Skip to content
Snippets Groups Projects
layer3_ts.md 12.2 KiB
Newer Older
  • Learn to ignore specific revisions
  • Jakob Olsson's avatar
    Jakob Olsson committed
    # Layer 3 Traffic Separation
    
    The EasyMesh R2 specification only specifies behavior for layer 2 traffic
    separation, which IOPSYS Multi-AP components support and will automatically
    
    setup necessary configuration for when it is enabled. This includes separate
    subnets and network zones but not adding interfaces to a guest bridge.
    
    Jakob Olsson's avatar
    Jakob Olsson committed
    
    
    Using the existing solution layer 3 traffic separation is supported but
    
    Jakob Olsson's avatar
    Jakob Olsson committed
    must be configured manually. This primarily refers to the creation of **bridge-vlan** sections,
    which dictates bridge and Ethernet port tagging rules. If a Traffic Separation
    TLV is received for which the necessary **bridge-vlan** sections are already
    present, map-agent will not setup any additional configuration or modify the
    existing rules. Map-agent will still be responsible for setting up tagging
    rules on the wireless interfaces as dictated by the EasyMesh specification and
    
    passed map-controller configuration. However, any custom rules that are made
    must be made with a different naming conventiton used by map-agent.
    
    **** Specificy all naming conventions as example of how not to name *****
    
    Jakob Olsson's avatar
    Jakob Olsson committed
    
    This leaves users with flexibility to setup layer 3 traffic separation
    or any other configuration as they require.
    
    ## How to Configure
    
    To enable layer 3 traffic separation, it is necessary to manually setup the
    **network**, **firewall** and **dhcp** configuration as per any custom
    requirements.
    
    In this how to guide an example it will be shown how to setup a basic use-case
    where guest clients will receive an IPv4 address from a DHCP server running on a
    separate bridge, with all traffic egressing and ingressing over said bridge.
    
    ### Network Configuration
    
    #### Guest Bridges
    
    First, the bridges must be created. The bridges can have any IP address,
    netmask etc. In this example we will create two additional guest bridges, one
    for VID 50 and one for VID 20.
    
    ```
    config interface 'guest50'
    	option device 'br-guest50'
    	option is_lan '1'
    	option proto 'static'
    	option ipaddr '192.168.50.1'
    	option netmask '255.255.255.0'
    
    config device 'br_guest50'
    	option name 'br-guest50'
    	option type 'bridge'
    
    config interface 'guest20'
    	option device 'br-guest20'
    	option is_lan '1'
    	option proto 'static'
    	option ipaddr '192.168.20.1'
    	option netmask '255.255.255.0'
    
    config device 'br_guest20'
    	option name 'br-guest20'
    	option type 'bridge'
    ```
    
    
    #### Veth Pair
    
    As incoming Wi-Fi client traffic will be ingressing over the wireless interfaces
    which reside in the **al_bridge**, we must create a veth pair so this traffic
    can ingress to the guest bridges.
    
    ```
    config device 'guest_dev20'
    	option type 'veth'
    	option name 'guest_dev20'
    	option peer_name 'guest_peer20'
    
    config device 'guest_dev50'
    	option type 'veth'
    	option name 'guest_dev50'
    	option peer_name 'guest_peer50'
    ```
    
    These veth pairs must now have their peers attached to the port list of the
    respective bridge and the source interface to the **al_bridge**.
    
    ```
    config device 'br_lan'
    	option name 'br-lan'
    	option type 'bridge'
    	list ports 'eth1'
    	list ports 'eth2'
    	list ports 'eth3'
    	list ports 'eth4'
    	list ports 'guest_dev20'
    	list ports 'guest_dev50'
    
    config device 'br_guest50'
    	option name 'br-guest50'
    	option type 'bridge'
    	list ports 'guest_peer50'
    
    config device 'br_guest20'
    	option name 'br-guest20'
    	option type 'bridge'
    	list ports 'guest_peer20'
    ```
    
    We will now find traffic ingressing over the **al_bridge** on the guest bridges
    as well.
    
    #### VLAN ID Tagging Rules
    
    Finally, we must setup the **bridge-vlan** sections providing netifd with
    information on the bridge filtering rules. These rules are in a layer 2 use-case
    automatically setup by map-agent.
    
    The **al_bridge** must not untag anything that is not the Primary VLAN ID
    (unless it is desired that it managed _some_ secondary VLAN IDs), and the guest
    bridges untag according to the VLAN IDs that they are supposed to manage.
    
    ```
    # Ethernet ports and br-lan tag and untaged Primary VLAN ID
    config bridge-vlan 'vlan1'
    	option name 'vlan1'
    	option device 'br-lan'
    	option vlan '1'
    	option flags 'untagged pvid'
    	option local '1'
    	list ports 'eth1:*'
    	list ports 'eth2:*'
    	list ports 'eth3:*'
    	list ports 'eth4:*'
    
    # Ethernet ports (as many as desired) and br-lan allow VID 50 to be passed
    # guest_dev50 tags and untags VID 50
    config bridge-vlan 'vlan50'
    	option name 'vlan50'
    	option device 'br-lan'
    	option vlan '50'
    	option flags 'untagged'
    	option local '0'
    	list ports 'eth1:t'
    	list ports 'eth2:t'
    	list ports 'eth3:t'
    	list ports 'eth4:t'
    	list ports 'guest_dev50:*'
    
    # Ethernet ports (as many as desired) and br-lan allow VID 20 to be passed
    # guest_dev50 tags and untags VID 20
    config bridge-vlan 'vlan20'
    	option name 'vlan20'
    	option device 'br-lan'
    	option vlan '20'
    	option flags 'untagged'
    	option local '0'
    	list ports 'eth1:t'
    	list ports 'eth2:t'
    	list ports 'eth3:t'
    	list ports 'eth4:t'
    	list ports 'guest_dev20:*'
    ```
    
    #### Bridge Filtering Configuration
    
    With the network configuration setup and loaded (recommended to be done via
    `/etc/init.d/network restart` as `reload` will not always apply the necessary
    tagging rules), **bridge vlan** configuration output should look as follows:
    
    ```
    root@iopsys-021000000001:~# bridge vlan
    port              vlan-id  
    eth1              1 PVID Egress Untagged
                      20
                      50
    eth2              1 PVID Egress Untagged
                      20
                      50
    eth3              1 PVID Egress Untagged
                      20
                      50
    eth4              1 PVID Egress Untagged
                      20
                      50
    wl0               1 PVID Egress Untagged
    wl1               1 PVID Egress Untagged
    br-lan            1 PVID Egress Untagged
    guest_peer20      1 PVID Egress Untagged
    guest_dev20       20 PVID Egress Untagged
    guest_peer50      1 PVID Egress Untagged
    guest_dev50       50 PVID Egress Untagged
    br-guest20        1 PVID Egress Untagged
    br-guest50        1 PVID Egress Untagged
    wl1.1             1 PVID Egress Untagged
    wl0.1             1 PVID Egress Untagged
    ```
    
    An example **brctl show** output would look as:
    
    ```
    root@iopsys-021000000001:~# brctl show
    bridge name	bridge id		STP enabled	interfaces
    br-guest20		7fff.922f1251b15b	no		guest_peer20
    br-guest50		7fff.ec6c9a52b02b	no		guest_peer50
    br-lan		7fff.ec6c9a52b027	no		eth1
    							eth2
    							eth3
    							eth4
    							guest_dev20
    							guest_dev50
    							wl0
    							wl0.1
    							wl1
    							wl1.1
    ```
    
    ### Firewall Configuration
    
    In the firewall configuration, each network must be given input, output and
    forwarding rules by being attached to a firewall **zone**. In this example we
    create a zone for each network that accepts all traffic.
    
    ```
    config zone 'guest20'
    	option name 'guest20'
    	list network 'guest20'
    	option input 'ACCEPT'
    	option output 'ACCEPT'
    	option forward 'ACCEPT'
    
    config zone 'guest50'
    	option name 'guest50'
    	list network 'guest50'
    	option input 'ACCEPT'
    	option output 'ACCEPT'
    	option forward 'ACCEPT'
    ```
    Next we create the forwarding rules for these zones, forwarding traffic through
    the wan zone.
    
    ```
    config forwarding
    	option src 'guest20'
    	option dest 'wan'
    
    config forwarding
    	option src 'guest50'
    	option dest 'wan'
    
    ```
    
    With the configuration setup, we must now reload the firewall rules via i.e.
    `/etc/init.d/firewall reload`.
    
    ### DHCP Configuration
    
    In the DHCP configuration, we create a DHCP server for each network, specifying
    the desired DHCP ranges.
    
    ```
    config dhcp 'guest20'
    	option interface 'guest20'
    	option start '100'
    	option limit '150'
    	option leasetime '1h'
    	option dhcpv4 'server'
    	option dhcpv6 'server'
    	option ra 'server'
    	option ra_slaac '1'
    	list ra_flags 'managed-config'
    	list ra_flags 'other-config'
    
    config dhcp 'guest50'
    	option interface 'guest50'
    	option start '100'
    	option limit '150'
    	option leasetime '1h'
    	option dhcpv4 'server'
    	option dhcpv6 'server'
    	option ra 'server'
    	option ra_slaac '1'
    	list ra_flags 'managed-config'
    	list ra_flags 'other-config'
    ```
    
    We can now restart dnsmasq via i.e. `/etc/init.d/dnsmasq restart`.
    
    ### Map-Controller Configuration
    
    In map-controller we may now enable Traffic Separation and append two guest
    networks for VID 20 and VID 50.
    
    ```
    config controller 'controller'
    	option enabled '1'
    	option registrar '5 2'
    	option debug '0'
    	option primary_vid '1'
    	option primary_pcp '0'
    	option enable_ts '1'
    ```
    
    ```
    config ap
    	option ssid 'iopsys-vid50'
    	option band '5'
    	option encryption 'sae-mixed'
    	option key '1234567890'
    	option vid '50'
    	option type 'fronthaul'
    
    config ap
    	option ssid 'iopsys-vid20'
    	option band '2'
    	option encryption 'sae-mixed'
    	option key '1234567890'
    	option vid '20'
    	option type 'fronthaul'
    ```
    
    A SIGHUP can then be sent to map-controller as i.e.
    `kill -1 $(pidof mapcontroller)`.
    
    ## Verification
    
    ### Bridge VLAN Filtering
    
    The **bridge vlan** configuration should now look as such:
    
    ```
    root@iopsys-021000000001:~# bridge vlan
    port              vlan-id  
    eth1              1 PVID Egress Untagged
                      20
                      50
    eth2              1 PVID Egress Untagged
                      20
                      50
    eth3              1 PVID Egress Untagged
                      20
                      50
    eth4              1 PVID Egress Untagged
                      20
                      50
    wl0               1 PVID Egress Untagged
    wl1               1 PVID Egress Untagged
    br-lan            1 PVID Egress Untagged
    guest_peer20      1 PVID Egress Untagged
    guest_dev20       20 PVID Egress Untagged
    guest_peer50      1 PVID Egress Untagged
    guest_dev50       50 PVID Egress Untagged
    br-guest20        1 PVID Egress Untagged
    br-guest50        1 PVID Egress Untagged
    wl1.1             1 PVID Egress Untagged
    wl0.1             1 PVID Egress Untagged
    wl1.2             1 Egress Untagged
                      20 PVID Egress Untagged
    wl0.2             1 Egress Untagged
                      50 PVID Egress Untagged
    ```
    ### Connecting a Wi-Fi Client
    
    Connecting a client to i.e. **wl1.2** we can see that it will receive a DHCP
    address from the 192.168.20.0/24 subnet:
    
    ```
    root@iopsys-021000000001:~# ubus call wifi.ap.wl1.2 assoclist
    {
    	"assoclist": [
    		{
    			"wdev": "wl1.2",
    			"macaddr": "4a:93:6d:3c:48:21"
    		}
    	]
    }
    root@iopsys-021000000001:~# cat /tmp/dhcp.leases
    1670580192 4a:93:6d:3c:48:21 192.168.20.139 jakobs-S21 01:4a:93:6d:3c:48:21
    ```
    
    ### Tags on Bridge
    
    By using tcpdump, we can now observe that this clients traffic will now have its
    VLAN ID 20 tag intact over **br-lan**, which means it will not egress through from
    
    **br-lan** as no egress rules are set for VID 20 on **br-lan**.
    
    Jakob Olsson's avatar
    Jakob Olsson committed
    
    ```
    root@iopsys-021000000001:~# tcpdump -nei br-lan icmp
    tcpdump: verbose output suppressed, use -v or -vv for full protocol decode
    listening on br-lan, link-type EN10MB (Ethernet), capture size 262144 bytes
    10:08:08.357498 b2:f3:b5:c1:ca:54 > 4a:93:6d:3c:48:21, ethertype 802.1Q (0x8100), length 106: vlan 20, p 0, ethertype IPv4, 192.168.20.1 > 192.168.20.139: ICMP net 20.50.80.209 unreachable, length 68
    10:08:10.524492 b2:f3:b5:c1:ca:54 > 4a:93:6d:3c:48:21, ethertype 802.1Q (0x8100), length 106: vlan 20, p 0, ethertype IPv4, 192.168.20.1 > 192.168.20.139: ICMP net 52.114.74.223 unreachable, length 68
    10:08:10.993687 4a:93:6d:3c:48:21 > b2:f3:b5:c1:ca:54, ethertype 802.1Q (0x8100), length 102: vlan 20, p 0, ethertype IPv4, 192.168.20.139 > 123.123.123.123: ICMP echo request, id 2136, seq 1, length 64
    10:08:10.993886 b2:f3:b5:c1:ca:54 > 4a:93:6d:3c:48:21, ethertype 802.1Q (0x8100), length 102: vlan 20, p 0, ethertype IPv4, 123.123.123.123 > 192.168.20.139: ICMP echo reply, id 2136, seq 1, length 64
    ```
    
    However, on **br-guest20** we can see the same traffic is untagged and can egress:
    ```
    root@iopsys-021000000001:~# tcpdump -nei br-guest20 icmp
    tcpdump: verbose output suppressed, use -v or -vv for full protocol decode
    listening on br-guest20, link-type EN10MB (Ethernet), capture size 262144 bytes
    10:09:29.127415 b2:f3:b5:c1:ca:54 > 4a:93:6d:3c:48:21, ethertype IPv4 (0x0800), length 590: 192.168.20.1 > 192.168.20.139: ICMP net 31.13.72.53 unreachable, length 556
    10:09:29.709500 b2:f3:b5:c1:ca:54 > 4a:93:6d:3c:48:21, ethertype IPv4 (0x0800), length 102: 192.168.20.1 > 192.168.20.139: ICMP net 52.114.74.223 unreachable, length 68
    10:09:32.640145 4a:93:6d:3c:48:21 > b2:f3:b5:c1:ca:54, ethertype IPv4 (0x0800), length 98: 192.168.20.139 > 123.123.123.123: ICMP echo request, id 2395, seq 1, length 64
    10:09:32.640227 b2:f3:b5:c1:ca:54 > 4a:93:6d:3c:48:21, ethertype IPv4 (0x0800), length 98: 123.123.123.123 > 192.168.20.139: ICMP echo reply, id 2395, seq 1, length 64
    ```