Skip to content
Snippets Groups Projects
func_pitchshift.c 14.9 KiB
Newer Older
  • Learn to ignore specific revisions
  • /*
     * Asterisk -- An open source telephony toolkit.
     *
     * Copyright (C) 2010, Digium, Inc.
     *
     * David Vossel <dvossel@digium.com>
     *
     * See http://www.asterisk.org for more information about
     * the Asterisk project. Please do not directly contact
     * any of the maintainers of this project for assistance;
     * the project provides a web site, mailing lists and IRC
     * channels for your use.
     *
     * This program is free software, distributed under the terms of
     * the GNU General Public License Version 2. See the LICENSE file
     * at the top of the source tree.
     */
    
    /*! \file
     *
     * \brief Pitch Shift Audio Effect
     *
     * \author David Vossel <dvossel@digium.com>
     *
     * \ingroup functions
     */
    
    /************************* SMB FUNCTION LICENSE *********************************
    *
    * SYNOPSIS: Routine for doing pitch shifting while maintaining
    * duration using the Short Time Fourier Transform.
    *
    * DESCRIPTION: The routine takes a pitchShift factor value which is between 0.5
    * (one octave down) and 2. (one octave up). A value of exactly 1 does not change
    * the pitch. num_samps_to_process tells the routine how many samples in indata[0...
    * num_samps_to_process-1] should be pitch shifted and moved to outdata[0 ...
    * num_samps_to_process-1]. The two buffers can be identical (ie. it can process the
    * data in-place). fft_frame_size defines the FFT frame size used for the
    * processing. Typical values are 1024, 2048 and 4096. It may be any value <=
    * MAX_FRAME_LENGTH but it MUST be a power of 2. osamp is the STFT
    * oversampling factor which also determines the overlap between adjacent STFT
    * frames. It should at least be 4 for moderate scaling ratios. A value of 32 is
    * recommended for best quality. sampleRate takes the sample rate for the signal
    * in unit Hz, ie. 44100 for 44.1 kHz audio. The data passed to the routine in
    * indata[] should be in the range [-1.0, 1.0), which is also the output range
    * for the data, make sure you scale the data accordingly (for 16bit signed integers
    * you would have to divide (and multiply) by 32768).
    *
    * COPYRIGHT 1999-2009 Stephan M. Bernsee <smb [AT] dspdimension [DOT] com>
    *
    *                        The Wide Open License (WOL)
    *
    * Permission to use, copy, modify, distribute and sell this software and its
    * documentation for any purpose is hereby granted without fee, provided that
    * the above copyright notice and this license appear in all source copies.
    * THIS SOFTWARE IS PROVIDED "AS IS" WITHOUT EXPRESS OR IMPLIED WARRANTY OF
    * ANY KIND. See http://www.dspguru.com/wol.htm for more information.
    *
    *****************************************************************************/
    
    #include "asterisk.h"
    
    ASTERISK_FILE_VERSION(__FILE__, "$Revision$")
    
    #include "asterisk/module.h"
    #include "asterisk/channel.h"
    #include "asterisk/pbx.h"
    #include "asterisk/utils.h"
    #include "asterisk/audiohook.h"
    #include <math.h>
    
    /*** DOCUMENTATION
    	<function name="PITCH_SHIFT" language="en_US">
    		<synopsis>
    			Pitch shift both tx and rx audio streams on a channel.
    		</synopsis>
    		<syntax>
    			<parameter name="channel direction" required="true">
    				<para>Direction can be either <literal>rx</literal>, <literal>tx</literal>, or
    				<literal>both</literal>.  The direction can either be set to a valid floating
    				point number between 0.1 and 4.0 or one of the enum values listed below. A value
    				of 1.0 has no effect.  Greater than 1 raises the pitch. Lower than 1 lowers
    				the pitch.</para>
    
    				<para>The pitch amount can also be set by the following values</para>
    				<enumlist>
    					<enum name = "highest" />
    					<enum name = "higher" />
    					<enum name = "high" />
    					<enum name = "low" />
    					<enum name = "lower" />
    					<enum name = "lowest" />
    
    				</enumlist>
    
    			</parameter>
    		</syntax>
    		<description>
    			<para>Examples:</para>
    			<para>exten => 1,1,Set(PITCH_SHIFT(tx)=highest); raises pitch an octave </para>
    			<para>exten => 1,1,Set(PITCH_SHIFT(rx)=higher) ; raises pitch more </para>
    			<para>exten => 1,1,Set(PITCH_SHIFT(both)=high)   ; raises pitch </para>
    			<para>exten => 1,1,Set(PITCH_SHIFT(rx)=low)    ; lowers pitch </para>
    			<para>exten => 1,1,Set(PITCH_SHIFT(tx)=lower)  ; lowers pitch more </para>
    			<para>exten => 1,1,Set(PITCH_SHIFT(both)=lowest) ; lowers pitch an octave </para>
    
    			<para>exten => 1,1,Set(PITCH_SHIFT(rx)=0.8)    ; lowers pitch </para>
    			<para>exten => 1,1,Set(PITCH_SHIFT(tx)=1.5)    ; raises pitch </para>
    		</description>
    	</function>
     ***/
    
    
    #define M_PI 3.14159265358979323846
    
    #define MAX_FRAME_LENGTH 256
    
    #define HIGHEST 2
    #define HIGHER 1.5
    #define HIGH 1.25
    #define LOW .85
    #define LOWER .7
    #define LOWEST .5
    
    struct fft_data {
    	float in_fifo[MAX_FRAME_LENGTH];
    	float out_fifo[MAX_FRAME_LENGTH];
    	float fft_worksp[2*MAX_FRAME_LENGTH];
    	float last_phase[MAX_FRAME_LENGTH/2+1];
    	float sum_phase[MAX_FRAME_LENGTH/2+1];
    	float output_accum[2*MAX_FRAME_LENGTH];
    	float ana_freq[MAX_FRAME_LENGTH];
    	float ana_magn[MAX_FRAME_LENGTH];
    	float syn_freq[MAX_FRAME_LENGTH];
    	float sys_magn[MAX_FRAME_LENGTH];
    	long gRover;
    	float shift_amount;
    };
    
    struct pitchshift_data {
    	struct ast_audiohook audiohook;
    
    	struct fft_data rx;
    	struct fft_data tx;
    };
    
    static void smb_fft(float *fft_buffer, long fft_frame_size, long sign);
    static void smb_pitch_shift(float pitchShift, long num_samps_to_process, long fft_frame_size, long osamp, float sample_rate, int16_t *indata, int16_t *outdata, struct fft_data *fft_data);
    static int pitch_shift(struct ast_frame *f, float amount, struct fft_data *fft_data);
    
    static void destroy_callback(void *data)
    {
    	struct pitchshift_data *shift = data;
    
    	ast_audiohook_destroy(&shift->audiohook);
    	ast_free(shift);
    };
    
    static const struct ast_datastore_info pitchshift_datastore = {
    	.type = "pitchshift",
    	.destroy = destroy_callback
    };
    
    static int pitchshift_cb(struct ast_audiohook *audiohook, struct ast_channel *chan, struct ast_frame *f, enum ast_audiohook_direction direction)
    {
    	struct ast_datastore *datastore = NULL;
    	struct pitchshift_data *shift = NULL;
    
    
    	if (!f) {
    		return 0;
    	}
    	if ((audiohook->status == AST_AUDIOHOOK_STATUS_DONE) ||
    		(f->frametype != AST_FRAME_VOICE) ||
    
    		!(ast_format_is_slinear(&f->subclass.format))) {
    
    		return -1;
    	}
    
    	if (!(datastore = ast_channel_datastore_find(chan, &pitchshift_datastore, NULL))) {
    		return -1;
    	}
    
    	shift = datastore->data;
    
    	if (direction == AST_AUDIOHOOK_DIRECTION_WRITE) {
    		pitch_shift(f, shift->tx.shift_amount, &shift->tx);
    	} else {
    		pitch_shift(f, shift->rx.shift_amount, &shift->rx);
    	}
    
    	return 0;
    }
    
    static int pitchshift_helper(struct ast_channel *chan, const char *cmd, char *data, const char *value)
    {
    	struct ast_datastore *datastore = NULL;
    	struct pitchshift_data *shift = NULL;
    	int new = 0;
    	float amount = 0;
    
    	ast_channel_lock(chan);
    	if (!(datastore = ast_channel_datastore_find(chan, &pitchshift_datastore, NULL))) {
    		ast_channel_unlock(chan);
    
    		if (!(datastore = ast_datastore_alloc(&pitchshift_datastore, NULL))) {
    			return 0;
    		}
    		if (!(shift = ast_calloc(1, sizeof(*shift)))) {
    			ast_datastore_free(datastore);
    			return 0;
    		}
    
    
    		ast_audiohook_init(&shift->audiohook, AST_AUDIOHOOK_TYPE_MANIPULATE, "pitch_shift", AST_AUDIOHOOK_MANIPULATE_ALL_RATES);
    
    		shift->audiohook.manipulate_callback = pitchshift_cb;
    		datastore->data = shift;
    		new = 1;
    	} else {
    		ast_channel_unlock(chan);
    		shift = datastore->data;
    	}
    
    
    	if (!strcasecmp(value, "highest")) {
    		amount = HIGHEST;
    	} else if (!strcasecmp(value, "higher")) {
    		amount = HIGHER;
    	} else if (!strcasecmp(value, "high")) {
    		amount = HIGH;
    	} else if (!strcasecmp(value, "lowest")) {
    		amount = LOWEST;
    	} else if (!strcasecmp(value, "lower")) {
    		amount = LOWER;
    	} else if (!strcasecmp(value, "low")) {
    		amount = LOW;
    	} else {
    		if (!sscanf(value, "%30f", &amount) || (amount <= 0) || (amount > 4)) {
    			goto cleanup_error;
    		}
    	}
    
    	if (!strcasecmp(data, "rx")) {
    		shift->rx.shift_amount = amount;
    	} else if (!strcasecmp(data, "tx")) {
    		shift->tx.shift_amount = amount;
    	} else if (!strcasecmp(data, "both")) {
    		shift->rx.shift_amount = amount;
    		shift->tx.shift_amount = amount;
    	} else {
    		goto cleanup_error;
    	}
    
    	if (new) {
    		ast_channel_lock(chan);
    		ast_channel_datastore_add(chan, datastore);
    		ast_channel_unlock(chan);
    		ast_audiohook_attach(chan, &shift->audiohook);
    	}
    
    	return 0;
    
    cleanup_error:
    
    	ast_log(LOG_ERROR, "Invalid argument provided to the %s function\n", cmd);
    	if (new) {
    		ast_datastore_free(datastore);
    	}
    	return -1;
    }
    
    static void smb_fft(float *fft_buffer, long fft_frame_size, long sign)
    {
    	float wr, wi, arg, *p1, *p2, temp;
    	float tr, ti, ur, ui, *p1r, *p1i, *p2r, *p2i;
    	long i, bitm, j, le, le2, k;
    
    	for (i = 2; i < 2 * fft_frame_size - 2; i += 2) {
    		for (bitm = 2, j = 0; bitm < 2 * fft_frame_size; bitm <<= 1) {
    			if (i & bitm) {
    				j++;
    			}
    			j <<= 1;
    		}
    		if (i < j) {
    			p1 = fft_buffer + i; p2 = fft_buffer + j;
    			temp = *p1; *(p1++) = *p2;
    			*(p2++) = temp; temp = *p1;
    			*p1 = *p2; *p2 = temp;
    		}
    	}
    	for (k = 0, le = 2; k < (long) (log(fft_frame_size) / log(2.) + .5); k++) {
    		le <<= 1;
    		le2 = le>>1;
    		ur = 1.0;
    		ui = 0.0;
    		arg = M_PI / (le2>>1);
    		wr = cos(arg);
    		wi = sign * sin(arg);
    		for (j = 0; j < le2; j += 2) {
    			p1r = fft_buffer+j; p1i = p1r + 1;
    			p2r = p1r + le2; p2i = p2r + 1;
    			for (i = j; i < 2 * fft_frame_size; i += le) {
    				tr = *p2r * ur - *p2i * ui;
    				ti = *p2r * ui + *p2i * ur;
    				*p2r = *p1r - tr; *p2i = *p1i - ti;
    				*p1r += tr; *p1i += ti;
    				p1r += le; p1i += le;
    				p2r += le; p2i += le;
    			}
    			tr = ur * wr - ui * wi;
    			ui = ur * wi + ui * wr;
    			ur = tr;
    		}
    	}
    }
    
    static void smb_pitch_shift(float pitchShift, long num_samps_to_process, long fft_frame_size, long osamp, float sample_rate, int16_t *indata, int16_t *outdata, struct fft_data *fft_data)
    {
    	float *in_fifo = fft_data->in_fifo;
    	float *out_fifo = fft_data->out_fifo;
    	float *fft_worksp = fft_data->fft_worksp;
    	float *last_phase = fft_data->last_phase;
    	float *sum_phase = fft_data->sum_phase;
    	float *output_accum = fft_data->output_accum;
    	float *ana_freq = fft_data->ana_freq;
    	float *ana_magn = fft_data->ana_magn;
    	float *syn_freq = fft_data->syn_freq;
    	float *sys_magn = fft_data->sys_magn;
    
    	double magn, phase, tmp, window, real, imag;
    	double freq_per_bin, expct;
    	long i,k, qpd, index, in_fifo_latency, step_size, fft_frame_size2;
    
    	/* set up some handy variables */
    	fft_frame_size2 = fft_frame_size / 2;
    	step_size = fft_frame_size / osamp;
    	freq_per_bin = sample_rate / (double) fft_frame_size;
    	expct = 2. * M_PI * (double) step_size / (double) fft_frame_size;
    	in_fifo_latency = fft_frame_size-step_size;
    
    	if (fft_data->gRover == 0) {
    		fft_data->gRover = in_fifo_latency;
    	}
    
    	/* main processing loop */
    	for (i = 0; i < num_samps_to_process; i++){
    
    		/* As long as we have not yet collected enough data just read in */
    		in_fifo[fft_data->gRover] = indata[i];
    		outdata[i] = out_fifo[fft_data->gRover - in_fifo_latency];
    		fft_data->gRover++;
    
    		/* now we have enough data for processing */
    		if (fft_data->gRover >= fft_frame_size) {
    			fft_data->gRover = in_fifo_latency;
    
    			/* do windowing and re,im interleave */
    			for (k = 0; k < fft_frame_size;k++) {
    				window = -.5 * cos(2. * M_PI * (double) k / (double) fft_frame_size) + .5;
    				fft_worksp[2*k] = in_fifo[k] * window;
    				fft_worksp[2*k+1] = 0.;
    			}
    
    			/* ***************** ANALYSIS ******************* */
    			/* do transform */
    			smb_fft(fft_worksp, fft_frame_size, -1);
    
    			/* this is the analysis step */
    			for (k = 0; k <= fft_frame_size2; k++) {
    
    				/* de-interlace FFT buffer */
    				real = fft_worksp[2*k];
    				imag = fft_worksp[2*k+1];
    
    				/* compute magnitude and phase */
    				magn = 2. * sqrt(real * real + imag * imag);
    				phase = atan2(imag, real);
    
    				/* compute phase difference */
    				tmp = phase - last_phase[k];
    				last_phase[k] = phase;
    
    				/* subtract expected phase difference */
    				tmp -= (double) k * expct;
    
    				/* map delta phase into +/- Pi interval */
    				qpd = tmp / M_PI;
    				if (qpd >= 0) {
    					qpd += qpd & 1;
    				} else {
    					qpd -= qpd & 1;
    				}
    				tmp -= M_PI * (double) qpd;
    
    				/* get deviation from bin frequency from the +/- Pi interval */
    				tmp = osamp * tmp / (2. * M_PI);
    
    				/* compute the k-th partials' true frequency */
    				tmp = (double) k * freq_per_bin + tmp * freq_per_bin;
    
    				/* store magnitude and true frequency in analysis arrays */
    				ana_magn[k] = magn;
    				ana_freq[k] = tmp;
    
    			}
    
    			/* ***************** PROCESSING ******************* */
    			/* this does the actual pitch shifting */
    			memset(sys_magn, 0, fft_frame_size * sizeof(float));
    			memset(syn_freq, 0, fft_frame_size * sizeof(float));
    			for (k = 0; k <= fft_frame_size2; k++) {
    				index = k * pitchShift;
    				if (index <= fft_frame_size2) {
    					sys_magn[index] += ana_magn[k];
    					syn_freq[index] = ana_freq[k] * pitchShift;
    				}
    			}
    
    			/* ***************** SYNTHESIS ******************* */
    			/* this is the synthesis step */
    			for (k = 0; k <= fft_frame_size2; k++) {
    
    				/* get magnitude and true frequency from synthesis arrays */
    				magn = sys_magn[k];
    				tmp = syn_freq[k];
    
    				/* subtract bin mid frequency */
    				tmp -= (double) k * freq_per_bin;
    
    				/* get bin deviation from freq deviation */
    				tmp /= freq_per_bin;
    
    				/* take osamp into account */
    				tmp = 2. * M_PI * tmp / osamp;
    
    				/* add the overlap phase advance back in */
    				tmp += (double) k * expct;
    
    				/* accumulate delta phase to get bin phase */
    				sum_phase[k] += tmp;
    				phase = sum_phase[k];
    
    				/* get real and imag part and re-interleave */
    				fft_worksp[2*k] = magn * cos(phase);
    				fft_worksp[2*k+1] = magn * sin(phase);
    			}
    
    			/* zero negative frequencies */
    			for (k = fft_frame_size + 2; k < 2 * fft_frame_size; k++) {
    				fft_worksp[k] = 0.;
    			}
    
    			/* do inverse transform */
    			smb_fft(fft_worksp, fft_frame_size, 1);
    
    			/* do windowing and add to output accumulator */
    			for (k = 0; k < fft_frame_size; k++) {
    				window = -.5 * cos(2. * M_PI * (double) k / (double) fft_frame_size) + .5;
    				output_accum[k] += 2. * window * fft_worksp[2*k] / (fft_frame_size2 * osamp);
    			}
    			for (k = 0; k < step_size; k++) {
    				out_fifo[k] = output_accum[k];
    			}
    
    			/* shift accumulator */
    			memmove(output_accum, output_accum+step_size, fft_frame_size * sizeof(float));
    
    			/* move input FIFO */
    			for (k = 0; k < in_fifo_latency; k++) {
    				in_fifo[k] = in_fifo[k+step_size];
    			}
    		}
    	}
    }
    
    static int pitch_shift(struct ast_frame *f, float amount, struct fft_data *fft)
    {
    	int16_t *fun = (int16_t *) f->data.ptr;
    	int samples;
    
    	/* an amount of 1 has no effect */
    	if (!amount || amount == 1 || !fun || (f->samples % 32)) {
    		return 0;
    	}
    	for (samples = 0; samples < f->samples; samples += 32) {
    
    		smb_pitch_shift(amount, 32, MAX_FRAME_LENGTH, 32, ast_format_rate(&f->subclass.format), fun+samples, fun+samples, fft);
    
    	}
    
    	return 0;
    }
    
    static struct ast_custom_function pitch_shift_function = {
    	.name = "PITCH_SHIFT",
    	.write = pitchshift_helper,
    };
    
    static int unload_module(void)
    {
    	return ast_custom_function_unregister(&pitch_shift_function);
    }
    
    static int load_module(void)
    {
    	int res = ast_custom_function_register(&pitch_shift_function);
    	return res ? AST_MODULE_LOAD_DECLINE : AST_MODULE_LOAD_SUCCESS;
    }
    
    AST_MODULE_INFO_STANDARD(ASTERISK_GPL_KEY, "Audio Effects Dialplan Functions");