
static int cadence_qspi_resume(struct device *dev)
{
struct spi_master *master = dev_get_drvdata(dev);
struct struct_cqspi *cadence_qspi = spi_master_get_devdata(master);
int status = 0;
cadence_qspi_apb_controller_enable(cadence_qspi->iobase);
/* Start the queue running */
status = cadence_qspi_start_queue(cadence_qspi);
if (status != 0) {
cadence_qspi_apb_controller_disable(cadence_qspi->iobase);
dev_err(dev, "problem starting queue (%d)\n", status);
return status;
}
return 0;
}
static const struct dev_pm_ops cadence_qspi__dev_pm_ops = {
.suspend = cadence_qspi_suspend,
.resume = cadence_qspi_resume,
};
#define CADENCE_QSPI_DEV_PM_OPS (&cadence_qspi__dev_pm_ops)
#else
#define CADENCE_QSPI_DEV_PM_OPS NULL
#endif
#ifdef CONFIG_OF
static struct of_device_id cadence_qspi_of_match[] = {
{ .compatible = "cadence,qspi",},
{ /* end of table */}
};
MODULE_DEVICE_TABLE(of, cadence_qspi_of_match);
#else
#define cadence_qspi_of_match NULL
#endif /* CONFIG_OF */
static struct platform_driver cadence_qspi_platform_driver = {
.probe = cadence_qspi_probe,
.remove = cadence_qspi_remove,
.driver = {
.name = CADENCE_QSPI_NAME,
.owner = THIS_MODULE,
.pm = CADENCE_QSPI_DEV_PM_OPS,
.of_match_table = cadence_qspi_of_match,
},
};
static int __init cadence_qspi_init(void)
{
return platform_driver_register(&cadence_qspi_platform_driver);
}
static void __exit cadence_qspi_exit(void)
{
platform_driver_unregister(&cadence_qspi_platform_driver);
}
module_init(cadence_qspi_init);
module_exit(cadence_qspi_exit);
MODULE_AUTHOR("Ley Foon Tan <lftan@altera.com>");
MODULE_DESCRIPTION("Cadence QSPI Controller Driver");
MODULE_LICENSE("GPL");
MODULE_ALIAS("platform:" CADENCE_QSPI_NAME);