Skip to content
Snippets Groups Projects
Select Git revision
  • 3f5c2bd87016d34fe9bd4c006772ad0974e7f8e7
  • master default protected
  • iop-ugw-8.4.1.50
  • iop-ugw-8.4.1.30
  • 8.1.1-ga_master
  • fix-1150
  • speedport_smart3
  • sps3
  • 8.1.1_master
  • jh
  • jh-mcast
11 results

mtdcore.c

Blame
  • user avatar
    Boppana Prasad, Rajendra authored and Kenneth Johansson committed
    * commit 'c7f3673b32897465fee22a551cc071731dd7a5d7': (98 commits)
      bridge: port isolate
      bridge: only accept EAP locally
      lzma: de-bloat the lzma library used by jffs2
      hack: kernel: add generic image_cmdline hack to MIPS targets
      rfkill: add fake rfkill support
      kernel: prevent cryptomgr from pulling in useless extra dependencies for tests that are not run
      kernel: move regmap bloat out of the kernel image if it is only being used in modules
      kconfig: owrt specific dependencies
      hack: net: remove bogus netfilter dependencies
      use the openwrt lzma options for now
      kernel: fix linux/spi/spidev.h portability issues with musl
      linux-3.6: fix portability of some includes files in tools/ used on the host
      kernel: fix linux 4.9 host tools portability issues
      kernel: do not build modules.order
      build: add a hack for removing non-essential module info
      kernel: strip unnecessary symbol table information from kernel modules
      serial: do not accept sysrq characters via serial port
      libata: add ledtrig support
      usb: Remove annoying warning about bogus URB
      usb: Remove annoying warning about bogus URB
      ...
    69dc8044
    History
    mtdcore.c 49.24 KiB
    /*
     * Core registration and callback routines for MTD
     * drivers and users.
     *
     * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org>
     * Copyright © 2006      Red Hat UK Limited 
     *
     * This program is free software; you can redistribute it and/or modify
     * it under the terms of the GNU General Public License as published by
     * the Free Software Foundation; either version 2 of the License, or
     * (at your option) any later version.
     *
     * This program is distributed in the hope that it will be useful,
     * but WITHOUT ANY WARRANTY; without even the implied warranty of
     * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
     * GNU General Public License for more details.
     *
     * You should have received a copy of the GNU General Public License
     * along with this program; if not, write to the Free Software
     * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
     *
     */
    
    #include <linux/module.h>
    #include <linux/kernel.h>
    #include <linux/ptrace.h>
    #include <linux/seq_file.h>
    #include <linux/string.h>
    #include <linux/timer.h>
    #include <linux/major.h>
    #include <linux/fs.h>
    #include <linux/err.h>
    #include <linux/ioctl.h>
    #include <linux/init.h>
    #include <linux/of.h>
    #include <linux/proc_fs.h>
    #include <linux/idr.h>
    #include <linux/backing-dev.h>
    #include <linux/gfp.h>
    #include <linux/slab.h>
    #include <linux/reboot.h>
    #include <linux/leds.h>
    #include <linux/root_dev.h>
    
    #include <linux/mtd/mtd.h>
    #include <linux/mtd/partitions.h>
    
    #include "mtdcore.h"
    
    static struct backing_dev_info mtd_bdi = {
    };
    
    #ifdef CONFIG_PM_SLEEP
    
    static int mtd_cls_suspend(struct device *dev)
    {
    	struct mtd_info *mtd = dev_get_drvdata(dev);
    
    	return mtd ? mtd_suspend(mtd) : 0;
    }
    
    static int mtd_cls_resume(struct device *dev)
    {
    	struct mtd_info *mtd = dev_get_drvdata(dev);
    
    	if (mtd)
    		mtd_resume(mtd);
    	return 0;
    }
    
    static SIMPLE_DEV_PM_OPS(mtd_cls_pm_ops, mtd_cls_suspend, mtd_cls_resume);
    #define MTD_CLS_PM_OPS (&mtd_cls_pm_ops)
    #else
    #define MTD_CLS_PM_OPS NULL
    #endif
    
    static struct class mtd_class = {
    	.name = "mtd",
    	.owner = THIS_MODULE,
    	.pm = MTD_CLS_PM_OPS,
    };
    
    static DEFINE_IDR(mtd_idr);
    
    /* These are exported solely for the purpose of mtd_blkdevs.c. You
       should not use them for _anything_ else */
    DEFINE_MUTEX(mtd_table_mutex);
    EXPORT_SYMBOL_GPL(mtd_table_mutex);
    
    struct mtd_info *__mtd_next_device(int i)
    {
    	return idr_get_next(&mtd_idr, &i);
    }
    EXPORT_SYMBOL_GPL(__mtd_next_device);
    
    static LIST_HEAD(mtd_notifiers);
    
    
    #define MTD_DEVT(index) MKDEV(MTD_CHAR_MAJOR, (index)*2)
    
    /* REVISIT once MTD uses the driver model better, whoever allocates
     * the mtd_info will probably want to use the release() hook...
     */
    static void mtd_release(struct device *dev)
    {
    	struct mtd_info *mtd = dev_get_drvdata(dev);
    	dev_t index = MTD_DEVT(mtd->index);
    
    	/* remove /dev/mtdXro node */
    	device_destroy(&mtd_class, index + 1);
    }
    
    static ssize_t mtd_type_show(struct device *dev,
    		struct device_attribute *attr, char *buf)
    {
    	struct mtd_info *mtd = dev_get_drvdata(dev);
    	char *type;
    
    	switch (mtd->type) {
    	case MTD_ABSENT:
    		type = "absent";
    		break;
    	case MTD_RAM:
    		type = "ram";
    		break;
    	case MTD_ROM:
    		type = "rom";
    		break;
    	case MTD_NORFLASH:
    		type = "nor";
    		break;
    	case MTD_NANDFLASH:
    		type = "nand";
    		break;
    	case MTD_DATAFLASH:
    		type = "dataflash";
    		break;
    	case MTD_UBIVOLUME:
    		type = "ubi";
    		break;
    	case MTD_MLCNANDFLASH:
    		type = "mlc-nand";
    		break;
    	default:
    		type = "unknown";
    	}
    
    	return snprintf(buf, PAGE_SIZE, "%s\n", type);
    }
    static DEVICE_ATTR(type, S_IRUGO, mtd_type_show, NULL);
    
    static ssize_t mtd_flags_show(struct device *dev,
    		struct device_attribute *attr, char *buf)
    {
    	struct mtd_info *mtd = dev_get_drvdata(dev);
    
    	return snprintf(buf, PAGE_SIZE, "0x%lx\n", (unsigned long)mtd->flags);
    
    }
    static DEVICE_ATTR(flags, S_IRUGO, mtd_flags_show, NULL);
    
    static ssize_t mtd_size_show(struct device *dev,
    		struct device_attribute *attr, char *buf)
    {
    	struct mtd_info *mtd = dev_get_drvdata(dev);
    
    	return snprintf(buf, PAGE_SIZE, "%llu\n",
    		(unsigned long long)mtd->size);
    
    }
    static DEVICE_ATTR(size, S_IRUGO, mtd_size_show, NULL);
    
    static ssize_t mtd_erasesize_show(struct device *dev,
    		struct device_attribute *attr, char *buf)
    {
    	struct mtd_info *mtd = dev_get_drvdata(dev);
    
    	return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->erasesize);
    
    }
    static DEVICE_ATTR(erasesize, S_IRUGO, mtd_erasesize_show, NULL);
    
    static ssize_t mtd_writesize_show(struct device *dev,
    		struct device_attribute *attr, char *buf)
    {
    	struct mtd_info *mtd = dev_get_drvdata(dev);
    
    	return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->writesize);
    
    }
    static DEVICE_ATTR(writesize, S_IRUGO, mtd_writesize_show, NULL);
    
    static ssize_t mtd_subpagesize_show(struct device *dev,
    		struct device_attribute *attr, char *buf)
    {
    	struct mtd_info *mtd = dev_get_drvdata(dev);
    	unsigned int subpagesize = mtd->writesize >> mtd->subpage_sft;
    
    	return snprintf(buf, PAGE_SIZE, "%u\n", subpagesize);
    
    }
    static DEVICE_ATTR(subpagesize, S_IRUGO, mtd_subpagesize_show, NULL);
    
    static ssize_t mtd_oobsize_show(struct device *dev,
    		struct device_attribute *attr, char *buf)
    {
    	struct mtd_info *mtd = dev_get_drvdata(dev);
    
    	return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->oobsize);
    
    }
    static DEVICE_ATTR(oobsize, S_IRUGO, mtd_oobsize_show, NULL);
    
    static ssize_t mtd_numeraseregions_show(struct device *dev,
    		struct device_attribute *attr, char *buf)
    {
    	struct mtd_info *mtd = dev_get_drvdata(dev);
    
    	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->numeraseregions);
    
    }
    static DEVICE_ATTR(numeraseregions, S_IRUGO, mtd_numeraseregions_show,
    	NULL);
    
    static ssize_t mtd_name_show(struct device *dev,
    		struct device_attribute *attr, char *buf)
    {
    	struct mtd_info *mtd = dev_get_drvdata(dev);
    
    	return snprintf(buf, PAGE_SIZE, "%s\n", mtd->name);
    
    }
    static DEVICE_ATTR(name, S_IRUGO, mtd_name_show, NULL);
    
    static ssize_t mtd_ecc_strength_show(struct device *dev,
    				     struct device_attribute *attr, char *buf)
    {
    	struct mtd_info *mtd = dev_get_drvdata(dev);
    
    	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_strength);
    }
    static DEVICE_ATTR(ecc_strength, S_IRUGO, mtd_ecc_strength_show, NULL);
    
    static ssize_t mtd_bitflip_threshold_show(struct device *dev,
    					  struct device_attribute *attr,
    					  char *buf)
    {
    	struct mtd_info *mtd = dev_get_drvdata(dev);
    
    	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->bitflip_threshold);
    }
    
    static ssize_t mtd_bitflip_threshold_store(struct device *dev,
    					   struct device_attribute *attr,
    					   const char *buf, size_t count)
    {
    	struct mtd_info *mtd = dev_get_drvdata(dev);
    	unsigned int bitflip_threshold;
    	int retval;
    
    	retval = kstrtouint(buf, 0, &bitflip_threshold);
    	if (retval)
    		return retval;
    
    	mtd->bitflip_threshold = bitflip_threshold;
    	return count;
    }
    static DEVICE_ATTR(bitflip_threshold, S_IRUGO | S_IWUSR,
    		   mtd_bitflip_threshold_show,
    		   mtd_bitflip_threshold_store);
    
    static ssize_t mtd_ecc_step_size_show(struct device *dev,
    		struct device_attribute *attr, char *buf)
    {
    	struct mtd_info *mtd = dev_get_drvdata(dev);
    
    	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_step_size);
    
    }
    static DEVICE_ATTR(ecc_step_size, S_IRUGO, mtd_ecc_step_size_show, NULL);
    
    static ssize_t mtd_ecc_stats_corrected_show(struct device *dev,
    		struct device_attribute *attr, char *buf)
    {
    	struct mtd_info *mtd = dev_get_drvdata(dev);
    	struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
    
    	return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->corrected);
    }
    static DEVICE_ATTR(corrected_bits, S_IRUGO,
    		   mtd_ecc_stats_corrected_show, NULL);
    
    static ssize_t mtd_ecc_stats_errors_show(struct device *dev,
    		struct device_attribute *attr, char *buf)
    {
    	struct mtd_info *mtd = dev_get_drvdata(dev);
    	struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
    
    	return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->failed);
    }
    static DEVICE_ATTR(ecc_failures, S_IRUGO, mtd_ecc_stats_errors_show, NULL);
    
    static ssize_t mtd_badblocks_show(struct device *dev,
    		struct device_attribute *attr, char *buf)
    {
    	struct mtd_info *mtd = dev_get_drvdata(dev);
    	struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
    
    	return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->badblocks);
    }
    static DEVICE_ATTR(bad_blocks, S_IRUGO, mtd_badblocks_show, NULL);
    
    static ssize_t mtd_bbtblocks_show(struct device *dev,
    		struct device_attribute *attr, char *buf)
    {
    	struct mtd_info *mtd = dev_get_drvdata(dev);
    	struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
    
    	return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->bbtblocks);
    }
    static DEVICE_ATTR(bbt_blocks, S_IRUGO, mtd_bbtblocks_show, NULL);
    
    static struct attribute *mtd_attrs[] = {
    	&dev_attr_type.attr,
    	&dev_attr_flags.attr,
    	&dev_attr_size.attr,
    	&dev_attr_erasesize.attr,
    	&dev_attr_writesize.attr,
    	&dev_attr_subpagesize.attr,
    	&dev_attr_oobsize.attr,
    	&dev_attr_numeraseregions.attr,
    	&dev_attr_name.attr,
    	&dev_attr_ecc_strength.attr,
    	&dev_attr_ecc_step_size.attr,
    	&dev_attr_corrected_bits.attr,
    	&dev_attr_ecc_failures.attr,
    	&dev_attr_bad_blocks.attr,
    	&dev_attr_bbt_blocks.attr,
    	&dev_attr_bitflip_threshold.attr,
    	NULL,
    };
    ATTRIBUTE_GROUPS(mtd);
    
    static struct device_type mtd_devtype = {
    	.name		= "mtd",
    	.groups		= mtd_groups,
    	.release	= mtd_release,
    };
    
    #ifndef CONFIG_MMU
    unsigned mtd_mmap_capabilities(struct mtd_info *mtd)
    {
    	switch (mtd->type) {
    	case MTD_RAM:
    		return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC |
    			NOMMU_MAP_READ | NOMMU_MAP_WRITE;
    	case MTD_ROM:
    		return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC |
    			NOMMU_MAP_READ;
    	default:
    		return NOMMU_MAP_COPY;
    	}
    }
    EXPORT_SYMBOL_GPL(mtd_mmap_capabilities);
    #endif
    
    static int mtd_reboot_notifier(struct notifier_block *n, unsigned long state,
    			       void *cmd)
    {
    	struct mtd_info *mtd;
    
    	mtd = container_of(n, struct mtd_info, reboot_notifier);
    	mtd->_reboot(mtd);
    
    	return NOTIFY_DONE;
    }
    
    /**
     * mtd_wunit_to_pairing_info - get pairing information of a wunit
     * @mtd: pointer to new MTD device info structure
     * @wunit: write unit we are interested in
     * @info: returned pairing information
     *
     * Retrieve pairing information associated to the wunit.
     * This is mainly useful when dealing with MLC/TLC NANDs where pages can be
     * paired together, and where programming a page may influence the page it is
     * paired with.
     * The notion of page is replaced by the term wunit (write-unit) to stay
     * consistent with the ->writesize field.
     *
     * The @wunit argument can be extracted from an absolute offset using
     * mtd_offset_to_wunit(). @info is filled with the pairing information attached
     * to @wunit.
     *
     * From the pairing info the MTD user can find all the wunits paired with
     * @wunit using the following loop:
     *
     * for (i = 0; i < mtd_pairing_groups(mtd); i++) {
     *	info.pair = i;
     *	mtd_pairing_info_to_wunit(mtd, &info);
     *	...
     * }
     */
    int mtd_wunit_to_pairing_info(struct mtd_info *mtd, int wunit,
    			      struct mtd_pairing_info *info)
    {
    	int npairs = mtd_wunit_per_eb(mtd) / mtd_pairing_groups(mtd);
    
    	if (wunit < 0 || wunit >= npairs)
    		return -EINVAL;
    
    	if (mtd->pairing && mtd->pairing->get_info)
    		return mtd->pairing->get_info(mtd, wunit, info);
    
    	info->group = 0;
    	info->pair = wunit;
    
    	return 0;
    }
    EXPORT_SYMBOL_GPL(mtd_wunit_to_pairing_info);
    
    /**
     * mtd_wunit_to_pairing_info - get wunit from pairing information
     * @mtd: pointer to new MTD device info structure
     * @info: pairing information struct
     *
     * Returns a positive number representing the wunit associated to the info
     * struct, or a negative error code.
     *
     * This is the reverse of mtd_wunit_to_pairing_info(), and can help one to
     * iterate over all wunits of a given pair (see mtd_wunit_to_pairing_info()
     * doc).
     *
     * It can also be used to only program the first page of each pair (i.e.
     * page attached to group 0), which allows one to use an MLC NAND in
     * software-emulated SLC mode:
     *
     * info.group = 0;
     * npairs = mtd_wunit_per_eb(mtd) / mtd_pairing_groups(mtd);
     * for (info.pair = 0; info.pair < npairs; info.pair++) {
     *	wunit = mtd_pairing_info_to_wunit(mtd, &info);
     *	mtd_write(mtd, mtd_wunit_to_offset(mtd, blkoffs, wunit),
     *		  mtd->writesize, &retlen, buf + (i * mtd->writesize));
     * }
     */
    int mtd_pairing_info_to_wunit(struct mtd_info *mtd,
    			      const struct mtd_pairing_info *info)
    {
    	int ngroups = mtd_pairing_groups(mtd);
    	int npairs = mtd_wunit_per_eb(mtd) / ngroups;
    
    	if (!info || info->pair < 0 || info->pair >= npairs ||
    	    info->group < 0 || info->group >= ngroups)
    		return -EINVAL;
    
    	if (mtd->pairing && mtd->pairing->get_wunit)
    		return mtd->pairing->get_wunit(mtd, info);
    
    	return info->pair;
    }
    EXPORT_SYMBOL_GPL(mtd_pairing_info_to_wunit);
    
    /**
     * mtd_pairing_groups - get the number of pairing groups
     * @mtd: pointer to new MTD device info structure
     *
     * Returns the number of pairing groups.
     *
     * This number is usually equal to the number of bits exposed by a single
     * cell, and can be used in conjunction with mtd_pairing_info_to_wunit()
     * to iterate over all pages of a given pair.
     */
    int mtd_pairing_groups(struct mtd_info *mtd)
    {
    	if (!mtd->pairing || !mtd->pairing->ngroups)
    		return 1;
    
    	return mtd->pairing->ngroups;
    }
    EXPORT_SYMBOL_GPL(mtd_pairing_groups);
    
    /**
     *	add_mtd_device - register an MTD device
     *	@mtd: pointer to new MTD device info structure
     *
     *	Add a device to the list of MTD devices present in the system, and
     *	notify each currently active MTD 'user' of its arrival. Returns
     *	zero on success or non-zero on failure.
     */
    
    int add_mtd_device(struct mtd_info *mtd)
    {
    	struct mtd_notifier *not;
    	int i, error;
    
    	/*
    	 * May occur, for instance, on buggy drivers which call
    	 * mtd_device_parse_register() multiple times on the same master MTD,
    	 * especially with CONFIG_MTD_PARTITIONED_MASTER=y.
    	 */
    	if (WARN_ONCE(mtd->backing_dev_info, "MTD already registered\n"))
    		return -EEXIST;
    
    	mtd->backing_dev_info = &mtd_bdi;
    
    	BUG_ON(mtd->writesize == 0);
    	mutex_lock(&mtd_table_mutex);
    
    	i = idr_alloc(&mtd_idr, mtd, 0, 0, GFP_KERNEL);
    	if (i < 0) {
    		error = i;
    		goto fail_locked;
    	}
    
    	mtd->index = i;
    	mtd->usecount = 0;
    
    	/* default value if not set by driver */
    	if (mtd->bitflip_threshold == 0)
    		mtd->bitflip_threshold = mtd->ecc_strength;
    
    	if (is_power_of_2(mtd->erasesize))
    		mtd->erasesize_shift = ffs(mtd->erasesize) - 1;
    	else
    		mtd->erasesize_shift = 0;
    
    	if (is_power_of_2(mtd->writesize))
    		mtd->writesize_shift = ffs(mtd->writesize) - 1;
    	else
    		mtd->writesize_shift = 0;
    
    	mtd->erasesize_mask = (1 << mtd->erasesize_shift) - 1;
    	mtd->writesize_mask = (1 << mtd->writesize_shift) - 1;
    
    	/* Some chips always power up locked. Unlock them now */
    	if ((mtd->flags & MTD_WRITEABLE) && (mtd->flags & MTD_POWERUP_LOCK)) {
    		error = mtd_unlock(mtd, 0, mtd->size);
    		if (error && error != -EOPNOTSUPP)
    			printk(KERN_WARNING
    			       "%s: unlock failed, writes may not work\n",
    			       mtd->name);
    		/* Ignore unlock failures? */
    		error = 0;
    	}
    
    	/* Caller should have set dev.parent to match the
    	 * physical device, if appropriate.
    	 */
    	mtd->dev.type = &mtd_devtype;
    	mtd->dev.class = &mtd_class;
    	mtd->dev.devt = MTD_DEVT(i);
    	dev_set_name(&mtd->dev, "mtd%d", i);
    	dev_set_drvdata(&mtd->dev, mtd);
    	of_node_get(mtd_get_of_node(mtd));
    	error = device_register(&mtd->dev);
    	if (error)
    		goto fail_added;
    
    	device_create(&mtd_class, mtd->dev.parent, MTD_DEVT(i) + 1, NULL,
    		      "mtd%dro", i);
    
    	pr_debug("mtd: Giving out device %d to %s\n", i, mtd->name);
    	/* No need to get a refcount on the module containing
    	   the notifier, since we hold the mtd_table_mutex */
    	list_for_each_entry(not, &mtd_notifiers, list)
    		not->add(mtd);
    
    	mutex_unlock(&mtd_table_mutex);
    	/* We _know_ we aren't being removed, because
    	   our caller is still holding us here. So none
    	   of this try_ nonsense, and no bitching about it
    	   either. :) */
    	__module_get(THIS_MODULE);
    
    	if (!strcmp(mtd->name, "rootfs") &&
    	    IS_ENABLED(CONFIG_MTD_ROOTFS_ROOT_DEV) &&
    	    ROOT_DEV == 0) {
    		pr_notice("mtd: device %d (%s) set to be root filesystem\n",
    			  mtd->index, mtd->name);
    		ROOT_DEV = MKDEV(MTD_BLOCK_MAJOR, mtd->index);
    	}
    
    	return 0;
    
    fail_added:
    	of_node_put(mtd_get_of_node(mtd));
    	idr_remove(&mtd_idr, i);
    fail_locked:
    	mutex_unlock(&mtd_table_mutex);
    	return error;
    }
    
    /**
     *	del_mtd_device - unregister an MTD device
     *	@mtd: pointer to MTD device info structure
     *
     *	Remove a device from the list of MTD devices present in the system,
     *	and notify each currently active MTD 'user' of its departure.
     *	Returns zero on success or 1 on failure, which currently will happen
     *	if the requested device does not appear to be present in the list.
     */
    
    int del_mtd_device(struct mtd_info *mtd)
    {
    	int ret;
    	struct mtd_notifier *not;
    
    	mutex_lock(&mtd_table_mutex);
    
    	if (idr_find(&mtd_idr, mtd->index) != mtd) {
    		ret = -ENODEV;
    		goto out_error;
    	}
    
    	/* No need to get a refcount on the module containing
    		the notifier, since we hold the mtd_table_mutex */
    	list_for_each_entry(not, &mtd_notifiers, list)
    		not->remove(mtd);
    
    	if (mtd->usecount) {
    		printk(KERN_NOTICE "Removing MTD device #%d (%s) with use count %d\n",
    		       mtd->index, mtd->name, mtd->usecount);
    		ret = -EBUSY;
    	} else {
    		device_unregister(&mtd->dev);
    
    		idr_remove(&mtd_idr, mtd->index);
    		of_node_put(mtd_get_of_node(mtd));
    
    		module_put(THIS_MODULE);
    		ret = 0;
    	}
    
    out_error:
    	mutex_unlock(&mtd_table_mutex);
    	return ret;
    }
    
    static int mtd_add_device_partitions(struct mtd_info *mtd,
    				     struct mtd_partitions *parts)
    {
    	const struct mtd_partition *real_parts = parts->parts;
    	int nbparts = parts->nr_parts;
    	int ret;
    
    	if (nbparts == 0 || IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER)) {
    		ret = add_mtd_device(mtd);
    		if (ret)
    			return ret;
    	}
    
    	if (nbparts > 0) {
    		ret = add_mtd_partitions(mtd, real_parts, nbparts);
    		if (ret && IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER))
    			del_mtd_device(mtd);
    		return ret;
    	}
    
    	return 0;
    }
    
    /*
     * Set a few defaults based on the parent devices, if not provided by the
     * driver
     */
    static void mtd_set_dev_defaults(struct mtd_info *mtd)
    {
    	if (mtd->dev.parent) {
    		if (!mtd->owner && mtd->dev.parent->driver)
    			mtd->owner = mtd->dev.parent->driver->owner;
    		if (!mtd->name)
    			mtd->name = dev_name(mtd->dev.parent);
    	} else {
    		pr_debug("mtd device won't show a device symlink in sysfs\n");
    	}
    }
    
    /**
     * mtd_device_parse_register - parse partitions and register an MTD device.
     *
     * @mtd: the MTD device to register
     * @types: the list of MTD partition probes to try, see
     *         'parse_mtd_partitions()' for more information
     * @parser_data: MTD partition parser-specific data
     * @parts: fallback partition information to register, if parsing fails;
     *         only valid if %nr_parts > %0
     * @nr_parts: the number of partitions in parts, if zero then the full
     *            MTD device is registered if no partition info is found
     *
     * This function aggregates MTD partitions parsing (done by
     * 'parse_mtd_partitions()') and MTD device and partitions registering. It
     * basically follows the most common pattern found in many MTD drivers:
     *
     * * It first tries to probe partitions on MTD device @mtd using parsers
     *   specified in @types (if @types is %NULL, then the default list of parsers
     *   is used, see 'parse_mtd_partitions()' for more information). If none are
     *   found this functions tries to fallback to information specified in
     *   @parts/@nr_parts.
     * * If any partitioning info was found, this function registers the found
     *   partitions. If the MTD_PARTITIONED_MASTER option is set, then the device
     *   as a whole is registered first.
     * * If no partitions were found this function just registers the MTD device
     *   @mtd and exits.
     *
     * Returns zero in case of success and a negative error code in case of failure.
     */
    int mtd_device_parse_register(struct mtd_info *mtd, const char * const *types,
    			      struct mtd_part_parser_data *parser_data,
    			      const struct mtd_partition *parts,
    			      int nr_parts)
    {
    	struct mtd_partitions parsed;
    	int ret;
    
    	mtd_set_dev_defaults(mtd);
    
    	memset(&parsed, 0, sizeof(parsed));
    
    	ret = parse_mtd_partitions(mtd, types, &parsed, parser_data);
    	if ((ret < 0 || parsed.nr_parts == 0) && parts && nr_parts) {
    		/* Fall back to driver-provided partitions */
    		parsed = (struct mtd_partitions){
    			.parts		= parts,
    			.nr_parts	= nr_parts,
    		};
    	} else if (ret < 0) {
    		/* Didn't come up with parsed OR fallback partitions */
    		pr_info("mtd: failed to find partitions; one or more parsers reports errors (%d)\n",
    			ret);
    		/* Don't abort on errors; we can still use unpartitioned MTD */
    		memset(&parsed, 0, sizeof(parsed));
    	}
    
    	ret = mtd_add_device_partitions(mtd, &parsed);
    	if (ret)
    		goto out;
    
    	/*
    	 * FIXME: some drivers unfortunately call this function more than once.
    	 * So we have to check if we've already assigned the reboot notifier.
    	 *
    	 * Generally, we can make multiple calls work for most cases, but it
    	 * does cause problems with parse_mtd_partitions() above (e.g.,
    	 * cmdlineparts will register partitions more than once).
    	 */
    	WARN_ONCE(mtd->_reboot && mtd->reboot_notifier.notifier_call,
    		  "MTD already registered\n");
    	if (mtd->_reboot && !mtd->reboot_notifier.notifier_call) {
    		mtd->reboot_notifier.notifier_call = mtd_reboot_notifier;
    		register_reboot_notifier(&mtd->reboot_notifier);
    	}
    
    out:
    	/* Cleanup any parsed partitions */
    	mtd_part_parser_cleanup(&parsed);
    	return ret;
    }
    EXPORT_SYMBOL_GPL(mtd_device_parse_register);
    
    /**
     * mtd_device_unregister - unregister an existing MTD device.
     *
     * @master: the MTD device to unregister.  This will unregister both the master
     *          and any partitions if registered.
     */
    int mtd_device_unregister(struct mtd_info *master)
    {
    	int err;
    
    	if (master->_reboot)
    		unregister_reboot_notifier(&master->reboot_notifier);
    
    	err = del_mtd_partitions(master);
    	if (err)
    		return err;
    
    	if (!device_is_registered(&master->dev))
    		return 0;
    
    	return del_mtd_device(master);
    }
    EXPORT_SYMBOL_GPL(mtd_device_unregister);
    
    /**
     *	register_mtd_user - register a 'user' of MTD devices.
     *	@new: pointer to notifier info structure
     *
     *	Registers a pair of callbacks function to be called upon addition
     *	or removal of MTD devices. Causes the 'add' callback to be immediately
     *	invoked for each MTD device currently present in the system.
     */
    void register_mtd_user (struct mtd_notifier *new)
    {
    	struct mtd_info *mtd;
    
    	mutex_lock(&mtd_table_mutex);
    
    	list_add(&new->list, &mtd_notifiers);
    
    	__module_get(THIS_MODULE);
    
    	mtd_for_each_device(mtd)
    		new->add(mtd);
    
    	mutex_unlock(&mtd_table_mutex);
    }
    EXPORT_SYMBOL_GPL(register_mtd_user);
    
    /**
     *	unregister_mtd_user - unregister a 'user' of MTD devices.
     *	@old: pointer to notifier info structure
     *
     *	Removes a callback function pair from the list of 'users' to be
     *	notified upon addition or removal of MTD devices. Causes the
     *	'remove' callback to be immediately invoked for each MTD device
     *	currently present in the system.
     */
    int unregister_mtd_user (struct mtd_notifier *old)
    {
    	struct mtd_info *mtd;
    
    	mutex_lock(&mtd_table_mutex);
    
    	module_put(THIS_MODULE);
    
    	mtd_for_each_device(mtd)
    		old->remove(mtd);
    
    	list_del(&old->list);
    	mutex_unlock(&mtd_table_mutex);
    	return 0;
    }
    EXPORT_SYMBOL_GPL(unregister_mtd_user);
    
    /**
     *	get_mtd_device - obtain a validated handle for an MTD device
     *	@mtd: last known address of the required MTD device
     *	@num: internal device number of the required MTD device
     *
     *	Given a number and NULL address, return the num'th entry in the device
     *	table, if any.	Given an address and num == -1, search the device table
     *	for a device with that address and return if it's still present. Given
     *	both, return the num'th driver only if its address matches. Return
     *	error code if not.
     */
    struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num)
    {
    	struct mtd_info *ret = NULL, *other;
    	int err = -ENODEV;
    
    	mutex_lock(&mtd_table_mutex);
    
    	if (num == -1) {
    		mtd_for_each_device(other) {
    			if (other == mtd) {
    				ret = mtd;
    				break;
    			}
    		}
    	} else if (num >= 0) {
    		ret = idr_find(&mtd_idr, num);
    		if (mtd && mtd != ret)
    			ret = NULL;
    	}
    
    	if (!ret) {
    		ret = ERR_PTR(err);
    		goto out;
    	}
    
    	err = __get_mtd_device(ret);
    	if (err)
    		ret = ERR_PTR(err);
    out:
    	mutex_unlock(&mtd_table_mutex);
    	return ret;
    }
    EXPORT_SYMBOL_GPL(get_mtd_device);
    
    
    int __get_mtd_device(struct mtd_info *mtd)
    {
    	int err;
    
    	if (!try_module_get(mtd->owner))
    		return -ENODEV;
    
    	if (mtd->_get_device) {
    		err = mtd->_get_device(mtd);
    
    		if (err) {
    			module_put(mtd->owner);
    			return err;
    		}
    	}
    	mtd->usecount++;
    	return 0;
    }
    EXPORT_SYMBOL_GPL(__get_mtd_device);
    
    /**
     *	get_mtd_device_nm - obtain a validated handle for an MTD device by
     *	device name
     *	@name: MTD device name to open
     *
     * 	This function returns MTD device description structure in case of
     * 	success and an error code in case of failure.
     */
    struct mtd_info *get_mtd_device_nm(const char *name)
    {
    	int err = -ENODEV;
    	struct mtd_info *mtd = NULL, *other;
    
    	mutex_lock(&mtd_table_mutex);
    
    	mtd_for_each_device(other) {
    		if (!strcmp(name, other->name)) {
    			mtd = other;
    			break;
    		}
    	}
    
    	if (!mtd)
    		goto out_unlock;
    
    	err = __get_mtd_device(mtd);
    	if (err)
    		goto out_unlock;
    
    	mutex_unlock(&mtd_table_mutex);
    	return mtd;
    
    out_unlock:
    	mutex_unlock(&mtd_table_mutex);
    	return ERR_PTR(err);
    }
    EXPORT_SYMBOL_GPL(get_mtd_device_nm);
    
    void put_mtd_device(struct mtd_info *mtd)
    {
    	mutex_lock(&mtd_table_mutex);
    	__put_mtd_device(mtd);
    	mutex_unlock(&mtd_table_mutex);
    
    }
    EXPORT_SYMBOL_GPL(put_mtd_device);
    
    void __put_mtd_device(struct mtd_info *mtd)
    {
    	--mtd->usecount;
    	BUG_ON(mtd->usecount < 0);
    
    	if (mtd->_put_device)
    		mtd->_put_device(mtd);
    
    	module_put(mtd->owner);
    }
    EXPORT_SYMBOL_GPL(__put_mtd_device);
    
    /*
     * Erase is an asynchronous operation.  Device drivers are supposed
     * to call instr->callback() whenever the operation completes, even
     * if it completes with a failure.
     * Callers are supposed to pass a callback function and wait for it
     * to be called before writing to the block.
     */
    int mtd_erase(struct mtd_info *mtd, struct erase_info *instr)
    {
    	if (instr->addr >= mtd->size || instr->len > mtd->size - instr->addr)
    		return -EINVAL;
    	if (!(mtd->flags & MTD_WRITEABLE))
    		return -EROFS;
    	instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
    	if (!instr->len) {
    		instr->state = MTD_ERASE_DONE;
    		mtd_erase_callback(instr);
    		return 0;
    	}
    	ledtrig_mtd_activity();
    	return mtd->_erase(mtd, instr);
    }
    EXPORT_SYMBOL_GPL(mtd_erase);
    
    /*
     * This stuff for eXecute-In-Place. phys is optional and may be set to NULL.
     */
    int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
    	      void **virt, resource_size_t *phys)
    {
    	*retlen = 0;
    	*virt = NULL;
    	if (phys)
    		*phys = 0;
    	if (!mtd->_point)
    		return -EOPNOTSUPP;
    	if (from < 0 || from >= mtd->size || len > mtd->size - from)
    		return -EINVAL;
    	if (!len)
    		return 0;
    	return mtd->_point(mtd, from, len, retlen, virt, phys);
    }
    EXPORT_SYMBOL_GPL(mtd_point);
    
    /* We probably shouldn't allow XIP if the unpoint isn't a NULL */
    int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
    {
    	if (!mtd->_point)
    		return -EOPNOTSUPP;
    	if (from < 0 || from >= mtd->size || len > mtd->size - from)
    		return -EINVAL;
    	if (!len)
    		return 0;
    	return mtd->_unpoint(mtd, from, len);
    }
    EXPORT_SYMBOL_GPL(mtd_unpoint);
    
    /*
     * Allow NOMMU mmap() to directly map the device (if not NULL)
     * - return the address to which the offset maps
     * - return -ENOSYS to indicate refusal to do the mapping
     */
    unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len,
    				    unsigned long offset, unsigned long flags)
    {
    	if (!mtd->_get_unmapped_area)
    		return -EOPNOTSUPP;
    	if (offset >= mtd->size || len > mtd->size - offset)
    		return -EINVAL;
    	return mtd->_get_unmapped_area(mtd, len, offset, flags);
    }
    EXPORT_SYMBOL_GPL(mtd_get_unmapped_area);
    
    int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
    	     u_char *buf)
    {
    	int ret_code;
    	*retlen = 0;
    	if (from < 0 || from >= mtd->size || len > mtd->size - from)
    		return -EINVAL;
    	if (!len)
    		return 0;
    
    	ledtrig_mtd_activity();
    	/*
    	 * In the absence of an error, drivers return a non-negative integer
    	 * representing the maximum number of bitflips that were corrected on
    	 * any one ecc region (if applicable; zero otherwise).
    	 */
    	ret_code = mtd->_read(mtd, from, len, retlen, buf);
    	if (unlikely(ret_code < 0))
    		return ret_code;
    	if (mtd->ecc_strength == 0)
    		return 0;	/* device lacks ecc */
    	return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0;
    }
    EXPORT_SYMBOL_GPL(mtd_read);
    
    int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
    	      const u_char *buf)
    {
    	*retlen = 0;
    	if (to < 0 || to >= mtd->size || len > mtd->size - to)
    		return -EINVAL;
    	if (!mtd->_write || !(mtd->flags & MTD_WRITEABLE))
    		return -EROFS;
    	if (!len)
    		return 0;
    	ledtrig_mtd_activity();
    	return mtd->_write(mtd, to, len, retlen, buf);
    }
    EXPORT_SYMBOL_GPL(mtd_write);
    
    /*
     * In blackbox flight recorder like scenarios we want to make successful writes
     * in interrupt context. panic_write() is only intended to be called when its
     * known the kernel is about to panic and we need the write to succeed. Since
     * the kernel is not going to be running for much longer, this function can
     * break locks and delay to ensure the write succeeds (but not sleep).
     */
    int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
    		    const u_char *buf)
    {
    	*retlen = 0;
    	if (!mtd->_panic_write)
    		return -EOPNOTSUPP;
    	if (to < 0 || to >= mtd->size || len > mtd->size - to)
    		return -EINVAL;
    	if (!(mtd->flags & MTD_WRITEABLE))
    		return -EROFS;
    	if (!len)
    		return 0;
    	return mtd->_panic_write(mtd, to, len, retlen, buf);
    }
    EXPORT_SYMBOL_GPL(mtd_panic_write);
    
    int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops)
    {
    	int ret_code;
    	ops->retlen = ops->oobretlen = 0;
    	if (!mtd->_read_oob)
    		return -EOPNOTSUPP;
    
    	ledtrig_mtd_activity();
    	/*
    	 * In cases where ops->datbuf != NULL, mtd->_read_oob() has semantics
    	 * similar to mtd->_read(), returning a non-negative integer
    	 * representing max bitflips. In other cases, mtd->_read_oob() may
    	 * return -EUCLEAN. In all cases, perform similar logic to mtd_read().
    	 */
    	ret_code = mtd->_read_oob(mtd, from, ops);
    	if (unlikely(ret_code < 0))
    		return ret_code;
    	if (mtd->ecc_strength == 0)
    		return 0;	/* device lacks ecc */
    	return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0;
    }
    EXPORT_SYMBOL_GPL(mtd_read_oob);
    
    int mtd_write_oob(struct mtd_info *mtd, loff_t to,
    				struct mtd_oob_ops *ops)
    {
    	ops->retlen = ops->oobretlen = 0;
    	if (!mtd->_write_oob)
    		return -EOPNOTSUPP;
    	if (!(mtd->flags & MTD_WRITEABLE))
    		return -EROFS;
    	ledtrig_mtd_activity();
    	return mtd->_write_oob(mtd, to, ops);
    }
    EXPORT_SYMBOL_GPL(mtd_write_oob);
    
    /**
     * mtd_ooblayout_ecc - Get the OOB region definition of a specific ECC section
     * @mtd: MTD device structure
     * @section: ECC section. Depending on the layout you may have all the ECC
     *	     bytes stored in a single contiguous section, or one section
     *	     per ECC chunk (and sometime several sections for a single ECC
     *	     ECC chunk)
     * @oobecc: OOB region struct filled with the appropriate ECC position
     *	    information
     *
     * This functions return ECC section information in the OOB area. I you want
     * to get all the ECC bytes information, then you should call
     * mtd_ooblayout_ecc(mtd, section++, oobecc) until it returns -ERANGE.
     *
     * Returns zero on success, a negative error code otherwise.
     */
    int mtd_ooblayout_ecc(struct mtd_info *mtd, int section,
    		      struct mtd_oob_region *oobecc)
    {
    	memset(oobecc, 0, sizeof(*oobecc));
    
    	if (!mtd || section < 0)
    		return -EINVAL;
    
    	if (!mtd->ooblayout || !mtd->ooblayout->ecc)
    		return -ENOTSUPP;
    
    	return mtd->ooblayout->ecc(mtd, section, oobecc);
    }
    EXPORT_SYMBOL_GPL(mtd_ooblayout_ecc);
    
    /**
     * mtd_ooblayout_free - Get the OOB region definition of a specific free
     *			section
     * @mtd: MTD device structure
     * @section: Free section you are interested in. Depending on the layout
     *	     you may have all the free bytes stored in a single contiguous
     *	     section, or one section per ECC chunk plus an extra section
     *	     for the remaining bytes (or other funky layout).
     * @oobfree: OOB region struct filled with the appropriate free position
     *	     information
     *
     * This functions return free bytes position in the OOB area. I you want
     * to get all the free bytes information, then you should call
     * mtd_ooblayout_free(mtd, section++, oobfree) until it returns -ERANGE.
     *
     * Returns zero on success, a negative error code otherwise.
     */
    int mtd_ooblayout_free(struct mtd_info *mtd, int section,
    		       struct mtd_oob_region *oobfree)
    {
    	memset(oobfree, 0, sizeof(*oobfree));
    
    	if (!mtd || section < 0)
    		return -EINVAL;
    
    	if (!mtd->ooblayout || !mtd->ooblayout->free)
    		return -ENOTSUPP;
    
    	return mtd->ooblayout->free(mtd, section, oobfree);
    }
    EXPORT_SYMBOL_GPL(mtd_ooblayout_free);
    
    /**
     * mtd_ooblayout_find_region - Find the region attached to a specific byte
     * @mtd: mtd info structure
     * @byte: the byte we are searching for
     * @sectionp: pointer where the section id will be stored
     * @oobregion: used to retrieve the ECC position
     * @iter: iterator function. Should be either mtd_ooblayout_free or
     *	  mtd_ooblayout_ecc depending on the region type you're searching for
     *
     * This functions returns the section id and oobregion information of a
     * specific byte. For example, say you want to know where the 4th ECC byte is
     * stored, you'll use:
     *
     * mtd_ooblayout_find_region(mtd, 3, &section, &oobregion, mtd_ooblayout_ecc);
     *
     * Returns zero on success, a negative error code otherwise.
     */
    static int mtd_ooblayout_find_region(struct mtd_info *mtd, int byte,
    				int *sectionp, struct mtd_oob_region *oobregion,
    				int (*iter)(struct mtd_info *,
    					    int section,
    					    struct mtd_oob_region *oobregion))
    {
    	int pos = 0, ret, section = 0;
    
    	memset(oobregion, 0, sizeof(*oobregion));
    
    	while (1) {
    		ret = iter(mtd, section, oobregion);
    		if (ret)
    			return ret;
    
    		if (pos + oobregion->length > byte)
    			break;
    
    		pos += oobregion->length;
    		section++;
    	}
    
    	/*
    	 * Adjust region info to make it start at the beginning at the
    	 * 'start' ECC byte.
    	 */
    	oobregion->offset += byte - pos;
    	oobregion->length -= byte - pos;
    	*sectionp = section;
    
    	return 0;
    }
    
    /**
     * mtd_ooblayout_find_eccregion - Find the ECC region attached to a specific
     *				  ECC byte
     * @mtd: mtd info structure
     * @eccbyte: the byte we are searching for
     * @sectionp: pointer where the section id will be stored
     * @oobregion: OOB region information
     *
     * Works like mtd_ooblayout_find_region() except it searches for a specific ECC
     * byte.
     *
     * Returns zero on success, a negative error code otherwise.
     */
    int mtd_ooblayout_find_eccregion(struct mtd_info *mtd, int eccbyte,
    				 int *section,
    				 struct mtd_oob_region *oobregion)
    {
    	return mtd_ooblayout_find_region(mtd, eccbyte, section, oobregion,
    					 mtd_ooblayout_ecc);
    }
    EXPORT_SYMBOL_GPL(mtd_ooblayout_find_eccregion);
    
    /**
     * mtd_ooblayout_get_bytes - Extract OOB bytes from the oob buffer
     * @mtd: mtd info structure
     * @buf: destination buffer to store OOB bytes
     * @oobbuf: OOB buffer
     * @start: first byte to retrieve
     * @nbytes: number of bytes to retrieve
     * @iter: section iterator
     *
     * Extract bytes attached to a specific category (ECC or free)
     * from the OOB buffer and copy them into buf.
     *
     * Returns zero on success, a negative error code otherwise.
     */
    static int mtd_ooblayout_get_bytes(struct mtd_info *mtd, u8 *buf,
    				const u8 *oobbuf, int start, int nbytes,
    				int (*iter)(struct mtd_info *,
    					    int section,
    					    struct mtd_oob_region *oobregion))
    {
    	struct mtd_oob_region oobregion = { };
    	int section = 0, ret;
    
    	ret = mtd_ooblayout_find_region(mtd, start, &section,
    					&oobregion, iter);
    
    	while (!ret) {
    		int cnt;
    
    		cnt = oobregion.length > nbytes ? nbytes : oobregion.length;
    		memcpy(buf, oobbuf + oobregion.offset, cnt);
    		buf += cnt;
    		nbytes -= cnt;
    
    		if (!nbytes)
    			break;
    
    		ret = iter(mtd, ++section, &oobregion);
    	}
    
    	return ret;
    }
    
    /**
     * mtd_ooblayout_set_bytes - put OOB bytes into the oob buffer
     * @mtd: mtd info structure
     * @buf: source buffer to get OOB bytes from
     * @oobbuf: OOB buffer
     * @start: first OOB byte to set
     * @nbytes: number of OOB bytes to set
     * @iter: section iterator
     *
     * Fill the OOB buffer with data provided in buf. The category (ECC or free)
     * is selected by passing the appropriate iterator.
     *
     * Returns zero on success, a negative error code otherwise.
     */
    static int mtd_ooblayout_set_bytes(struct mtd_info *mtd, const u8 *buf,
    				u8 *oobbuf, int start, int nbytes,
    				int (*iter)(struct mtd_info *,
    					    int section,
    					    struct mtd_oob_region *oobregion))
    {
    	struct mtd_oob_region oobregion = { };
    	int section = 0, ret;
    
    	ret = mtd_ooblayout_find_region(mtd, start, &section,
    					&oobregion, iter);
    
    	while (!ret) {
    		int cnt;
    
    		cnt = oobregion.length > nbytes ? nbytes : oobregion.length;
    		memcpy(oobbuf + oobregion.offset, buf, cnt);
    		buf += cnt;
    		nbytes -= cnt;
    
    		if (!nbytes)
    			break;
    
    		ret = iter(mtd, ++section, &oobregion);
    	}
    
    	return ret;
    }
    
    /**
     * mtd_ooblayout_count_bytes - count the number of bytes in a OOB category
     * @mtd: mtd info structure
     * @iter: category iterator
     *
     * Count the number of bytes in a given category.
     *
     * Returns a positive value on success, a negative error code otherwise.
     */
    static int mtd_ooblayout_count_bytes(struct mtd_info *mtd,
    				int (*iter)(struct mtd_info *,
    					    int section,
    					    struct mtd_oob_region *oobregion))
    {
    	struct mtd_oob_region oobregion = { };
    	int section = 0, ret, nbytes = 0;
    
    	while (1) {
    		ret = iter(mtd, section++, &oobregion);
    		if (ret) {
    			if (ret == -ERANGE)
    				ret = nbytes;
    			break;
    		}
    
    		nbytes += oobregion.length;
    	}
    
    	return ret;
    }
    
    /**
     * mtd_ooblayout_get_eccbytes - extract ECC bytes from the oob buffer
     * @mtd: mtd info structure
     * @eccbuf: destination buffer to store ECC bytes
     * @oobbuf: OOB buffer
     * @start: first ECC byte to retrieve
     * @nbytes: number of ECC bytes to retrieve
     *
     * Works like mtd_ooblayout_get_bytes(), except it acts on ECC bytes.
     *
     * Returns zero on success, a negative error code otherwise.
     */
    int mtd_ooblayout_get_eccbytes(struct mtd_info *mtd, u8 *eccbuf,
    			       const u8 *oobbuf, int start, int nbytes)
    {
    	return mtd_ooblayout_get_bytes(mtd, eccbuf, oobbuf, start, nbytes,
    				       mtd_ooblayout_ecc);
    }
    EXPORT_SYMBOL_GPL(mtd_ooblayout_get_eccbytes);
    
    /**
     * mtd_ooblayout_set_eccbytes - set ECC bytes into the oob buffer
     * @mtd: mtd info structure
     * @eccbuf: source buffer to get ECC bytes from
     * @oobbuf: OOB buffer
     * @start: first ECC byte to set
     * @nbytes: number of ECC bytes to set
     *
     * Works like mtd_ooblayout_set_bytes(), except it acts on ECC bytes.
     *
     * Returns zero on success, a negative error code otherwise.
     */
    int mtd_ooblayout_set_eccbytes(struct mtd_info *mtd, const u8 *eccbuf,
    			       u8 *oobbuf, int start, int nbytes)
    {
    	return mtd_ooblayout_set_bytes(mtd, eccbuf, oobbuf, start, nbytes,
    				       mtd_ooblayout_ecc);
    }
    EXPORT_SYMBOL_GPL(mtd_ooblayout_set_eccbytes);
    
    /**
     * mtd_ooblayout_get_databytes - extract data bytes from the oob buffer
     * @mtd: mtd info structure
     * @databuf: destination buffer to store ECC bytes
     * @oobbuf: OOB buffer
     * @start: first ECC byte to retrieve
     * @nbytes: number of ECC bytes to retrieve
     *
     * Works like mtd_ooblayout_get_bytes(), except it acts on free bytes.
     *
     * Returns zero on success, a negative error code otherwise.
     */
    int mtd_ooblayout_get_databytes(struct mtd_info *mtd, u8 *databuf,
    				const u8 *oobbuf, int start, int nbytes)
    {
    	return mtd_ooblayout_get_bytes(mtd, databuf, oobbuf, start, nbytes,
    				       mtd_ooblayout_free);
    }
    EXPORT_SYMBOL_GPL(mtd_ooblayout_get_databytes);
    
    /**
     * mtd_ooblayout_get_eccbytes - set data bytes into the oob buffer
     * @mtd: mtd info structure
     * @eccbuf: source buffer to get data bytes from
     * @oobbuf: OOB buffer
     * @start: first ECC byte to set
     * @nbytes: number of ECC bytes to set
     *
     * Works like mtd_ooblayout_get_bytes(), except it acts on free bytes.
     *
     * Returns zero on success, a negative error code otherwise.
     */
    int mtd_ooblayout_set_databytes(struct mtd_info *mtd, const u8 *databuf,
    				u8 *oobbuf, int start, int nbytes)
    {
    	return mtd_ooblayout_set_bytes(mtd, databuf, oobbuf, start, nbytes,
    				       mtd_ooblayout_free);
    }
    EXPORT_SYMBOL_GPL(mtd_ooblayout_set_databytes);
    
    /**
     * mtd_ooblayout_count_freebytes - count the number of free bytes in OOB
     * @mtd: mtd info structure
     *
     * Works like mtd_ooblayout_count_bytes(), except it count free bytes.
     *
     * Returns zero on success, a negative error code otherwise.
     */
    int mtd_ooblayout_count_freebytes(struct mtd_info *mtd)
    {
    	return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_free);
    }
    EXPORT_SYMBOL_GPL(mtd_ooblayout_count_freebytes);
    
    /**
     * mtd_ooblayout_count_freebytes - count the number of ECC bytes in OOB
     * @mtd: mtd info structure
     *
     * Works like mtd_ooblayout_count_bytes(), except it count ECC bytes.
     *
     * Returns zero on success, a negative error code otherwise.
     */
    int mtd_ooblayout_count_eccbytes(struct mtd_info *mtd)
    {
    	return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_ecc);
    }
    EXPORT_SYMBOL_GPL(mtd_ooblayout_count_eccbytes);
    
    /*
     * Method to access the protection register area, present in some flash
     * devices. The user data is one time programmable but the factory data is read
     * only.
     */
    int mtd_get_fact_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
    			   struct otp_info *buf)
    {
    	if (!mtd->_get_fact_prot_info)
    		return -EOPNOTSUPP;
    	if (!len)
    		return 0;
    	return mtd->_get_fact_prot_info(mtd, len, retlen, buf);
    }
    EXPORT_SYMBOL_GPL(mtd_get_fact_prot_info);
    
    int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
    			   size_t *retlen, u_char *buf)
    {
    	*retlen = 0;
    	if (!mtd->_read_fact_prot_reg)
    		return -EOPNOTSUPP;
    	if (!len)
    		return 0;
    	return mtd->_read_fact_prot_reg(mtd, from, len, retlen, buf);
    }
    EXPORT_SYMBOL_GPL(mtd_read_fact_prot_reg);
    
    int mtd_get_user_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
    			   struct otp_info *buf)
    {
    	if (!mtd->_get_user_prot_info)
    		return -EOPNOTSUPP;
    	if (!len)
    		return 0;
    	return mtd->_get_user_prot_info(mtd, len, retlen, buf);
    }
    EXPORT_SYMBOL_GPL(mtd_get_user_prot_info);
    
    int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
    			   size_t *retlen, u_char *buf)
    {
    	*retlen = 0;
    	if (!mtd->_read_user_prot_reg)
    		return -EOPNOTSUPP;
    	if (!len)
    		return 0;
    	return mtd->_read_user_prot_reg(mtd, from, len, retlen, buf);
    }
    EXPORT_SYMBOL_GPL(mtd_read_user_prot_reg);
    
    int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len,
    			    size_t *retlen, u_char *buf)
    {
    	int ret;
    
    	*retlen = 0;
    	if (!mtd->_write_user_prot_reg)
    		return -EOPNOTSUPP;
    	if (!len)
    		return 0;
    	ret = mtd->_write_user_prot_reg(mtd, to, len, retlen, buf);
    	if (ret)
    		return ret;
    
    	/*
    	 * If no data could be written at all, we are out of memory and
    	 * must return -ENOSPC.
    	 */
    	return (*retlen) ? 0 : -ENOSPC;
    }
    EXPORT_SYMBOL_GPL(mtd_write_user_prot_reg);
    
    int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len)
    {
    	if (!mtd->_lock_user_prot_reg)
    		return -EOPNOTSUPP;
    	if (!len)
    		return 0;
    	return mtd->_lock_user_prot_reg(mtd, from, len);
    }
    EXPORT_SYMBOL_GPL(mtd_lock_user_prot_reg);
    
    /* Chip-supported device locking */
    int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
    {
    	if (!mtd->_lock)
    		return -EOPNOTSUPP;
    	if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
    		return -EINVAL;
    	if (!len)
    		return 0;
    	return mtd->_lock(mtd, ofs, len);
    }
    EXPORT_SYMBOL_GPL(mtd_lock);
    
    int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
    {
    	if (!mtd->_unlock)
    		return -EOPNOTSUPP;
    	if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
    		return -EINVAL;
    	if (!len)
    		return 0;
    	return mtd->_unlock(mtd, ofs, len);
    }
    EXPORT_SYMBOL_GPL(mtd_unlock);
    
    int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
    {
    	if (!mtd->_is_locked)
    		return -EOPNOTSUPP;
    	if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
    		return -EINVAL;
    	if (!len)
    		return 0;
    	return mtd->_is_locked(mtd, ofs, len);
    }
    EXPORT_SYMBOL_GPL(mtd_is_locked);
    
    int mtd_block_isreserved(struct mtd_info *mtd, loff_t ofs)
    {
    	if (ofs < 0 || ofs >= mtd->size)
    		return -EINVAL;
    	if (!mtd->_block_isreserved)
    		return 0;
    	return mtd->_block_isreserved(mtd, ofs);
    }
    EXPORT_SYMBOL_GPL(mtd_block_isreserved);
    
    int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs)
    {
    	if (ofs < 0 || ofs >= mtd->size)
    		return -EINVAL;
    	if (!mtd->_block_isbad)
    		return 0;
    	return mtd->_block_isbad(mtd, ofs);
    }
    EXPORT_SYMBOL_GPL(mtd_block_isbad);
    
    int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs)
    {
    	if (!mtd->_block_markbad)
    		return -EOPNOTSUPP;
    	if (ofs < 0 || ofs >= mtd->size)
    		return -EINVAL;
    	if (!(mtd->flags & MTD_WRITEABLE))
    		return -EROFS;
    	return mtd->_block_markbad(mtd, ofs);
    }
    EXPORT_SYMBOL_GPL(mtd_block_markbad);
    
    /*
     * default_mtd_writev - the default writev method
     * @mtd: mtd device description object pointer
     * @vecs: the vectors to write
     * @count: count of vectors in @vecs
     * @to: the MTD device offset to write to
     * @retlen: on exit contains the count of bytes written to the MTD device.
     *
     * This function returns zero in case of success and a negative error code in
     * case of failure.
     */
    static int default_mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
    			      unsigned long count, loff_t to, size_t *retlen)
    {
    	unsigned long i;
    	size_t totlen = 0, thislen;
    	int ret = 0;
    
    	for (i = 0; i < count; i++) {
    		if (!vecs[i].iov_len)
    			continue;
    		ret = mtd_write(mtd, to, vecs[i].iov_len, &thislen,
    				vecs[i].iov_base);
    		totlen += thislen;
    		if (ret || thislen != vecs[i].iov_len)
    			break;
    		to += vecs[i].iov_len;
    	}
    	*retlen = totlen;
    	return ret;
    }
    
    /*
     * mtd_writev - the vector-based MTD write method
     * @mtd: mtd device description object pointer
     * @vecs: the vectors to write
     * @count: count of vectors in @vecs
     * @to: the MTD device offset to write to
     * @retlen: on exit contains the count of bytes written to the MTD device.
     *
     * This function returns zero in case of success and a negative error code in
     * case of failure.
     */
    int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
    	       unsigned long count, loff_t to, size_t *retlen)
    {
    	*retlen = 0;
    	if (!(mtd->flags & MTD_WRITEABLE))
    		return -EROFS;
    	if (!mtd->_writev)
    		return default_mtd_writev(mtd, vecs, count, to, retlen);
    	return mtd->_writev(mtd, vecs, count, to, retlen);
    }
    EXPORT_SYMBOL_GPL(mtd_writev);
    
    /**
     * mtd_kmalloc_up_to - allocate a contiguous buffer up to the specified size
     * @mtd: mtd device description object pointer
     * @size: a pointer to the ideal or maximum size of the allocation, points
     *        to the actual allocation size on success.
     *
     * This routine attempts to allocate a contiguous kernel buffer up to
     * the specified size, backing off the size of the request exponentially
     * until the request succeeds or until the allocation size falls below
     * the system page size. This attempts to make sure it does not adversely
     * impact system performance, so when allocating more than one page, we
     * ask the memory allocator to avoid re-trying, swapping, writing back
     * or performing I/O.
     *
     * Note, this function also makes sure that the allocated buffer is aligned to
     * the MTD device's min. I/O unit, i.e. the "mtd->writesize" value.
     *
     * This is called, for example by mtd_{read,write} and jffs2_scan_medium,
     * to handle smaller (i.e. degraded) buffer allocations under low- or
     * fragmented-memory situations where such reduced allocations, from a
     * requested ideal, are allowed.
     *
     * Returns a pointer to the allocated buffer on success; otherwise, NULL.
     */
    void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size)
    {
    	gfp_t flags = __GFP_NOWARN | __GFP_DIRECT_RECLAIM | __GFP_NORETRY;
    	size_t min_alloc = max_t(size_t, mtd->writesize, PAGE_SIZE);
    	void *kbuf;
    
    	*size = min_t(size_t, *size, KMALLOC_MAX_SIZE);
    
    	while (*size > min_alloc) {
    		kbuf = kmalloc(*size, flags);
    		if (kbuf)
    			return kbuf;
    
    		*size >>= 1;
    		*size = ALIGN(*size, mtd->writesize);
    	}
    
    	/*
    	 * For the last resort allocation allow 'kmalloc()' to do all sorts of
    	 * things (write-back, dropping caches, etc) by using GFP_KERNEL.
    	 */
    	return kmalloc(*size, GFP_KERNEL);
    }
    EXPORT_SYMBOL_GPL(mtd_kmalloc_up_to);
    
    #ifdef CONFIG_PROC_FS
    
    /*====================================================================*/
    /* Support for /proc/mtd */
    
    static int mtd_proc_show(struct seq_file *m, void *v)
    {
    	struct mtd_info *mtd;
    
    	seq_puts(m, "dev:    size   erasesize  name\n");
    	mutex_lock(&mtd_table_mutex);
    	mtd_for_each_device(mtd) {
    		seq_printf(m, "mtd%d: %8.8llx %8.8x \"%s\"\n",
    			   mtd->index, (unsigned long long)mtd->size,
    			   mtd->erasesize, mtd->name);
    	}
    	mutex_unlock(&mtd_table_mutex);
    	return 0;
    }
    
    static int mtd_proc_open(struct inode *inode, struct file *file)
    {
    	return single_open(file, mtd_proc_show, NULL);
    }
    
    static const struct file_operations mtd_proc_ops = {
    	.open		= mtd_proc_open,
    	.read		= seq_read,
    	.llseek		= seq_lseek,
    	.release	= single_release,
    };
    #endif /* CONFIG_PROC_FS */
    
    /*====================================================================*/
    /* Init code */
    
    static int __init mtd_bdi_init(struct backing_dev_info *bdi, const char *name)
    {
    	int ret;
    
    	ret = bdi_init(bdi);
    	if (!ret)
    		ret = bdi_register(bdi, NULL, "%s", name);
    
    	if (ret)
    		bdi_destroy(bdi);
    
    	return ret;
    }
    
    static struct proc_dir_entry *proc_mtd;
    
    static int __init init_mtd(void)
    {
    	int ret;
    
    	ret = class_register(&mtd_class);
    	if (ret)
    		goto err_reg;
    
    	ret = mtd_bdi_init(&mtd_bdi, "mtd");
    	if (ret)
    		goto err_bdi;
    
    	proc_mtd = proc_create("mtd", 0, NULL, &mtd_proc_ops);
    
    	ret = init_mtdchar();
    	if (ret)
    		goto out_procfs;
    
    	return 0;
    
    out_procfs:
    	if (proc_mtd)
    		remove_proc_entry("mtd", NULL);
    err_bdi:
    	class_unregister(&mtd_class);
    err_reg:
    	pr_err("Error registering mtd class or bdi: %d\n", ret);
    	return ret;
    }
    
    static void __exit cleanup_mtd(void)
    {
    	cleanup_mtdchar();
    	if (proc_mtd)
    		remove_proc_entry("mtd", NULL);
    	class_unregister(&mtd_class);
    	bdi_destroy(&mtd_bdi);
    	idr_destroy(&mtd_idr);
    }
    
    module_init(init_mtd);
    module_exit(cleanup_mtd);
    
    MODULE_LICENSE("GPL");
    MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
    MODULE_DESCRIPTION("Core MTD registration and access routines");