Skip to content
Snippets Groups Projects
func_pitchshift.c 15 KiB
Newer Older
  • Learn to ignore specific revisions
  • /*
     * Asterisk -- An open source telephony toolkit.
     *
     * Copyright (C) 2010, Digium, Inc.
     *
     * David Vossel <dvossel@digium.com>
     *
     * See http://www.asterisk.org for more information about
     * the Asterisk project. Please do not directly contact
     * any of the maintainers of this project for assistance;
     * the project provides a web site, mailing lists and IRC
     * channels for your use.
     *
     * This program is free software, distributed under the terms of
     * the GNU General Public License Version 2. See the LICENSE file
     * at the top of the source tree.
     */
    
    /*! \file
     *
     * \brief Pitch Shift Audio Effect
     *
     * \author David Vossel <dvossel@digium.com>
     *
     * \ingroup functions
     */
    
    /************************* SMB FUNCTION LICENSE *********************************
    *
    * SYNOPSIS: Routine for doing pitch shifting while maintaining
    * duration using the Short Time Fourier Transform.
    *
    * DESCRIPTION: The routine takes a pitchShift factor value which is between 0.5
    * (one octave down) and 2. (one octave up). A value of exactly 1 does not change
    * the pitch. num_samps_to_process tells the routine how many samples in indata[0...
    * num_samps_to_process-1] should be pitch shifted and moved to outdata[0 ...
    * num_samps_to_process-1]. The two buffers can be identical (ie. it can process the
    * data in-place). fft_frame_size defines the FFT frame size used for the
    * processing. Typical values are 1024, 2048 and 4096. It may be any value <=
    * MAX_FRAME_LENGTH but it MUST be a power of 2. osamp is the STFT
    * oversampling factor which also determines the overlap between adjacent STFT
    * frames. It should at least be 4 for moderate scaling ratios. A value of 32 is
    * recommended for best quality. sampleRate takes the sample rate for the signal
    * in unit Hz, ie. 44100 for 44.1 kHz audio. The data passed to the routine in
    * indata[] should be in the range [-1.0, 1.0), which is also the output range
    * for the data, make sure you scale the data accordingly (for 16bit signed integers
    * you would have to divide (and multiply) by 32768).
    *
    * COPYRIGHT 1999-2009 Stephan M. Bernsee <smb [AT] dspdimension [DOT] com>
    *
    *                        The Wide Open License (WOL)
    *
    * Permission to use, copy, modify, distribute and sell this software and its
    * documentation for any purpose is hereby granted without fee, provided that
    * the above copyright notice and this license appear in all source copies.
    * THIS SOFTWARE IS PROVIDED "AS IS" WITHOUT EXPRESS OR IMPLIED WARRANTY OF
    * ANY KIND. See http://www.dspguru.com/wol.htm for more information.
    *
    *****************************************************************************/
    
    #include "asterisk.h"
    
    ASTERISK_FILE_VERSION(__FILE__, "$Revision$")
    
    #include "asterisk/module.h"
    #include "asterisk/channel.h"
    #include "asterisk/pbx.h"
    #include "asterisk/utils.h"
    #include "asterisk/audiohook.h"
    #include <math.h>
    
    /*** DOCUMENTATION
    	<function name="PITCH_SHIFT" language="en_US">
    		<synopsis>
    			Pitch shift both tx and rx audio streams on a channel.
    		</synopsis>
    		<syntax>
    			<parameter name="channel direction" required="true">
    				<para>Direction can be either <literal>rx</literal>, <literal>tx</literal>, or
    				<literal>both</literal>.  The direction can either be set to a valid floating
    				point number between 0.1 and 4.0 or one of the enum values listed below. A value
    				of 1.0 has no effect.  Greater than 1 raises the pitch. Lower than 1 lowers
    				the pitch.</para>
    
    				<para>The pitch amount can also be set by the following values</para>
    				<enumlist>
    					<enum name = "highest" />
    					<enum name = "higher" />
    					<enum name = "high" />
    					<enum name = "low" />
    					<enum name = "lower" />
    					<enum name = "lowest" />
    
    				</enumlist>
    
    			</parameter>
    		</syntax>
    		<description>
    			<para>Examples:</para>
    			<para>exten => 1,1,Set(PITCH_SHIFT(tx)=highest); raises pitch an octave </para>
    			<para>exten => 1,1,Set(PITCH_SHIFT(rx)=higher) ; raises pitch more </para>
    			<para>exten => 1,1,Set(PITCH_SHIFT(both)=high)   ; raises pitch </para>
    			<para>exten => 1,1,Set(PITCH_SHIFT(rx)=low)    ; lowers pitch </para>
    			<para>exten => 1,1,Set(PITCH_SHIFT(tx)=lower)  ; lowers pitch more </para>
    			<para>exten => 1,1,Set(PITCH_SHIFT(both)=lowest) ; lowers pitch an octave </para>
    
    			<para>exten => 1,1,Set(PITCH_SHIFT(rx)=0.8)    ; lowers pitch </para>
    			<para>exten => 1,1,Set(PITCH_SHIFT(tx)=1.5)    ; raises pitch </para>
    		</description>
    	</function>
     ***/
    
    
    #define M_PI 3.14159265358979323846
    
    114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506
    #define MAX_FRAME_LENGTH 256
    
    #define HIGHEST 2
    #define HIGHER 1.5
    #define HIGH 1.25
    #define LOW .85
    #define LOWER .7
    #define LOWEST .5
    
    struct fft_data {
    	float in_fifo[MAX_FRAME_LENGTH];
    	float out_fifo[MAX_FRAME_LENGTH];
    	float fft_worksp[2*MAX_FRAME_LENGTH];
    	float last_phase[MAX_FRAME_LENGTH/2+1];
    	float sum_phase[MAX_FRAME_LENGTH/2+1];
    	float output_accum[2*MAX_FRAME_LENGTH];
    	float ana_freq[MAX_FRAME_LENGTH];
    	float ana_magn[MAX_FRAME_LENGTH];
    	float syn_freq[MAX_FRAME_LENGTH];
    	float sys_magn[MAX_FRAME_LENGTH];
    	long gRover;
    	float shift_amount;
    };
    
    struct pitchshift_data {
    	struct ast_audiohook audiohook;
    
    	struct fft_data rx;
    	struct fft_data tx;
    };
    
    static void smb_fft(float *fft_buffer, long fft_frame_size, long sign);
    static void smb_pitch_shift(float pitchShift, long num_samps_to_process, long fft_frame_size, long osamp, float sample_rate, int16_t *indata, int16_t *outdata, struct fft_data *fft_data);
    static int pitch_shift(struct ast_frame *f, float amount, struct fft_data *fft_data);
    
    static void destroy_callback(void *data)
    {
    	struct pitchshift_data *shift = data;
    
    	ast_audiohook_destroy(&shift->audiohook);
    	ast_free(shift);
    };
    
    static const struct ast_datastore_info pitchshift_datastore = {
    	.type = "pitchshift",
    	.destroy = destroy_callback
    };
    
    static int pitchshift_cb(struct ast_audiohook *audiohook, struct ast_channel *chan, struct ast_frame *f, enum ast_audiohook_direction direction)
    {
    	struct ast_datastore *datastore = NULL;
    	struct pitchshift_data *shift = NULL;
    
    
    	if (!f) {
    		return 0;
    	}
    	if ((audiohook->status == AST_AUDIOHOOK_STATUS_DONE) ||
    		(f->frametype != AST_FRAME_VOICE) ||
    		((f->subclass.codec != AST_FORMAT_SLINEAR) &&
    		(f->subclass.codec != AST_FORMAT_SLINEAR16))) {
    		return -1;
    	}
    
    	if (!(datastore = ast_channel_datastore_find(chan, &pitchshift_datastore, NULL))) {
    		return -1;
    	}
    
    	shift = datastore->data;
    
    	if (direction == AST_AUDIOHOOK_DIRECTION_WRITE) {
    		pitch_shift(f, shift->tx.shift_amount, &shift->tx);
    	} else {
    		pitch_shift(f, shift->rx.shift_amount, &shift->rx);
    	}
    
    	return 0;
    }
    
    static int pitchshift_helper(struct ast_channel *chan, const char *cmd, char *data, const char *value)
    {
    	struct ast_datastore *datastore = NULL;
    	struct pitchshift_data *shift = NULL;
    	int new = 0;
    	float amount = 0;
    
    	ast_channel_lock(chan);
    	if (!(datastore = ast_channel_datastore_find(chan, &pitchshift_datastore, NULL))) {
    		ast_channel_unlock(chan);
    
    		if (!(datastore = ast_datastore_alloc(&pitchshift_datastore, NULL))) {
    			return 0;
    		}
    		if (!(shift = ast_calloc(1, sizeof(*shift)))) {
    			ast_datastore_free(datastore);
    			return 0;
    		}
    
    		ast_audiohook_init(&shift->audiohook, AST_AUDIOHOOK_TYPE_MANIPULATE, "pitch_shift");
    		shift->audiohook.manipulate_callback = pitchshift_cb;
    		datastore->data = shift;
    		new = 1;
    	} else {
    		ast_channel_unlock(chan);
    		shift = datastore->data;
    	}
    
    
    	if (!strcasecmp(value, "highest")) {
    		amount = HIGHEST;
    	} else if (!strcasecmp(value, "higher")) {
    		amount = HIGHER;
    	} else if (!strcasecmp(value, "high")) {
    		amount = HIGH;
    	} else if (!strcasecmp(value, "lowest")) {
    		amount = LOWEST;
    	} else if (!strcasecmp(value, "lower")) {
    		amount = LOWER;
    	} else if (!strcasecmp(value, "low")) {
    		amount = LOW;
    	} else {
    		if (!sscanf(value, "%30f", &amount) || (amount <= 0) || (amount > 4)) {
    			goto cleanup_error;
    		}
    	}
    
    	if (!strcasecmp(data, "rx")) {
    		shift->rx.shift_amount = amount;
    	} else if (!strcasecmp(data, "tx")) {
    		shift->tx.shift_amount = amount;
    	} else if (!strcasecmp(data, "both")) {
    		shift->rx.shift_amount = amount;
    		shift->tx.shift_amount = amount;
    	} else {
    		goto cleanup_error;
    	}
    
    	if (new) {
    		ast_channel_lock(chan);
    		ast_channel_datastore_add(chan, datastore);
    		ast_channel_unlock(chan);
    		ast_audiohook_attach(chan, &shift->audiohook);
    	}
    
    	return 0;
    
    cleanup_error:
    
    	ast_log(LOG_ERROR, "Invalid argument provided to the %s function\n", cmd);
    	if (new) {
    		ast_datastore_free(datastore);
    	}
    	return -1;
    }
    
    static void smb_fft(float *fft_buffer, long fft_frame_size, long sign)
    {
    	float wr, wi, arg, *p1, *p2, temp;
    	float tr, ti, ur, ui, *p1r, *p1i, *p2r, *p2i;
    	long i, bitm, j, le, le2, k;
    
    	for (i = 2; i < 2 * fft_frame_size - 2; i += 2) {
    		for (bitm = 2, j = 0; bitm < 2 * fft_frame_size; bitm <<= 1) {
    			if (i & bitm) {
    				j++;
    			}
    			j <<= 1;
    		}
    		if (i < j) {
    			p1 = fft_buffer + i; p2 = fft_buffer + j;
    			temp = *p1; *(p1++) = *p2;
    			*(p2++) = temp; temp = *p1;
    			*p1 = *p2; *p2 = temp;
    		}
    	}
    	for (k = 0, le = 2; k < (long) (log(fft_frame_size) / log(2.) + .5); k++) {
    		le <<= 1;
    		le2 = le>>1;
    		ur = 1.0;
    		ui = 0.0;
    		arg = M_PI / (le2>>1);
    		wr = cos(arg);
    		wi = sign * sin(arg);
    		for (j = 0; j < le2; j += 2) {
    			p1r = fft_buffer+j; p1i = p1r + 1;
    			p2r = p1r + le2; p2i = p2r + 1;
    			for (i = j; i < 2 * fft_frame_size; i += le) {
    				tr = *p2r * ur - *p2i * ui;
    				ti = *p2r * ui + *p2i * ur;
    				*p2r = *p1r - tr; *p2i = *p1i - ti;
    				*p1r += tr; *p1i += ti;
    				p1r += le; p1i += le;
    				p2r += le; p2i += le;
    			}
    			tr = ur * wr - ui * wi;
    			ui = ur * wi + ui * wr;
    			ur = tr;
    		}
    	}
    }
    
    static void smb_pitch_shift(float pitchShift, long num_samps_to_process, long fft_frame_size, long osamp, float sample_rate, int16_t *indata, int16_t *outdata, struct fft_data *fft_data)
    {
    	float *in_fifo = fft_data->in_fifo;
    	float *out_fifo = fft_data->out_fifo;
    	float *fft_worksp = fft_data->fft_worksp;
    	float *last_phase = fft_data->last_phase;
    	float *sum_phase = fft_data->sum_phase;
    	float *output_accum = fft_data->output_accum;
    	float *ana_freq = fft_data->ana_freq;
    	float *ana_magn = fft_data->ana_magn;
    	float *syn_freq = fft_data->syn_freq;
    	float *sys_magn = fft_data->sys_magn;
    
    	double magn, phase, tmp, window, real, imag;
    	double freq_per_bin, expct;
    	long i,k, qpd, index, in_fifo_latency, step_size, fft_frame_size2;
    
    	/* set up some handy variables */
    	fft_frame_size2 = fft_frame_size / 2;
    	step_size = fft_frame_size / osamp;
    	freq_per_bin = sample_rate / (double) fft_frame_size;
    	expct = 2. * M_PI * (double) step_size / (double) fft_frame_size;
    	in_fifo_latency = fft_frame_size-step_size;
    
    	if (fft_data->gRover == 0) {
    		fft_data->gRover = in_fifo_latency;
    	}
    
    	/* main processing loop */
    	for (i = 0; i < num_samps_to_process; i++){
    
    		/* As long as we have not yet collected enough data just read in */
    		in_fifo[fft_data->gRover] = indata[i];
    		outdata[i] = out_fifo[fft_data->gRover - in_fifo_latency];
    		fft_data->gRover++;
    
    		/* now we have enough data for processing */
    		if (fft_data->gRover >= fft_frame_size) {
    			fft_data->gRover = in_fifo_latency;
    
    			/* do windowing and re,im interleave */
    			for (k = 0; k < fft_frame_size;k++) {
    				window = -.5 * cos(2. * M_PI * (double) k / (double) fft_frame_size) + .5;
    				fft_worksp[2*k] = in_fifo[k] * window;
    				fft_worksp[2*k+1] = 0.;
    			}
    
    			/* ***************** ANALYSIS ******************* */
    			/* do transform */
    			smb_fft(fft_worksp, fft_frame_size, -1);
    
    			/* this is the analysis step */
    			for (k = 0; k <= fft_frame_size2; k++) {
    
    				/* de-interlace FFT buffer */
    				real = fft_worksp[2*k];
    				imag = fft_worksp[2*k+1];
    
    				/* compute magnitude and phase */
    				magn = 2. * sqrt(real * real + imag * imag);
    				phase = atan2(imag, real);
    
    				/* compute phase difference */
    				tmp = phase - last_phase[k];
    				last_phase[k] = phase;
    
    				/* subtract expected phase difference */
    				tmp -= (double) k * expct;
    
    				/* map delta phase into +/- Pi interval */
    				qpd = tmp / M_PI;
    				if (qpd >= 0) {
    					qpd += qpd & 1;
    				} else {
    					qpd -= qpd & 1;
    				}
    				tmp -= M_PI * (double) qpd;
    
    				/* get deviation from bin frequency from the +/- Pi interval */
    				tmp = osamp * tmp / (2. * M_PI);
    
    				/* compute the k-th partials' true frequency */
    				tmp = (double) k * freq_per_bin + tmp * freq_per_bin;
    
    				/* store magnitude and true frequency in analysis arrays */
    				ana_magn[k] = magn;
    				ana_freq[k] = tmp;
    
    			}
    
    			/* ***************** PROCESSING ******************* */
    			/* this does the actual pitch shifting */
    			memset(sys_magn, 0, fft_frame_size * sizeof(float));
    			memset(syn_freq, 0, fft_frame_size * sizeof(float));
    			for (k = 0; k <= fft_frame_size2; k++) {
    				index = k * pitchShift;
    				if (index <= fft_frame_size2) {
    					sys_magn[index] += ana_magn[k];
    					syn_freq[index] = ana_freq[k] * pitchShift;
    				}
    			}
    
    			/* ***************** SYNTHESIS ******************* */
    			/* this is the synthesis step */
    			for (k = 0; k <= fft_frame_size2; k++) {
    
    				/* get magnitude and true frequency from synthesis arrays */
    				magn = sys_magn[k];
    				tmp = syn_freq[k];
    
    				/* subtract bin mid frequency */
    				tmp -= (double) k * freq_per_bin;
    
    				/* get bin deviation from freq deviation */
    				tmp /= freq_per_bin;
    
    				/* take osamp into account */
    				tmp = 2. * M_PI * tmp / osamp;
    
    				/* add the overlap phase advance back in */
    				tmp += (double) k * expct;
    
    				/* accumulate delta phase to get bin phase */
    				sum_phase[k] += tmp;
    				phase = sum_phase[k];
    
    				/* get real and imag part and re-interleave */
    				fft_worksp[2*k] = magn * cos(phase);
    				fft_worksp[2*k+1] = magn * sin(phase);
    			}
    
    			/* zero negative frequencies */
    			for (k = fft_frame_size + 2; k < 2 * fft_frame_size; k++) {
    				fft_worksp[k] = 0.;
    			}
    
    			/* do inverse transform */
    			smb_fft(fft_worksp, fft_frame_size, 1);
    
    			/* do windowing and add to output accumulator */
    			for (k = 0; k < fft_frame_size; k++) {
    				window = -.5 * cos(2. * M_PI * (double) k / (double) fft_frame_size) + .5;
    				output_accum[k] += 2. * window * fft_worksp[2*k] / (fft_frame_size2 * osamp);
    			}
    			for (k = 0; k < step_size; k++) {
    				out_fifo[k] = output_accum[k];
    			}
    
    			/* shift accumulator */
    			memmove(output_accum, output_accum+step_size, fft_frame_size * sizeof(float));
    
    			/* move input FIFO */
    			for (k = 0; k < in_fifo_latency; k++) {
    				in_fifo[k] = in_fifo[k+step_size];
    			}
    		}
    	}
    }
    
    static int pitch_shift(struct ast_frame *f, float amount, struct fft_data *fft)
    {
    	int16_t *fun = (int16_t *) f->data.ptr;
    	int samples;
    
    	/* an amount of 1 has no effect */
    	if (!amount || amount == 1 || !fun || (f->samples % 32)) {
    		return 0;
    	}
    	for (samples = 0; samples < f->samples; samples += 32) {
    		smb_pitch_shift(amount, 32, MAX_FRAME_LENGTH, 32, ast_format_rate(f->subclass.codec), fun+samples, fun+samples, fft);
    	}
    
    	return 0;
    }
    
    static struct ast_custom_function pitch_shift_function = {
    	.name = "PITCH_SHIFT",
    	.write = pitchshift_helper,
    };
    
    static int unload_module(void)
    {
    	return ast_custom_function_unregister(&pitch_shift_function);
    }
    
    static int load_module(void)
    {
    	int res = ast_custom_function_register(&pitch_shift_function);
    	return res ? AST_MODULE_LOAD_DECLINE : AST_MODULE_LOAD_SUCCESS;
    }
    
    AST_MODULE_INFO_STANDARD(ASTERISK_GPL_KEY, "Audio Effects Dialplan Functions");