Newer
Older
/*
* Asterisk -- An open source telephony toolkit.
*
* Copyright (C) 1999 - 2005, Digium, Inc.
*
* Mark Spencer <markster@digium.com>
*
* Based on frompcm.c and topcm.c from the Emiliano MIPL browser/
* interpreter. See http://www.bsdtelephony.com.mx
*
* See http://www.asterisk.org for more information about
* the Asterisk project. Please do not directly contact
* any of the maintainers of this project for assistance;
* the project provides a web site, mailing lists and IRC
* channels for your use.
*
* This program is free software, distributed under the terms of
* the GNU General Public License Version 2. See the LICENSE file
* at the top of the source tree.
*/
*
* \brief codec_g726.c - translate between signed linear and ITU G.726-32kbps
*
#include <fcntl.h>
#include <netinet/in.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include "asterisk.h"
ASTERISK_FILE_VERSION(__FILE__, "$Revision$")
Kevin P. Fleming
committed
#include "asterisk/lock.h"
#include "asterisk/logger.h"
#include "asterisk/module.h"
#include "asterisk/config.h"
#include "asterisk/options.h"
#include "asterisk/translate.h"
#include "asterisk/channel.h"
#define WANT_ASM
#include "log2comp.h"
/* define NOT_BLI to use a faster but not bit-level identical version */
/* #define NOT_BLI */
#if defined(NOT_BLI)
# if defined(_MSC_VER)
typedef __int64 sint64;
# elif defined(__GNUC__)
typedef long long sint64;
# else
# error 64-bit integer type is not defined for your compiler/platform
# endif
#endif
#define BUFFER_SIZE 8096 /* size for the translation buffers */
#define BUF_SHIFT 5
AST_MUTEX_DEFINE_STATIC(localuser_lock);
static int localusecnt = 0;
static char *tdesc = "ITU G.726-32kbps G726 Transcoder";
Mark Spencer
committed
static int useplc = 0;
/* Sample frame data */
#include "slin_g726_ex.h"
#include "g726_slin_ex.h"
/*
* The following is the definition of the state structure
* used by the G.721/G.723 encoder and decoder to preserve their internal
* state between successive calls. The meanings of the majority
* of the state structure fields are explained in detail in the
* CCITT Recommendation G.721. The field names are essentially indentical
* to variable names in the bit level description of the coding algorithm
* included in this Recommendation.
*/
struct g726_state {
long yl; /* Locked or steady state step size multiplier. */
int yu; /* Unlocked or non-steady state step size multiplier. */
int dms; /* Short term energy estimate. */
int dml; /* Long term energy estimate. */
int ap; /* Linear weighting coefficient of 'yl' and 'yu'. */
int a[2]; /* Coefficients of pole portion of prediction filter.
* stored as fixed-point 1==2^14 */
int b[6]; /* Coefficients of zero portion of prediction filter.
* stored as fixed-point 1==2^14 */
int pk[2]; /* Signs of previous two samples of a partially
* reconstructed signal.
*/
int dq[6]; /* Previous 6 samples of the quantized difference signal
* stored as fixed point 1==2^12,
* or in internal floating point format */
int sr[2]; /* Previous 2 samples of the quantized difference signal
* stored as fixed point 1==2^12,
* or in internal floating point format */
int td; /* delayed tone detect, new in 1988 version */
};
static int qtab_721[7] = {-124, 80, 178, 246, 300, 349, 400};
/*
* Maps G.721 code word to reconstructed scale factor normalized log
* magnitude values.
*/
static int _dqlntab[16] = {-2048, 4, 135, 213, 273, 323, 373, 425,
425, 373, 323, 273, 213, 135, 4, -2048};
/* Maps G.721 code word to log of scale factor multiplier. */
static int _witab[16] = {-12, 18, 41, 64, 112, 198, 355, 1122,
1122, 355, 198, 112, 64, 41, 18, -12};
/*
* Maps G.721 code words to a set of values whose long and short
* term averages are computed and then compared to give an indication
* how stationary (steady state) the signal is.
*/
static int _fitab[16] = {0, 0, 0, 0x200, 0x200, 0x200, 0x600, 0xE00,
0xE00, 0x600, 0x200, 0x200, 0x200, 0, 0, 0};
/* Deprecated
static int power2[15] = {1, 2, 4, 8, 0x10, 0x20, 0x40, 0x80,
0x100, 0x200, 0x400, 0x800, 0x1000, 0x2000, 0x4000};
/*
* g72x_init_state()
*
* This routine initializes and/or resets the g726_state structure
* pointed to by 'state_ptr'.
* All the initial state values are specified in the CCITT G.721 document.
*/
static void g726_init_state(struct g726_state *state_ptr)
{
int cnta;
state_ptr->yl = 34816;
state_ptr->yu = 544;
state_ptr->dms = 0;
state_ptr->dml = 0;
state_ptr->ap = 0;
for (cnta = 0; cnta < 2; cnta++)
{
state_ptr->a[cnta] = 0;
state_ptr->pk[cnta] = 0;
#ifdef NOT_BLI
state_ptr->sr[cnta] = 1;
#else
state_ptr->sr[cnta] = 32;
#endif
for (cnta = 0; cnta < 6; cnta++)
{
state_ptr->b[cnta] = 0;
#ifdef NOT_BLI
state_ptr->dq[cnta] = 1;
#else
state_ptr->dq[cnta] = 32;
#endif
}
state_ptr->td = 0;
}
/*
* quan()
* quantizes the input val against the table of integers.
* It returns i if table[i - 1] <= val < table[i].
* Using linear search for simple coding.
static int quan(int val, int *table, int size)
{
int i;
for (i = 0; i < size && val >= *table; ++i, ++table)
;
return (i);
#ifdef NOT_BLI /* faster non-identical version */
/*
* predictor_zero()
*
* computes the estimated signal from 6-zero predictor.
*
*/
static int predictor_zero(struct g726_state *state_ptr)
{ /* divide by 2 is necessary here to handle negative numbers correctly */
int i;
sint64 sezi;
for (sezi = 0, i = 0; i < 6; i++) /* ACCUM */
sezi += (sint64)state_ptr->b[i] * state_ptr->dq[i];
return (int)(sezi >> 13) / 2 /* 2^14 */;
}
/*
* predictor_pole()
*
* computes the estimated signal from 2-pole predictor.
*
*/
static int predictor_pole(struct g726_state *state_ptr)
{ /* divide by 2 is necessary here to handle negative numbers correctly */
return (int)(((sint64)state_ptr->a[1] * state_ptr->sr[1] +
(sint64)state_ptr->a[0] * state_ptr->sr[0]) >> 13) / 2 /* 2^14 */;
}
#else /* NOT_BLI - identical version */
/*
* fmult()
*
* returns the integer product of the fixed-point number "an" (1==2^12) and
* "floating point" representation (4-bit exponent, 6-bit mantessa) "srn".
*/
static int fmult(int an, int srn)
{
int anmag, anexp, anmant;
int wanexp, wanmant;
int retval;
anmag = (an > 0) ? an : ((-an) & 0x1FFF);
Kevin P. Fleming
committed
anexp = ilog2(anmag) - 5;
anmant = (anmag == 0) ? 32 :
(anexp >= 0) ? anmag >> anexp : anmag << -anexp;
wanexp = anexp + ((srn >> 6) & 0xF) - 13;
wanmant = (anmant * (srn & 077) + 0x30) >> 4;
retval = (wanexp >= 0) ? ((wanmant << wanexp) & 0x7FFF) :
(wanmant >> -wanexp);
return (((an ^ srn) < 0) ? -retval : retval);
}
static int predictor_zero(struct g726_state *state_ptr)
{
int i;
int sezi;
for (sezi = 0, i = 0; i < 6; i++) /* ACCUM */
sezi += fmult(state_ptr->b[i] >> 2, state_ptr->dq[i]);
return sezi;
}
static int predictor_pole(struct g726_state *state_ptr)
{
return (fmult(state_ptr->a[1] >> 2, state_ptr->sr[1]) +
fmult(state_ptr->a[0] >> 2, state_ptr->sr[0]));
#endif /* NOT_BLI */
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
/*
* step_size()
*
* computes the quantization step size of the adaptive quantizer.
*
*/
static int step_size(struct g726_state *state_ptr)
{
int y;
int dif;
int al;
if (state_ptr->ap >= 256)
return (state_ptr->yu);
else {
y = state_ptr->yl >> 6;
dif = state_ptr->yu - y;
al = state_ptr->ap >> 2;
if (dif > 0)
y += (dif * al) >> 6;
else if (dif < 0)
y += (dif * al + 0x3F) >> 6;
return (y);
}
}
/*
* quantize()
*
* Given a raw sample, 'd', of the difference signal and a
* quantization step size scale factor, 'y', this routine returns the
* ADPCM codeword to which that sample gets quantized. The step
* size scale factor division operation is done in the log base 2 domain
* as a subtraction.
*/
static int quantize(
int d, /* Raw difference signal sample */
int y, /* Step size multiplier */
int *table, /* quantization table */
int size) /* table size of integers */
int dqm; /* Magnitude of 'd' */
int exp; /* Integer part of base 2 log of 'd' */
int mant; /* Fractional part of base 2 log */
int dl; /* Log of magnitude of 'd' */
int dln; /* Step size scale factor normalized log */
int i;
/*
* LOG
*
* Compute base 2 log of 'd', and store in 'dl'.
*/
dqm = abs(d);
Kevin P. Fleming
committed
exp = ilog2(dqm);
if (exp < 0)
exp = 0;
mant = ((dqm << 7) >> exp) & 0x7F; /* Fractional portion. */
dl = (exp << 7) | mant;
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
/*
* SUBTB
*
* "Divide" by step size multiplier.
*/
dln = dl - (y >> 2);
/*
* QUAN
*
* Obtain codword i for 'd'.
*/
i = quan(dln, table, size);
if (d < 0) /* take 1's complement of i */
return ((size << 1) + 1 - i);
else if (i == 0) /* take 1's complement of 0 */
return ((size << 1) + 1); /* new in 1988 */
else
return (i);
}
/*
* reconstruct()
*
* Returns reconstructed difference signal 'dq' obtained from
* codeword 'i' and quantization step size scale factor 'y'.
* Multiplication is performed in log base 2 domain as addition.
*/
static int reconstruct(
int sign, /* 0 for non-negative value */
int dqln, /* G.72x codeword */
int y) /* Step size multiplier */
{
int dql; /* Log of 'dq' magnitude */
int dex; /* Integer part of log */
int dqt;
int dq; /* Reconstructed difference signal sample */
dql = dqln + (y >> 2); /* ADDA */
if (dql < 0) {
#ifdef NOT_BLI
return (sign) ? -1 : 1;
#else
return (sign) ? -0x8000 : 0;
#endif
} else { /* ANTILOG */
dex = (dql >> 7) & 15;
dqt = 128 + (dql & 127);
#ifdef NOT_BLI
dq = ((dqt << 19) >> (14 - dex));
return (sign) ? -dq : dq;
#else
dq = (dqt << 7) >> (14 - dex);
return (sign) ? (dq - 0x8000) : dq;
#endif
}
}
/*
* update()
*
* updates the state variables for each output code
*/
static void update(
int code_size, /* distinguish 723_40 with others */
int y, /* quantizer step size */
int wi, /* scale factor multiplier */
int fi, /* for long/short term energies */
int dq, /* quantized prediction difference */
int sr, /* reconstructed signal */
int dqsez, /* difference from 2-pole predictor */
struct g726_state *state_ptr) /* coder state pointer */
{
int cnt;
int mag; /* Adaptive predictor, FLOAT A */
#ifndef NOT_BLI
int exp;
#endif
int a2p=0; /* LIMC */
int a1ul; /* UPA1 */
int pks1; /* UPA2 */
int fa1;
int tr; /* tone/transition detector */
int ylint, thr2, dqthr;
int ylfrac, thr1;
int pk0;
pk0 = (dqsez < 0) ? 1 : 0; /* needed in updating predictor poles */
#ifdef NOT_BLI
mag = abs(dq / 0x1000); /* prediction difference magnitude */
#else
mag = dq & 0x7FFF; /* prediction difference magnitude */
#endif
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
/* TRANS */
ylint = state_ptr->yl >> 15; /* exponent part of yl */
ylfrac = (state_ptr->yl >> 10) & 0x1F; /* fractional part of yl */
thr1 = (32 + ylfrac) << ylint; /* threshold */
thr2 = (ylint > 9) ? 31 << 10 : thr1; /* limit thr2 to 31 << 10 */
dqthr = (thr2 + (thr2 >> 1)) >> 1; /* dqthr = 0.75 * thr2 */
if (state_ptr->td == 0) /* signal supposed voice */
tr = 0;
else if (mag <= dqthr) /* supposed data, but small mag */
tr = 0; /* treated as voice */
else /* signal is data (modem) */
tr = 1;
/*
* Quantizer scale factor adaptation.
*/
/* FUNCTW & FILTD & DELAY */
/* update non-steady state step size multiplier */
state_ptr->yu = y + ((wi - y) >> 5);
/* LIMB */
if (state_ptr->yu < 544) /* 544 <= yu <= 5120 */
state_ptr->yu = 544;
else if (state_ptr->yu > 5120)
state_ptr->yu = 5120;
/* FILTE & DELAY */
/* update steady state step size multiplier */
state_ptr->yl += state_ptr->yu + ((-state_ptr->yl) >> 6);
/*
* Adaptive predictor coefficients.
*/
if (tr == 1) { /* reset a's and b's for modem signal */
state_ptr->a[0] = 0;
state_ptr->a[1] = 0;
state_ptr->b[0] = 0;
state_ptr->b[1] = 0;
state_ptr->b[2] = 0;
state_ptr->b[3] = 0;
state_ptr->b[4] = 0;
state_ptr->b[5] = 0;
} else { /* update a's and b's */
pks1 = pk0 ^ state_ptr->pk[0]; /* UPA2 */
/* update predictor pole a[1] */
a2p = state_ptr->a[1] - (state_ptr->a[1] >> 7);
if (dqsez != 0) {
fa1 = (pks1) ? state_ptr->a[0] : -state_ptr->a[0];
if (fa1 < -8191) /* a2p = function of fa1 */
a2p -= 0x100;
else if (fa1 > 8191)
a2p += 0xFF;
else
a2p += fa1 >> 5;
if (pk0 ^ state_ptr->pk[1])
/* LIMC */
if (a2p <= -12160)
a2p = -12288;
else if (a2p >= 12416)
a2p = 12288;
else
a2p -= 0x80;
else if (a2p <= -12416)
a2p = -12288;
else if (a2p >= 12160)
a2p = 12288;
else
a2p += 0x80;
}
/* TRIGB & DELAY */
state_ptr->a[1] = a2p;
/* UPA1 */
/* update predictor pole a[0] */
state_ptr->a[0] -= state_ptr->a[0] >> 8;
if (dqsez != 0) {
if (pks1 == 0)
state_ptr->a[0] += 192;
else
state_ptr->a[0] -= 192;
}
/* LIMD */
a1ul = 15360 - a2p;
if (state_ptr->a[0] < -a1ul)
state_ptr->a[0] = -a1ul;
else if (state_ptr->a[0] > a1ul)
state_ptr->a[0] = a1ul;
/* UPB : update predictor zeros b[6] */
for (cnt = 0; cnt < 6; cnt++) {
if (code_size == 5) /* for 40Kbps G.723 */
state_ptr->b[cnt] -= state_ptr->b[cnt] >> 9;
else /* for G.721 and 24Kbps G.723 */
state_ptr->b[cnt] -= state_ptr->b[cnt] >> 8;
if (mag)
{ /* XOR */
if ((dq ^ state_ptr->dq[cnt]) >= 0)
state_ptr->b[cnt] += 128;
else
state_ptr->b[cnt] -= 128;
}
}
}
for (cnt = 5; cnt > 0; cnt--)
state_ptr->dq[cnt] = state_ptr->dq[cnt-1];
#ifdef NOT_BLI
state_ptr->dq[0] = dq;
#else
/* FLOAT A : convert dq[0] to 4-bit exp, 6-bit mantissa f.p. */
if (mag == 0) {
state_ptr->dq[0] = (dq >= 0) ? 0x20 : 0x20 - 0x400;
Kevin P. Fleming
committed
exp = ilog2(mag) + 1;
state_ptr->dq[0] = (dq >= 0) ?
(exp << 6) + ((mag << 6) >> exp) :
(exp << 6) + ((mag << 6) >> exp) - 0x400;
}
#endif
state_ptr->sr[1] = state_ptr->sr[0];
#ifdef NOT_BLI
state_ptr->sr[0] = sr;
#else
/* FLOAT B : convert sr to 4-bit exp., 6-bit mantissa f.p. */
if (sr == 0) {
state_ptr->sr[0] = 0x20;
} else if (sr > 0) {
Kevin P. Fleming
committed
exp = ilog2(sr) + 1;
state_ptr->sr[0] = (exp << 6) + ((sr << 6) >> exp);
} else if (sr > -0x8000) {
Kevin P. Fleming
committed
exp = ilog2(mag) + 1;
state_ptr->sr[0] = (exp << 6) + ((mag << 6) >> exp) - 0x400;
} else
state_ptr->sr[0] = 0x20 - 0x400;
#endif
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
/* DELAY A */
state_ptr->pk[1] = state_ptr->pk[0];
state_ptr->pk[0] = pk0;
/* TONE */
if (tr == 1) /* this sample has been treated as data */
state_ptr->td = 0; /* next one will be treated as voice */
else if (a2p < -11776) /* small sample-to-sample correlation */
state_ptr->td = 1; /* signal may be data */
else /* signal is voice */
state_ptr->td = 0;
/*
* Adaptation speed control.
*/
state_ptr->dms += (fi - state_ptr->dms) >> 5; /* FILTA */
state_ptr->dml += (((fi << 2) - state_ptr->dml) >> 7); /* FILTB */
if (tr == 1)
state_ptr->ap = 256;
else if (y < 1536) /* SUBTC */
state_ptr->ap += (0x200 - state_ptr->ap) >> 4;
else if (state_ptr->td == 1)
state_ptr->ap += (0x200 - state_ptr->ap) >> 4;
else if (abs((state_ptr->dms << 2) - state_ptr->dml) >=
(state_ptr->dml >> 3))
state_ptr->ap += (0x200 - state_ptr->ap) >> 4;
else
state_ptr->ap += (-state_ptr->ap) >> 4;
}
/*
* g726_decode()
*
* Description:
*
* Decodes a 4-bit code of G.726-32 encoded data of i and
* returns the resulting linear PCM, A-law or u-law value.
* return -1 for unknown out_coding value.
*/
static int g726_decode(int i, struct g726_state *state_ptr)
{
int sezi, sez, se; /* ACCUM */
int y; /* MIX */
int sr; /* ADDB */
int dq;
int dqsez;
i &= 0x0f; /* mask to get proper bits */
#ifdef NOT_BLI
sezi = predictor_zero(state_ptr);
sez = sezi;
se = sezi + predictor_pole(state_ptr); /* estimated signal */
#else
sezi = predictor_zero(state_ptr);
sez = sezi >> 1;
se = (sezi + predictor_pole(state_ptr)) >> 1; /* estimated signal */
#endif
y = step_size(state_ptr); /* dynamic quantizer step size */
dq = reconstruct(i & 8, _dqlntab[i], y); /* quantized diff. */
#ifdef NOT_BLI
sr = se + dq; /* reconst. signal */
dqsez = dq + sez; /* pole prediction diff. */
#else
sr = (dq < 0) ? se - (dq & 0x3FFF) : se + dq; /* reconst. signal */
dqsez = sr - se + sez; /* pole prediction diff. */
#endif
update(4, y, _witab[i] << 5, _fitab[i], dq, sr, dqsez, state_ptr);
#ifdef NOT_BLI
return (sr >> 10); /* sr was 26-bit dynamic range */
#else
return (sr << 2); /* sr was 14-bit dynamic range */
#endif
/*
* g726_encode()
*
* Encodes the input vale of linear PCM, A-law or u-law data sl and returns
* the resulting code. -1 is returned for unknown input coding value.
*/
static int g726_encode(int sl, struct g726_state *state_ptr)
{
int sezi, se, sez; /* ACCUM */
int d; /* SUBTA */
int sr; /* ADDB */
int y; /* MIX */
int dqsez; /* ADDC */
int dq, i;
#ifdef NOT_BLI
sl <<= 10; /* 26-bit dynamic range */
sezi = predictor_zero(state_ptr);
sez = sezi;
se = sezi + predictor_pole(state_ptr); /* estimated signal */
#else
sl >>= 2; /* 14-bit dynamic range */
sezi = predictor_zero(state_ptr);
sez = sezi >> 1;
se = (sezi + predictor_pole(state_ptr)) >> 1; /* estimated signal */
#endif
d = sl - se; /* estimation difference */
/* quantize the prediction difference */
y = step_size(state_ptr); /* quantizer step size */
#ifdef NOT_BLI
d /= 0x1000;
#endif
i = quantize(d, y, qtab_721, 7); /* i = G726 code */
dq = reconstruct(i & 8, _dqlntab[i], y); /* quantized est diff */
#ifdef NOT_BLI
sr = se + dq; /* reconst. signal */
dqsez = dq + sez; /* pole prediction diff. */
#else
sr = (dq < 0) ? se - (dq & 0x3FFF) : se + dq; /* reconst. signal */
dqsez = sr - se + sez; /* pole prediction diff. */
#endif
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
update(4, y, _witab[i] << 5, _fitab[i], dq, sr, dqsez, state_ptr);
return (i);
}
/*
* Private workspace for translating signed linear signals to G726.
*/
struct g726_encoder_pvt
{
struct ast_frame f;
char offset[AST_FRIENDLY_OFFSET]; /* Space to build offset */
unsigned char outbuf[BUFFER_SIZE]; /* Encoded G726, two nibbles to a word */
unsigned char next_flag;
struct g726_state g726;
int tail;
};
/*
* Private workspace for translating G726 signals to signed linear.
*/
struct g726_decoder_pvt
{
struct ast_frame f;
char offset[AST_FRIENDLY_OFFSET]; /* Space to build offset */
short outbuf[BUFFER_SIZE]; /* Decoded signed linear values */
struct g726_state g726;
int tail;
Mark Spencer
committed
plc_state_t plc;
};
/*
* G726ToLin_New
* Create a new instance of g726_decoder_pvt.
*
* Results:
* Returns a pointer to the new instance.
*
* Side effects:
* None.
*/
static struct ast_translator_pvt *
g726tolin_new (void)
{
struct g726_decoder_pvt *tmp;
tmp = malloc (sizeof (struct g726_decoder_pvt));
if (tmp)
{
memset(tmp, 0, sizeof(*tmp));
tmp->tail = 0;
Mark Spencer
committed
plc_init(&tmp->plc);
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
localusecnt++;
g726_init_state(&tmp->g726);
ast_update_use_count ();
}
return (struct ast_translator_pvt *) tmp;
}
/*
* LinToG726_New
* Create a new instance of g726_encoder_pvt.
*
* Results:
* Returns a pointer to the new instance.
*
* Side effects:
* None.
*/
static struct ast_translator_pvt *
lintog726_new (void)
{
struct g726_encoder_pvt *tmp;
tmp = malloc (sizeof (struct g726_encoder_pvt));
if (tmp)
{
memset(tmp, 0, sizeof(*tmp));
localusecnt++;
tmp->tail = 0;
g726_init_state(&tmp->g726);
ast_update_use_count ();
}
return (struct ast_translator_pvt *) tmp;
}
/*
* G726ToLin_FrameIn
* Fill an input buffer with packed 4-bit G726 values if there is room
* left.
*
* Results:
* Foo
*
* Side effects:
* tmp->tail is the number of packed values in the buffer.
*/
static int
g726tolin_framein (struct ast_translator_pvt *pvt, struct ast_frame *f)
{
struct g726_decoder_pvt *tmp = (struct g726_decoder_pvt *) pvt;
unsigned char *b;
int x;
Mark Spencer
committed
if(f->datalen == 0) { /* perform PLC with nominal framesize of 20ms/160 samples */
if((tmp->tail + 160) > BUFFER_SIZE) {
ast_log(LOG_WARNING, "Out of buffer space\n");
return -1;
}
if(useplc) {
plc_fillin(&tmp->plc, tmp->outbuf+tmp->tail, 160);
tmp->tail += 160;
}
return 0;
}
b = f->data;
for (x=0;x<f->datalen;x++) {
if (tmp->tail >= BUFFER_SIZE) {
ast_log(LOG_WARNING, "Out of buffer space!\n");
return -1;
}
tmp->outbuf[tmp->tail++] = g726_decode((b[x] >> 4) & 0xf, &tmp->g726);
if (tmp->tail >= BUFFER_SIZE) {
ast_log(LOG_WARNING, "Out of buffer space!\n");
return -1;
}
tmp->outbuf[tmp->tail++] = g726_decode(b[x] & 0x0f, &tmp->g726);
}
Mark Spencer
committed
if(useplc) plc_rx(&tmp->plc, tmp->outbuf+tmp->tail-f->datalen*2, f->datalen*2);
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
return 0;
}
/*
* G726ToLin_FrameOut
* Convert 4-bit G726 encoded signals to 16-bit signed linear.
*
* Results:
* Converted signals are placed in tmp->f.data, tmp->f.datalen
* and tmp->f.samples are calculated.
*
* Side effects:
* None.
*/
static struct ast_frame *
g726tolin_frameout (struct ast_translator_pvt *pvt)
{
struct g726_decoder_pvt *tmp = (struct g726_decoder_pvt *) pvt;
if (!tmp->tail)
return NULL;
tmp->f.frametype = AST_FRAME_VOICE;
tmp->f.subclass = AST_FORMAT_SLINEAR;
tmp->f.datalen = tmp->tail * 2;
tmp->f.samples = tmp->tail;
tmp->f.mallocd = 0;
tmp->f.offset = AST_FRIENDLY_OFFSET;
tmp->f.src = __PRETTY_FUNCTION__;
tmp->f.data = tmp->outbuf;
tmp->tail = 0;
return &tmp->f;
}
/*
* LinToG726_FrameIn
* Fill an input buffer with 16-bit signed linear PCM values.
*
* Results:
* None.
*
* Side effects:
* tmp->tail is number of signal values in the input buffer.
*/
static int
lintog726_framein (struct ast_translator_pvt *pvt, struct ast_frame *f)
{
struct g726_encoder_pvt *tmp = (struct g726_encoder_pvt *) pvt;
short *s = f->data;
int samples = f->datalen / 2;
int x;
for (x=0;x<samples;x++) {
if (tmp->next_flag & 0x80) {
if (tmp->tail >= BUFFER_SIZE) {
ast_log(LOG_WARNING, "Out of buffer space\n");
return -1;
}
tmp->outbuf[tmp->tail++] = ((tmp->next_flag & 0xf)<< 4) | g726_encode(s[x], &tmp->g726);
tmp->next_flag = 0;
} else {
tmp->next_flag = 0x80 | g726_encode(s[x], &tmp->g726);
}
}
return 0;
}
/*
* LinToG726_FrameOut
* Convert a buffer of raw 16-bit signed linear PCM to a buffer
* of 4-bit G726 packed two to a byte (Big Endian).
*
* Results:
* Foo
*
* Side effects:
* Leftover inbuf data gets packed, tail gets updated.
*/
static struct ast_frame *
lintog726_frameout (struct ast_translator_pvt *pvt)
{
struct g726_encoder_pvt *tmp = (struct g726_encoder_pvt *) pvt;
if (!tmp->tail)
return NULL;
tmp->f.frametype = AST_FRAME_VOICE;
tmp->f.subclass = AST_FORMAT_G726;
tmp->f.samples = tmp->tail * 2;
tmp->f.mallocd = 0;
tmp->f.offset = AST_FRIENDLY_OFFSET;
tmp->f.src = __PRETTY_FUNCTION__;
tmp->f.data = tmp->outbuf;
tmp->f.datalen = tmp->tail;
tmp->tail = 0;
return &tmp->f;
}
/*
* G726ToLin_Sample
*/
static struct ast_frame *
g726tolin_sample (void)
{
static struct ast_frame f;
f.frametype = AST_FRAME_VOICE;
f.subclass = AST_FORMAT_G726;
f.datalen = sizeof (g726_slin_ex);
f.samples = sizeof(g726_slin_ex) * 2;
f.mallocd = 0;
f.offset = 0;
f.src = __PRETTY_FUNCTION__;
f.data = g726_slin_ex;
return &f;
}
/*
* LinToG726_Sample
*/
static struct ast_frame *
lintog726_sample (void)
{
static struct ast_frame f;
f.frametype = AST_FRAME_VOICE;
f.subclass = AST_FORMAT_SLINEAR;
f.datalen = sizeof (slin_g726_ex);
/* Assume 8000 Hz */
f.samples = sizeof (slin_g726_ex) / 2;
f.mallocd = 0;
f.offset = 0;
f.src = __PRETTY_FUNCTION__;
f.data = slin_g726_ex;
return &f;
}
/*
* G726_Destroy
* Destroys a private workspace.
*
* Results:
* It's gone!
*
* Side effects:
* None.
*/
static void
g726_destroy (struct ast_translator_pvt *pvt)
{
free (pvt);
localusecnt--;
ast_update_use_count ();
}
/*
* The complete translator for G726ToLin.
*/
static struct ast_translator g726tolin = {
"g726tolin",
AST_FORMAT_G726,
AST_FORMAT_SLINEAR,
g726tolin_new,
g726tolin_framein,
g726tolin_frameout,
g726_destroy,
/* NULL */
g726tolin_sample
};
/*