Skip to content
Snippets Groups Projects
dsp.c 38.4 KiB
Newer Older
Mark Spencer's avatar
Mark Spencer committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521
/*
 * Asterisk -- A telephony toolkit for Linux.
 *
 * Convenience Signal Processing routines
 * 
 * Copyright (C) 2002, Digium
 *
 * Mark Spencer <markster@linux-support.net>
 *
 * This program is free software, distributed under the terms of
 * the GNU General Public License.
 *
 * Goertzel routines are borrowed from Steve Underwood's tremendous work on the
 * DTMF detector.
 *
 */

/* Some routines from tone_detect.c by Steven Underwood as published under the zapata library */
/*
	tone_detect.c - General telephony tone detection, and specific
                        detection of DTMF.

        Copyright (C) 2001  Steve Underwood <steveu@coppice.org>

        Despite my general liking of the GPL, I place this code in the
        public domain for the benefit of all mankind - even the slimy
        ones who might try to proprietize my work and use it to my
        detriment.
*/

#include <asterisk/frame.h>
#include <asterisk/channel.h>
#include <asterisk/channel_pvt.h>
#include <asterisk/logger.h>
#include <asterisk/dsp.h>
#include <asterisk/ulaw.h>
#include <asterisk/alaw.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include <math.h>
#include <errno.h>
#include <stdio.h>

#define DEFAULT_THRESHOLD 1024

#define BUSY_THRESHOLD	100		/* Max number of ms difference between max and min times in busy */
#define BUSY_MIN		80		/* Busy must be at least 80 ms in half-cadence */
#define BUSY_MAX		1100	/* Busy can't be longer than 1100 ms in half-cadence */

/* Remember last 3 units */
#define DSP_HISTORY 5

/* Number of goertzels for progress detect */
#define GSAMP_SIZE 183

#define HZ_350  0
#define HZ_440  1
#define HZ_480  2
#define HZ_620  3
#define HZ_950  4
#define HZ_1400 5
#define HZ_1800 6

#define TONE_THRESH 10.0	/* How much louder the tone should be than channel energy */
#define TONE_MIN_THRESH 1e8	/* How much tone there should be at least to attempt */
#define COUNT_THRESH  3		/* Need at least 50ms of stuff to count it */

#define TONE_STATE_SILENCE  0
#define TONE_STATE_RINGING  1 
#define TONE_STATE_DIALTONE 2
#define TONE_STATE_TALKING  3
#define TONE_STATE_BUSY     4
#define TONE_STATE_SPECIAL1	5
#define TONE_STATE_SPECIAL2 6
#define TONE_STATE_SPECIAL3 7

#define	MAX_DTMF_DIGITS 128

/* Basic DTMF specs:
 *
 * Minimum tone on = 40ms
 * Minimum tone off = 50ms
 * Maximum digit rate = 10 per second
 * Normal twist <= 8dB accepted
 * Reverse twist <= 4dB accepted
 * S/N >= 15dB will detect OK
 * Attenuation <= 26dB will detect OK
 * Frequency tolerance +- 1.5% will detect, +-3.5% will reject
 */

#define DTMF_THRESHOLD              8.0e7
#define FAX_THRESHOLD              8.0e7
#define FAX_2ND_HARMONIC       		2.0     /* 4dB */
#define DTMF_NORMAL_TWIST           6.3     /* 8dB */
#define DTMF_REVERSE_TWIST          ((digitmode & DSP_DIGITMODE_RELAXDTMF) ? 4.0 : 2.5)     /* 4dB normal */
#define DTMF_RELATIVE_PEAK_ROW      6.3     /* 8dB */
#define DTMF_RELATIVE_PEAK_COL      6.3     /* 8dB */
#define DTMF_2ND_HARMONIC_ROW       ((digitmode & DSP_DIGITMODE_RELAXDTMF) ? 1.7 : 2.5)     /* 4dB normal */
#define DTMF_2ND_HARMONIC_COL       63.1    /* 18dB */

#define MF_THRESHOLD              8.0e7
#define MF_NORMAL_TWIST           5.3     /* 8dB */
#define MF_REVERSE_TWIST          4.0     /* was 2.5 */
#define MF_RELATIVE_PEAK      5.3     /* 8dB */
#define MF_2ND_HARMONIC       1.7 /* was 2.5  */

typedef struct {
	float v2;
	float v3;
	float fac;
} goertzel_state_t;

typedef struct
{
    int hit1;
    int hit2;
    int hit3;
    int hit4;
    int mhit;

    goertzel_state_t row_out[4];
    goertzel_state_t col_out[4];
    goertzel_state_t row_out2nd[4];
    goertzel_state_t col_out2nd[4];
	goertzel_state_t fax_tone;
	goertzel_state_t fax_tone2nd;
    float energy;
    
    int current_sample;
    char digits[MAX_DTMF_DIGITS + 1];
    int current_digits;
    int detected_digits;
    int lost_digits;
    int digit_hits[16];
	int fax_hits;
} dtmf_detect_state_t;

typedef struct
{
    int hit1;
    int hit2;
    int hit3;
    int hit4;
    int mhit;

    goertzel_state_t tone_out[6];
    goertzel_state_t tone_out2nd[6];
    float energy;
    
    int current_sample;
    char digits[MAX_DTMF_DIGITS + 1];
    int current_digits;
    int detected_digits;
    int lost_digits;
	int fax_hits;
} mf_detect_state_t;

static float dtmf_row[] =
{
     697.0,  770.0,  852.0,  941.0
};
static float dtmf_col[] =
{
    1209.0, 1336.0, 1477.0, 1633.0
};

static float mf_tones[] =
{
	700.0, 900.0, 1100.0, 1300.0, 1500.0, 1700.0
};

static float fax_freq = 1100.0;

static char dtmf_positions[] = "123A" "456B" "789C" "*0#D";

static char mf_hit[6][6] = {
	/*  700 + */ {   0, '1', '2', '4', '7', 'C' },
	/*  900 + */ { '1',   0, '3', '5', '8', 'A' },
	/* 1100 + */ { '2', '3',   0, '6', '9', '*' },
	/* 1300 + */ { '4', '5', '6',   0, '0', 'B' },
	/* 1500 + */ { '7', '8', '9', '0',  0, '#' },
	/* 1700 + */ { 'C', 'A', '*', 'B', '#',  0  },
};

static inline void goertzel_sample(goertzel_state_t *s, short sample)
{
	float v1;
	float fsamp  = sample;
	v1 = s->v2;
	s->v2 = s->v3;
	s->v3 = s->fac * s->v2 - v1 + fsamp;
}

static inline void goertzel_update(goertzel_state_t *s, short *samps, int count)
{
	int i;
	for (i=0;i<count;i++) 
		goertzel_sample(s, samps[i]);
}


static inline float goertzel_result(goertzel_state_t *s)
{
	return s->v3 * s->v3 + s->v2 * s->v2 - s->v2 * s->v3 * s->fac;
}

static inline void goertzel_init(goertzel_state_t *s, float freq)
{
	s->v2 = s->v3 = 0.0;
	s->fac = 2.0 * cos(2.0 * M_PI * (freq / 8000.0));
}

static inline void goertzel_reset(goertzel_state_t *s)
{
	s->v2 = s->v3 = 0.0;
}

struct ast_dsp {
	struct ast_frame f;
	int threshold;
	int totalsilence;
	int totalnoise;
	int features;
	int busymaybe;
	int busycount;
	int historicnoise[DSP_HISTORY];
	int historicsilence[DSP_HISTORY];
	goertzel_state_t freqs[7];
	int gsamps;
	int tstate;
	int tcount;
	int digitmode;
	int thinkdigit;
	float genergy;
	union {
		dtmf_detect_state_t dtmf;
		mf_detect_state_t mf;
	} td;
};

static void ast_dtmf_detect_init (dtmf_detect_state_t *s)
{
    int i;

    s->hit1 = 
    s->hit2 = 0;

    for (i = 0;  i < 4;  i++)
    {
    
   		goertzel_init (&s->row_out[i], dtmf_row[i]);
    	goertzel_init (&s->col_out[i], dtmf_col[i]);
    	goertzel_init (&s->row_out2nd[i], dtmf_row[i] * 2.0);
    	goertzel_init (&s->col_out2nd[i], dtmf_col[i] * 2.0);
	
		s->energy = 0.0;
    }

	/* Same for the fax dector */
    goertzel_init (&s->fax_tone, fax_freq);

	/* Same for the fax dector 2nd harmonic */
    goertzel_init (&s->fax_tone2nd, fax_freq * 2.0);
	
    s->current_sample = 0;
    s->detected_digits = 0;
	s->current_digits = 0;
	memset(&s->digits, 0, sizeof(s->digits));
    s->lost_digits = 0;
    s->digits[0] = '\0';
    s->mhit = 0;
}

static void ast_mf_detect_init (mf_detect_state_t *s)
{
    int i;

    s->hit1 = 
    s->hit2 = 0;

    for (i = 0;  i < 6;  i++)
    {
    
   		goertzel_init (&s->tone_out[i], mf_tones[i]);
    	goertzel_init (&s->tone_out2nd[i], mf_tones[i] * 2.0);
	
		s->energy = 0.0;
    }

	s->current_digits = 0;
	memset(&s->digits, 0, sizeof(s->digits));
    s->current_sample = 0;
    s->detected_digits = 0;
    s->lost_digits = 0;
    s->digits[0] = '\0';
    s->mhit = 0;
}

static int dtmf_detect (dtmf_detect_state_t *s,
                 int16_t amp[],
                 int samples, 
		 int digitmode, int *writeback)
{

    float row_energy[4];
    float col_energy[4];
    float fax_energy;
    float fax_energy_2nd;
    float famp;
    float v1;
    int i;
    int j;
    int sample;
    int best_row;
    int best_col;
    int hit;
    int limit;

    hit = 0;
    for (sample = 0;  sample < samples;  sample = limit)
    {
        /* 102 is optimised to meet the DTMF specs. */
        if ((samples - sample) >= (102 - s->current_sample))
            limit = sample + (102 - s->current_sample);
        else
            limit = samples;
#if defined(USE_3DNOW)
        _dtmf_goertzel_update (s->row_out, amp + sample, limit - sample);
        _dtmf_goertzel_update (s->col_out, amp + sample, limit - sample);
        _dtmf_goertzel_update (s->row_out2nd, amp + sample, limit2 - sample);
        _dtmf_goertzel_update (s->col_out2nd, amp + sample, limit2 - sample);
		/* XXX Need to fax detect for 3dnow too XXX */
		#warning "Fax Support Broken"
#else
        /* The following unrolled loop takes only 35% (rough estimate) of the 
           time of a rolled loop on the machine on which it was developed */
        for (j = sample;  j < limit;  j++)
        {
            famp = amp[j];
	    
	    s->energy += famp*famp;
	    
            /* With GCC 2.95, the following unrolled code seems to take about 35%
               (rough estimate) as long as a neat little 0-3 loop */
            v1 = s->row_out[0].v2;
            s->row_out[0].v2 = s->row_out[0].v3;
            s->row_out[0].v3 = s->row_out[0].fac*s->row_out[0].v2 - v1 + famp;
    
            v1 = s->col_out[0].v2;
            s->col_out[0].v2 = s->col_out[0].v3;
            s->col_out[0].v3 = s->col_out[0].fac*s->col_out[0].v2 - v1 + famp;
    
            v1 = s->row_out[1].v2;
            s->row_out[1].v2 = s->row_out[1].v3;
            s->row_out[1].v3 = s->row_out[1].fac*s->row_out[1].v2 - v1 + famp;
    
            v1 = s->col_out[1].v2;
            s->col_out[1].v2 = s->col_out[1].v3;
            s->col_out[1].v3 = s->col_out[1].fac*s->col_out[1].v2 - v1 + famp;
    
            v1 = s->row_out[2].v2;
            s->row_out[2].v2 = s->row_out[2].v3;
            s->row_out[2].v3 = s->row_out[2].fac*s->row_out[2].v2 - v1 + famp;
    
            v1 = s->col_out[2].v2;
            s->col_out[2].v2 = s->col_out[2].v3;
            s->col_out[2].v3 = s->col_out[2].fac*s->col_out[2].v2 - v1 + famp;
    
            v1 = s->row_out[3].v2;
            s->row_out[3].v2 = s->row_out[3].v3;
            s->row_out[3].v3 = s->row_out[3].fac*s->row_out[3].v2 - v1 + famp;

            v1 = s->col_out[3].v2;
            s->col_out[3].v2 = s->col_out[3].v3;
            s->col_out[3].v3 = s->col_out[3].fac*s->col_out[3].v2 - v1 + famp;

            v1 = s->col_out2nd[0].v2;
            s->col_out2nd[0].v2 = s->col_out2nd[0].v3;
            s->col_out2nd[0].v3 = s->col_out2nd[0].fac*s->col_out2nd[0].v2 - v1 + famp;
        
            v1 = s->row_out2nd[0].v2;
            s->row_out2nd[0].v2 = s->row_out2nd[0].v3;
            s->row_out2nd[0].v3 = s->row_out2nd[0].fac*s->row_out2nd[0].v2 - v1 + famp;
        
            v1 = s->col_out2nd[1].v2;
            s->col_out2nd[1].v2 = s->col_out2nd[1].v3;
            s->col_out2nd[1].v3 = s->col_out2nd[1].fac*s->col_out2nd[1].v2 - v1 + famp;
    
            v1 = s->row_out2nd[1].v2;
            s->row_out2nd[1].v2 = s->row_out2nd[1].v3;
            s->row_out2nd[1].v3 = s->row_out2nd[1].fac*s->row_out2nd[1].v2 - v1 + famp;
        
            v1 = s->col_out2nd[2].v2;
            s->col_out2nd[2].v2 = s->col_out2nd[2].v3;
            s->col_out2nd[2].v3 = s->col_out2nd[2].fac*s->col_out2nd[2].v2 - v1 + famp;
        
            v1 = s->row_out2nd[2].v2;
            s->row_out2nd[2].v2 = s->row_out2nd[2].v3;
            s->row_out2nd[2].v3 = s->row_out2nd[2].fac*s->row_out2nd[2].v2 - v1 + famp;
        
            v1 = s->col_out2nd[3].v2;
            s->col_out2nd[3].v2 = s->col_out2nd[3].v3;
            s->col_out2nd[3].v3 = s->col_out2nd[3].fac*s->col_out2nd[3].v2 - v1 + famp;
        
            v1 = s->row_out2nd[3].v2;
            s->row_out2nd[3].v2 = s->row_out2nd[3].v3;
            s->row_out2nd[3].v3 = s->row_out2nd[3].fac*s->row_out2nd[3].v2 - v1 + famp;

			/* Update fax tone */
            v1 = s->fax_tone.v2;
            s->fax_tone.v2 = s->fax_tone.v3;
            s->fax_tone.v3 = s->fax_tone.fac*s->fax_tone.v2 - v1 + famp;

            v1 = s->fax_tone.v2;
            s->fax_tone2nd.v2 = s->fax_tone2nd.v3;
            s->fax_tone2nd.v3 = s->fax_tone2nd.fac*s->fax_tone2nd.v2 - v1 + famp;
        }
#endif
        s->current_sample += (limit - sample);
        if (s->current_sample < 102) {
			if (hit && !((digitmode & DSP_DIGITMODE_NOQUELCH))) {
				/* If we had a hit last time, go ahead and clear this out since likely it
				   will be another hit */
				for (i=sample;i<limit;i++) 
					amp[i] = 0;
				*writeback = 1;
			}
            continue;
		}

		/* Detect the fax energy, too */
		fax_energy = goertzel_result(&s->fax_tone);
		
        /* We are at the end of a DTMF detection block */
        /* Find the peak row and the peak column */
        row_energy[0] = goertzel_result (&s->row_out[0]);
        col_energy[0] = goertzel_result (&s->col_out[0]);

	for (best_row = best_col = 0, i = 1;  i < 4;  i++)
	{
    	    row_energy[i] = goertzel_result (&s->row_out[i]);
            if (row_energy[i] > row_energy[best_row])
                best_row = i;
    	    col_energy[i] = goertzel_result (&s->col_out[i]);
            if (col_energy[i] > col_energy[best_col])
                best_col = i;
    	}
        hit = 0;
        /* Basic signal level test and the twist test */
        if (row_energy[best_row] >= DTMF_THRESHOLD
	    &&
	    col_energy[best_col] >= DTMF_THRESHOLD
            &&
            col_energy[best_col] < row_energy[best_row]*DTMF_REVERSE_TWIST
            &&
            col_energy[best_col]*DTMF_NORMAL_TWIST > row_energy[best_row])
        {
            /* Relative peak test */
            for (i = 0;  i < 4;  i++)
            {
                if ((i != best_col  &&  col_energy[i]*DTMF_RELATIVE_PEAK_COL > col_energy[best_col])
                    ||
                    (i != best_row  &&  row_energy[i]*DTMF_RELATIVE_PEAK_ROW > row_energy[best_row]))
                {
                    break;
                }
            }
            /* ... and second harmonic test */
            if (i >= 4
	        &&
		(row_energy[best_row] + col_energy[best_col]) > 42.0*s->energy
                &&
                goertzel_result (&s->col_out2nd[best_col])*DTMF_2ND_HARMONIC_COL < col_energy[best_col]
                &&
                goertzel_result (&s->row_out2nd[best_row])*DTMF_2ND_HARMONIC_ROW < row_energy[best_row])
            {
				/* Got a hit */
                hit = dtmf_positions[(best_row << 2) + best_col];
				if (!(digitmode & DSP_DIGITMODE_NOQUELCH)) {
					/* Zero out frame data if this is part DTMF */
					for (i=sample;i<limit;i++) 
						amp[i] = 0;
					*writeback = 1;
				}
                /* Look for two successive similar results */
                /* The logic in the next test is:
                   We need two successive identical clean detects, with
		   something different preceeding it. This can work with
		   back to back differing digits. More importantly, it
		   can work with nasty phones that give a very wobbly start
		   to a digit. */
                if (hit == s->hit3  &&  s->hit3 != s->hit2)
                {
		    s->mhit = hit;
                    s->digit_hits[(best_row << 2) + best_col]++;
                    s->detected_digits++;
                    if (s->current_digits < MAX_DTMF_DIGITS)
                    {
                        s->digits[s->current_digits++] = hit;
                        s->digits[s->current_digits] = '\0';
                    }
                    else
                    {
                        s->lost_digits++;
                    }
                }
            }
        } 
		if (!hit && (fax_energy >= FAX_THRESHOLD) && (fax_energy > s->energy * 21.0)) {
				fax_energy_2nd = goertzel_result(&s->fax_tone2nd);
				if (fax_energy_2nd * FAX_2ND_HARMONIC < fax_energy) {
#if 0
					printf("Fax energy/Second Harmonic: %f/%f\n", fax_energy, fax_energy_2nd);
#endif					
					/* XXX Probably need better checking than just this the energy XXX */
					hit = 'f';
					s->fax_hits++;
				} /* Don't reset fax hits counter */
		} else {
			if (s->fax_hits > 5) {
				 hit = 'f';
Mark Spencer's avatar
Mark Spencer committed
				 s->mhit = 'f';
	             s->detected_digits++;
	             if (s->current_digits < MAX_DTMF_DIGITS)
	             {
	                  s->digits[s->current_digits++] = hit;
	                  s->digits[s->current_digits] = '\0';
	             }
	             else
	             {
	                   s->lost_digits++;
	             }
			}
			s->fax_hits = 0;
		}
        s->hit1 = s->hit2;
        s->hit2 = s->hit3;
        s->hit3 = hit;
        /* Reinitialise the detector for the next block */
        for (i = 0;  i < 4;  i++)
        {
       	    goertzel_reset(&s->row_out[i]);
            goertzel_reset(&s->col_out[i]);
    	    goertzel_reset(&s->row_out2nd[i]);
    	    goertzel_reset(&s->col_out2nd[i]);
        }
    	goertzel_reset (&s->fax_tone);
    	goertzel_reset (&s->fax_tone2nd);
		s->energy = 0.0;
        s->current_sample = 0;
    }
    if ((!s->mhit) || (s->mhit != hit))
    {
	s->mhit = 0;
	return(0);
    }
    return (hit);
}

/* MF goertzel size */
#define	MF_GSIZE 160

static int mf_detect (mf_detect_state_t *s,
                 int16_t amp[],
                 int samples, 
		 int digitmode, int *writeback)
{

    float tone_energy[6];
    float famp;
    float v1;
    int i;
    int j;
    int sample;
    int best1;
    int best2;
	float max;
    int hit;
    int limit;
	int sofarsogood;

    hit = 0;
    for (sample = 0;  sample < samples;  sample = limit)
    {
        /* 80 is optimised to meet the MF specs. */
        if ((samples - sample) >= (MF_GSIZE - s->current_sample))
            limit = sample + (MF_GSIZE - s->current_sample);
        else
            limit = samples;
#if defined(USE_3DNOW)
        _dtmf_goertzel_update (s->row_out, amp + sample, limit - sample);
        _dtmf_goertzel_update (s->col_out, amp + sample, limit - sample);
        _dtmf_goertzel_update (s->row_out2nd, amp + sample, limit2 - sample);
        _dtmf_goertzel_update (s->col_out2nd, amp + sample, limit2 - sample);
		/* XXX Need to fax detect for 3dnow too XXX */
		#warning "Fax Support Broken"
#else
        /* The following unrolled loop takes only 35% (rough estimate) of the 
           time of a rolled loop on the machine on which it was developed */
        for (j = sample;  j < limit;  j++)
        {
            famp = amp[j];
	    
	    s->energy += famp*famp;
	    
            /* With GCC 2.95, the following unrolled code seems to take about 35%
               (rough estimate) as long as a neat little 0-3 loop */
            v1 = s->tone_out[0].v2;
            s->tone_out[0].v2 = s->tone_out[0].v3;
            s->tone_out[0].v3 = s->tone_out[0].fac*s->tone_out[0].v2 - v1 + famp;

            v1 = s->tone_out[1].v2;
            s->tone_out[1].v2 = s->tone_out[1].v3;
            s->tone_out[1].v3 = s->tone_out[1].fac*s->tone_out[1].v2 - v1 + famp;
    
            v1 = s->tone_out[2].v2;
            s->tone_out[2].v2 = s->tone_out[2].v3;
            s->tone_out[2].v3 = s->tone_out[2].fac*s->tone_out[2].v2 - v1 + famp;
    
            v1 = s->tone_out[3].v2;
            s->tone_out[3].v2 = s->tone_out[3].v3;
            s->tone_out[3].v3 = s->tone_out[3].fac*s->tone_out[3].v2 - v1 + famp;

            v1 = s->tone_out[4].v2;
            s->tone_out[4].v2 = s->tone_out[4].v3;
            s->tone_out[4].v3 = s->tone_out[4].fac*s->tone_out[4].v2 - v1 + famp;

            v1 = s->tone_out[5].v2;
            s->tone_out[5].v2 = s->tone_out[5].v3;
            s->tone_out[5].v3 = s->tone_out[5].fac*s->tone_out[5].v2 - v1 + famp;

            v1 = s->tone_out2nd[0].v2;
            s->tone_out2nd[0].v2 = s->tone_out2nd[0].v3;
            s->tone_out2nd[0].v3 = s->tone_out2nd[0].fac*s->tone_out2nd[0].v2 - v1 + famp;
        
            v1 = s->tone_out2nd[1].v2;
            s->tone_out2nd[1].v2 = s->tone_out2nd[1].v3;
            s->tone_out2nd[1].v3 = s->tone_out2nd[1].fac*s->tone_out2nd[1].v2 - v1 + famp;
        
            v1 = s->tone_out2nd[2].v2;
            s->tone_out2nd[2].v2 = s->tone_out2nd[2].v3;
            s->tone_out2nd[2].v3 = s->tone_out2nd[2].fac*s->tone_out2nd[2].v2 - v1 + famp;
        
            v1 = s->tone_out2nd[3].v2;
            s->tone_out2nd[3].v2 = s->tone_out2nd[3].v3;
            s->tone_out2nd[3].v3 = s->tone_out2nd[3].fac*s->tone_out2nd[3].v2 - v1 + famp;

            v1 = s->tone_out2nd[4].v2;
            s->tone_out2nd[4].v2 = s->tone_out2nd[4].v3;
            s->tone_out2nd[4].v3 = s->tone_out2nd[4].fac*s->tone_out2nd[2].v2 - v1 + famp;
        
            v1 = s->tone_out2nd[3].v2;
            s->tone_out2nd[5].v2 = s->tone_out2nd[6].v3;
            s->tone_out2nd[5].v3 = s->tone_out2nd[6].fac*s->tone_out2nd[3].v2 - v1 + famp;

        }
#endif
        s->current_sample += (limit - sample);
        if (s->current_sample < MF_GSIZE) {
			if (hit && !((digitmode & DSP_DIGITMODE_NOQUELCH))) {
				/* If we had a hit last time, go ahead and clear this out since likely it
				   will be another hit */
				for (i=sample;i<limit;i++) 
					amp[i] = 0;
				*writeback = 1;
			}
            continue;
		}

		/* We're at the end of an MF detection block.  Go ahead and calculate
		   all the energies. */
		for (i=0;i<6;i++) {
			tone_energy[i] = goertzel_result(&s->tone_out[i]);
		}
		
		/* Find highest */
		best1 = 0;
		max = tone_energy[0];
		for (i=1;i<6;i++) {
			if (tone_energy[i] > max) {
				max = tone_energy[i];
				best1 = i;
			}
		}

		/* Find 2nd highest */
		if (best1)
			max = tone_energy[0];
		else
			max = tone_energy[1];
		best2 = 0;
		for (i=0;i<6;i++) {
			if (i == best1) continue;
			if (tone_energy[i] > max) {
				max = tone_energy[i];
				best2 = i;
			}
		}
		
        hit = 0;
		sofarsogood=1;
		/* Check for relative energies */
		for (i=0;i<6;i++) {
			if (i == best1) continue;
			if (i == best2) continue;
			if (tone_energy[best1] < tone_energy[i] * MF_RELATIVE_PEAK) {
				sofarsogood = 0;
				break;
			}
			if (tone_energy[best2] < tone_energy[i] * MF_RELATIVE_PEAK) {
				sofarsogood = 0;
				break;
			}
		}
		
		if (sofarsogood) {
			/* Check for 2nd harmonic */
			if (goertzel_result(&s->tone_out2nd[best1]) * MF_2ND_HARMONIC > tone_energy[best1]) 
				sofarsogood = 0;
			else if (goertzel_result(&s->tone_out2nd[best1]) * MF_2ND_HARMONIC > tone_energy[best2])
				sofarsogood = 0;
		}
		if (sofarsogood) {
			hit = mf_hit[best1][best2];
			if (!(digitmode & DSP_DIGITMODE_NOQUELCH)) {
				/* Zero out frame data if this is part DTMF */
				for (i=sample;i<limit;i++) 
					amp[i] = 0;
				*writeback = 1;
			}
			/* Look for two consecutive clean hits */
			if ((hit == s->hit3) && (s->hit3 != s->hit2)) {
				s->mhit = hit;
				s->detected_digits++;
				if (s->current_digits < MAX_DTMF_DIGITS - 2) {
					s->digits[s->current_digits++] = hit;
					s->digits[s->current_digits] = '\0';
				} else {
					s->lost_digits++;
				}
			}
		}
		
        s->hit1 = s->hit2;
        s->hit2 = s->hit3;
        s->hit3 = hit;
        /* Reinitialise the detector for the next block */
        for (i = 0;  i < 6;  i++)
        {
       	    goertzel_reset(&s->tone_out[i]);
            goertzel_reset(&s->tone_out2nd[i]);
        }
		s->energy = 0.0;
        s->current_sample = 0;
    }
    if ((!s->mhit) || (s->mhit != hit))
    {
		s->mhit = 0;
		return(0);
    }
    return (hit);
}

static int __ast_dsp_digitdetect(struct ast_dsp *dsp, short *s, int len, int *writeback)
{
	int res;
	if (dsp->digitmode & DSP_DIGITMODE_MF)
		res = mf_detect(&dsp->td.mf, s, len, dsp->digitmode & DSP_DIGITMODE_RELAXDTMF, writeback);
	else
		res = dtmf_detect(&dsp->td.dtmf, s, len, dsp->digitmode & DSP_DIGITMODE_RELAXDTMF, writeback);
	return res;
}

int ast_dsp_digitdetect(struct ast_dsp *dsp, struct ast_frame *inf)
{
	short *s;
	int len;
	int ign=0;
	if (inf->frametype != AST_FRAME_VOICE) {
		ast_log(LOG_WARNING, "Can't check call progress of non-voice frames\n");
		return 0;
	}
	if (inf->subclass != AST_FORMAT_SLINEAR) {
		ast_log(LOG_WARNING, "Can only check call progress in signed-linear frames\n");
		return 0;
	}
	s = inf->data;
	len = inf->datalen / 2;
	return __ast_dsp_digitdetect(dsp, s, len, &ign);
}

static inline int pair_there(float p1, float p2, float i1, float i2, float e)
{
	/* See if p1 and p2 are there, relative to i1 and i2 and total energy */
	/* Make sure absolute levels are high enough */
	if ((p1 < TONE_MIN_THRESH) || (p2 < TONE_MIN_THRESH))
		return 0;
	/* Amplify ignored stuff */
	i2 *= TONE_THRESH;
	i1 *= TONE_THRESH;
	e *= TONE_THRESH;
	/* Check first tone */
	if ((p1 < i1) || (p1 < i2) || (p1 < e))
		return 0;
	/* And second */
	if ((p2 < i1) || (p2 < i2) || (p2 < e))
		return 0;
	/* Guess it's there... */
	return 1;
}

int ast_dsp_getdigits (struct ast_dsp *dsp,
              char *buf,
              int max)
{
	if (dsp->digitmode & DSP_DIGITMODE_MF) {
	    if (max > dsp->td.mf.current_digits)
	        max = dsp->td.mf.current_digits;
	    if (max > 0)
	    {
	        memcpy (buf, dsp->td.mf.digits, max);
	        memmove (dsp->td.mf.digits, dsp->td.mf.digits + max, dsp->td.mf.current_digits - max);
	        dsp->td.mf.current_digits -= max;
	    }
	    buf[max] = '\0';
	    return  max;
	} else {
	    if (max > dsp->td.dtmf.current_digits)
	        max = dsp->td.dtmf.current_digits;
	    if (max > 0)
	    {
	        memcpy (buf, dsp->td.dtmf.digits, max);
	        memmove (dsp->td.dtmf.digits, dsp->td.dtmf.digits + max, dsp->td.dtmf.current_digits - max);
	        dsp->td.dtmf.current_digits -= max;
	    }
	    buf[max] = '\0';
	    return  max;
	}
}

static int __ast_dsp_call_progress(struct ast_dsp *dsp, short *s, int len)
{
	int x;
	int pass;
	int newstate = TONE_STATE_SILENCE;
Mark Spencer's avatar
Mark Spencer committed
	int res = 0;
	while(len) {
		/* Take the lesser of the number of samples we need and what we have */
		pass = len;
		if (pass > GSAMP_SIZE - dsp->gsamps) 
			pass = GSAMP_SIZE - dsp->gsamps;
		for (x=0;x<pass;x++) {
			goertzel_sample(&dsp->freqs[HZ_350], s[x]);
			goertzel_sample(&dsp->freqs[HZ_440], s[x]);
			goertzel_sample(&dsp->freqs[HZ_480], s[x]);
			goertzel_sample(&dsp->freqs[HZ_620], s[x]);
			goertzel_sample(&dsp->freqs[HZ_950], s[x]);
			goertzel_sample(&dsp->freqs[HZ_1400], s[x]);
			goertzel_sample(&dsp->freqs[HZ_1800], s[x]);
			dsp->genergy += s[x] * s[x];
		}
		s += pass;
		dsp->gsamps += pass;
		len -= pass;
		if (dsp->gsamps == GSAMP_SIZE) {
			float hz_350;
			float hz_440;
			float hz_480;
			float hz_620;
			float hz_950;
			float hz_1400;
			float hz_1800;
			hz_350 = goertzel_result(&dsp->freqs[HZ_350]);
			hz_440 = goertzel_result(&dsp->freqs[HZ_440]);
			hz_480 = goertzel_result(&dsp->freqs[HZ_480]);
			hz_620 = goertzel_result(&dsp->freqs[HZ_620]);
			hz_950 = goertzel_result(&dsp->freqs[HZ_950]);
			hz_1400 = goertzel_result(&dsp->freqs[HZ_1400]);
			hz_1800 = goertzel_result(&dsp->freqs[HZ_1800]);
#if 0
			printf("Got whole dsp state: 350: %e, 440: %e, 480: %e, 620: %e, 950: %e, 1400: %e, 1800: %e, Energy: %e\n", 
				hz_350, hz_440, hz_480, hz_620, hz_950, hz_1400, hz_1800, dsp->genergy);
#endif
			if (pair_there(hz_480, hz_620, hz_350, hz_440, dsp->genergy)) {
				newstate = TONE_STATE_BUSY;
			} else if (pair_there(hz_440, hz_480, hz_350, hz_620, dsp->genergy)) {
				newstate = TONE_STATE_RINGING;
			} else if (pair_there(hz_350, hz_440, hz_480, hz_620, dsp->genergy)) {
				newstate = TONE_STATE_DIALTONE;
			} else if (hz_950 > TONE_MIN_THRESH * TONE_THRESH) {
				newstate = TONE_STATE_SPECIAL1;
			} else if (hz_1400 > TONE_MIN_THRESH * TONE_THRESH) {
				if (dsp->tstate == TONE_STATE_SPECIAL1)
					newstate = TONE_STATE_SPECIAL2;
			} else if (hz_1800 > TONE_MIN_THRESH * TONE_THRESH) {
				if (dsp->tstate == TONE_STATE_SPECIAL2)
					newstate = TONE_STATE_SPECIAL3;
			} else if (dsp->genergy > TONE_MIN_THRESH * TONE_THRESH) {
				newstate = TONE_STATE_TALKING;
			} else
				newstate = TONE_STATE_SILENCE;
			
			if (newstate == dsp->tstate) {
				dsp->tcount++;
				if (dsp->tcount == COUNT_THRESH) {
					if (dsp->tstate == TONE_STATE_BUSY) {
						res = AST_CONTROL_BUSY;
						dsp->features &= ~DSP_FEATURE_CALL_PROGRESS;
					} else if (dsp->tstate == TONE_STATE_TALKING) {
						res = AST_CONTROL_ANSWER;
						dsp->features &= ~DSP_FEATURE_CALL_PROGRESS;
					} else if (dsp->tstate == TONE_STATE_RINGING)
						res = AST_CONTROL_RINGING;
					else if (dsp->tstate == TONE_STATE_SPECIAL3) {
						res = AST_CONTROL_CONGESTION;
						dsp->features &= ~DSP_FEATURE_CALL_PROGRESS;
					}
					
				}
			} else {
#if 0
				printf("Newstate: %d\n", newstate);
#endif
				dsp->tstate = newstate;
				dsp->tcount = 1;
			}
			
			/* Reset goertzel */						
			for (x=0;x<7;x++)
				dsp->freqs[x].v2 = dsp->freqs[x].v3 = 0.0;
			dsp->gsamps = 0;
			dsp->genergy = 0.0;
		}
	}
#if 0
	if (res)
		printf("Returning %d\n", res);
#endif		
	return res;
}

int ast_dsp_call_progress(struct ast_dsp *dsp, struct ast_frame *inf)
{
	if (inf->frametype != AST_FRAME_VOICE) {
		ast_log(LOG_WARNING, "Can't check call progress of non-voice frames\n");
		return 0;
	}
	if (inf->subclass != AST_FORMAT_SLINEAR) {
		ast_log(LOG_WARNING, "Can only check call progress in signed-linear frames\n");
		return 0;
	}
	return __ast_dsp_call_progress(dsp, inf->data, inf->datalen / 2);
}

static int __ast_dsp_silence(struct ast_dsp *dsp, short *s, int len, int *totalsilence)
{
	int accum;
	int x;
	int res = 0;
	
	accum = 0;
	for (x=0;x<len; x++) 
		accum += abs(s[x]);
	accum /= x;
	if (accum < dsp->threshold) {
		dsp->totalsilence += len/8;
		if (dsp->totalnoise) {
			/* Move and save history */
			memmove(dsp->historicnoise, dsp->historicnoise + 1, sizeof(dsp->historicnoise) - sizeof(dsp->historicnoise[0]));
			dsp->historicnoise[DSP_HISTORY - 1] = dsp->totalnoise;
			dsp->busymaybe = 1;
		}
		dsp->totalnoise = 0;
		res = 1;
	} else {
		dsp->totalnoise += len/8;
		if (dsp->totalsilence) {
			/* Move and save history */
			memmove(dsp->historicsilence, dsp->historicsilence + 1, sizeof(dsp->historicsilence) - sizeof(dsp->historicsilence[0]));
			dsp->historicsilence[DSP_HISTORY - 1] = dsp->totalsilence;
			dsp->busymaybe = 1;
		}
		dsp->totalsilence = 0;
	}
	if (totalsilence)
		*totalsilence = dsp->totalsilence;
	return res;
}

int ast_dsp_busydetect(struct ast_dsp *dsp)
{
	int x;
	int res = 0;
	int max, min;
	if (dsp->busymaybe) {
#if 0
		printf("Maybe busy!\n");
#endif		
		dsp->busymaybe = 0;