Skip to content
Snippets Groups Projects
resample.c 42.6 KiB
Newer Older
/* Copyright (C) 2007-2008 Jean-Marc Valin
   Copyright (C) 2008      Thorvald Natvig
   File: resample.c
   Arbitrary resampling code

   Redistribution and use in source and binary forms, with or without
   modification, are permitted provided that the following conditions are
   met:

   1. Redistributions of source code must retain the above copyright notice,
   this list of conditions and the following disclaimer.

   2. Redistributions in binary form must reproduce the above copyright
   notice, this list of conditions and the following disclaimer in the
   documentation and/or other materials provided with the distribution.

   3. The name of the author may not be used to endorse or promote products
   derived from this software without specific prior written permission.

   THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
   IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
   OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
   DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
   INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
   (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
   SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
   STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
   ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
   POSSIBILITY OF SUCH DAMAGE.
*/

/*
   The design goals of this code are:
      - Very fast algorithm
      - SIMD-friendly algorithm
      - Low memory requirement
      - Good *perceptual* quality (and not best SNR)

   Warning: This resampler is relatively new. Although I think I got rid of
   all the major bugs and I don't expect the API to change anymore, there
   may be something I've missed. So use with caution.

   This algorithm is based on this original resampling algorithm:
   Smith, Julius O. Digital Audio Resampling Home Page
   Center for Computer Research in Music and Acoustics (CCRMA),
   Stanford University, 2007.
   Web published at http://www-ccrma.stanford.edu/~jos/resample/.

   There is one main difference, though. This resampler uses cubic
   interpolation instead of linear interpolation in the above paper. This
   makes the table much smaller and makes it possible to compute that table
   on a per-stream basis. In turn, being able to tweak the table for each
   stream makes it possible to both reduce complexity on simple ratios
   (e.g. 2/3), and get rid of the rounding operations in the inner loop.
   The latter both reduces CPU time and makes the algorithm more SIMD-friendly.
*/

#ifdef HAVE_CONFIG_H
#include "config.h"
#endif

#include <stdlib.h>
static void *speex_alloc (int size) {return calloc(size,1);}
static void *speex_realloc (void *ptr, int size) {return realloc(ptr, size);}
static void speex_free (void *ptr) {free(ptr);}
#include "speex_resampler.h"
#include "arch.h"
#else /* OUTSIDE_SPEEX */

#include "speex/speex_resampler.h"
#include "arch.h"
#include "os_support.h"
#endif /* OUTSIDE_SPEEX */
#define M_PI 3.14159265358979323846
#endif

#ifdef FIXED_POINT
#define WORD2INT(x) ((x) < -32767 ? -32768 : ((x) > 32766 ? 32767 : (x)))
#else
#define WORD2INT(x) ((x) < -32767.5f ? -32768 : ((x) > 32766.5f ? 32767 : floor(.5+(x))))
#endif

#define IMAX(a,b) ((a) > (b) ? (a) : (b))
#define IMIN(a,b) ((a) < (b) ? (a) : (b))

#ifndef NULL
#define NULL 0
#endif

#ifdef _USE_SSE
#include "resample_sse.h"
#endif

#ifdef _USE_NEON
#include "resample_neon.h"
#endif

/* Numer of elements to allocate on the stack */
#ifdef VAR_ARRAYS
#define FIXED_STACK_ALLOC 8192
#else
#define FIXED_STACK_ALLOC 1024
#endif

typedef int (*resampler_basic_func)(SpeexResamplerState *, spx_uint32_t , const spx_word16_t *, spx_uint32_t *, spx_word16_t *, spx_uint32_t *);

struct SpeexResamplerState_ {
   spx_uint32_t in_rate;
   spx_uint32_t out_rate;
   spx_uint32_t num_rate;
   spx_uint32_t den_rate;
   int    quality;
   spx_uint32_t nb_channels;
   spx_uint32_t filt_len;
   spx_uint32_t mem_alloc_size;
   spx_uint32_t buffer_size;
   int          int_advance;
   int          frac_advance;
   float  cutoff;
   spx_uint32_t oversample;
   int          initialised;
   int          started;
   /* These are per-channel */
   spx_int32_t  *last_sample;
   spx_uint32_t *samp_frac_num;
   spx_uint32_t *magic_samples;
   spx_word16_t *mem;
   spx_word16_t *sinc_table;
   spx_uint32_t sinc_table_length;
   resampler_basic_func resampler_ptr;
static const double kaiser12_table[68] = {
   0.99859849, 1.00000000, 0.99859849, 0.99440475, 0.98745105, 0.97779076,
   0.96549770, 0.95066529, 0.93340547, 0.91384741, 0.89213598, 0.86843014,
   0.84290116, 0.81573067, 0.78710866, 0.75723148, 0.72629970, 0.69451601,
   0.66208321, 0.62920216, 0.59606986, 0.56287762, 0.52980938, 0.49704014,
   0.46473455, 0.43304576, 0.40211431, 0.37206735, 0.34301800, 0.31506490,
   0.28829195, 0.26276832, 0.23854851, 0.21567274, 0.19416736, 0.17404546,
   0.15530766, 0.13794294, 0.12192957, 0.10723616, 0.09382272, 0.08164178,
   0.07063950, 0.06075685, 0.05193064, 0.04409466, 0.03718069, 0.03111947,
   0.02584161, 0.02127838, 0.01736250, 0.01402878, 0.01121463, 0.00886058,
   0.00691064, 0.00531256, 0.00401805, 0.00298291, 0.00216702, 0.00153438,
   0.00105297, 0.00069463, 0.00043489, 0.00025272, 0.00013031, 0.0000527734,
   0.00001000, 0.00000000};
/*
static const double kaiser12_table[36] = {
   0.99440475, 1.00000000, 0.99440475, 0.97779076, 0.95066529, 0.91384741,
   0.86843014, 0.81573067, 0.75723148, 0.69451601, 0.62920216, 0.56287762,
   0.49704014, 0.43304576, 0.37206735, 0.31506490, 0.26276832, 0.21567274,
   0.17404546, 0.13794294, 0.10723616, 0.08164178, 0.06075685, 0.04409466,
   0.03111947, 0.02127838, 0.01402878, 0.00886058, 0.00531256, 0.00298291,
   0.00153438, 0.00069463, 0.00025272, 0.0000527734, 0.00000500, 0.00000000};
*/
static const double kaiser10_table[36] = {
   0.99537781, 1.00000000, 0.99537781, 0.98162644, 0.95908712, 0.92831446,
   0.89005583, 0.84522401, 0.79486424, 0.74011713, 0.68217934, 0.62226347,
   0.56155915, 0.50119680, 0.44221549, 0.38553619, 0.33194107, 0.28205962,
   0.23636152, 0.19515633, 0.15859932, 0.12670280, 0.09935205, 0.07632451,
   0.05731132, 0.04193980, 0.02979584, 0.02044510, 0.01345224, 0.00839739,
   0.00488951, 0.00257636, 0.00115101, 0.00035515, 0.00000000, 0.00000000};

static const double kaiser8_table[36] = {
   0.99635258, 1.00000000, 0.99635258, 0.98548012, 0.96759014, 0.94302200,
   0.91223751, 0.87580811, 0.83439927, 0.78875245, 0.73966538, 0.68797126,
   0.63451750, 0.58014482, 0.52566725, 0.47185369, 0.41941150, 0.36897272,
   0.32108304, 0.27619388, 0.23465776, 0.19672670, 0.16255380, 0.13219758,
   0.10562887, 0.08273982, 0.06335451, 0.04724088, 0.03412321, 0.02369490,
   0.01563093, 0.00959968, 0.00527363, 0.00233883, 0.00050000, 0.00000000};
static const double kaiser6_table[36] = {
   0.99733006, 1.00000000, 0.99733006, 0.98935595, 0.97618418, 0.95799003,
   0.93501423, 0.90755855, 0.87598009, 0.84068475, 0.80211977, 0.76076565,
   0.71712752, 0.67172623, 0.62508937, 0.57774224, 0.53019925, 0.48295561,
   0.43647969, 0.39120616, 0.34752997, 0.30580127, 0.26632152, 0.22934058,
   0.19505503, 0.16360756, 0.13508755, 0.10953262, 0.08693120, 0.06722600,
   0.05031820, 0.03607231, 0.02432151, 0.01487334, 0.00752000, 0.00000000};

struct FuncDef {
static const struct FuncDef _KAISER12 = {kaiser12_table, 64};
Loading
Loading full blame...