Skip to content
Snippets Groups Projects
test_taskprocessor.c 18.8 KiB
Newer Older
  • Learn to ignore specific revisions
  • /*
     * Asterisk -- An open source telephony toolkit.
     *
    
     * Copyright (C) 2012-2013, Digium, Inc.
    
     *
     * Mark Michelson <mmichelson@digium.com>
     *
     * See http://www.asterisk.org for more information about
     * the Asterisk project. Please do not directly contact
     * any of the maintainers of this project for assistance;
     * the project provides a web site, mailing lists and IRC
     * channels for your use.
     *
     * This program is free software, distributed under the terms of
     * the GNU General Public License Version 2. See the LICENSE file
     * at the top of the source tree.
     */
    
    /*!
     * \file
     * \brief taskprocessor unit tests
     *
     * \author Mark Michelson <mmichelson@digium.com>
     *
     */
    
    /*** MODULEINFO
    	<depend>TEST_FRAMEWORK</depend>
    	<support_level>core</support_level>
     ***/
    
    #include "asterisk.h"
    
    #include "asterisk/test.h"
    #include "asterisk/taskprocessor.h"
    #include "asterisk/module.h"
    
    #include "asterisk/astobj2.h"
    
    /*!
     * \brief userdata associated with baseline taskprocessor test
     */
    
    struct task_data {
    
    	/* Condition used to signal to queuing thread that task was executed */
    
    	ast_cond_t cond;
    
    	/* Lock protecting the condition */
    
    	ast_mutex_t lock;
    
    	/*! Boolean indicating that the task was run */
    
    	int task_complete;
    };
    
    
    static void task_data_dtor(void *obj)
    {
    	struct task_data *task_data = obj;
    
    	ast_mutex_destroy(&task_data->lock);
    	ast_cond_destroy(&task_data->cond);
    }
    
    /*! \brief Create a task_data object */
    static struct task_data *task_data_create(void)
    {
    	struct task_data *task_data =
    		ao2_alloc(sizeof(*task_data), task_data_dtor);
    
    	if (!task_data) {
    		return NULL;
    	}
    
    	ast_cond_init(&task_data->cond, NULL);
    	ast_mutex_init(&task_data->lock);
    	task_data->task_complete = 0;
    
    	return task_data;
    }
    
    
    /*!
     * \brief Queued task for baseline test.
     *
     * The task simply sets a boolean to indicate the
     * task has been run and then signals a condition
     * saying it's complete
     */
    
    static int task(void *data)
    {
    	struct task_data *task_data = data;
    	SCOPED_MUTEX(lock, &task_data->lock);
    
    	ast_cond_signal(&task_data->cond);
    	return 0;
    }
    
    
    /*!
     * \brief Wait for a task to execute.
     */
    static int task_wait(struct task_data *task_data)
    {
    	struct timeval start = ast_tvnow();
    	struct timespec end;
    	SCOPED_MUTEX(lock, &task_data->lock);
    
    	end.tv_sec = start.tv_sec + 30;
    	end.tv_nsec = start.tv_usec * 1000;
    
    	while (!task_data->task_complete) {
    		int res;
    		res = ast_cond_timedwait(&task_data->cond, &task_data->lock,
    			&end);
    		if (res == ETIMEDOUT) {
    			return -1;
    		}
    	}
    
    	return 0;
    }
    
    
    /*!
     * \brief Baseline test for default taskprocessor
     *
     * This test ensures that when a task is added to a taskprocessor that
     * has been allocated with a default listener that the task gets executed
     * as expected
     */
    
    AST_TEST_DEFINE(default_taskprocessor)
    {
    
    	RAII_VAR(struct ast_taskprocessor *, tps, NULL, ast_taskprocessor_unreference);
    	RAII_VAR(struct task_data *, task_data, NULL, ao2_cleanup);
    	int res;
    
    
    	switch (cmd) {
    	case TEST_INIT:
    		info->name = "default_taskprocessor";
    		info->category = "/main/taskprocessor/";
    		info->summary = "Test of default taskproccesor";
    		info->description =
    
    			"Ensures that a queued task gets executed.";
    
    		return AST_TEST_NOT_RUN;
    	case TEST_EXECUTE:
    		break;
    	}
    
    	tps = ast_taskprocessor_get("test", TPS_REF_DEFAULT);
    
    	if (!tps) {
    		ast_test_status_update(test, "Unable to create test taskprocessor\n");
    		return AST_TEST_FAIL;
    	}
    
    
    	task_data = task_data_create();
    	if (!task_data) {
    		ast_test_status_update(test, "Unable to create task_data\n");
    		return AST_TEST_FAIL;
    
    	ast_taskprocessor_push(tps, task, task_data);
    
    	res = task_wait(task_data);
    	if (res != 0) {
    
    		ast_test_status_update(test, "Queued task did not execute!\n");
    
    		return AST_TEST_FAIL;
    
    	return AST_TEST_PASS;
    
    /*!
     * \brief Relevant data associated with taskprocessor load test
     */
    
    	/*! Condition used to indicate a task has completed executing */
    
    	/*! Lock used to protect the condition */
    
    	/*! Counter of the number of completed tasks */
    
    	/*! Storage for task-specific data */
    
    	int task_rand[NUM_TASKS];
    } load_task_results;
    
    
    /*!
     * \brief a queued task to be used in the taskprocessor load test
     *
     * The task increments the number of tasks executed and puts the passed-in
     * data into the next slot in the array of random data.
     */
    
    static int load_task(void *data)
    {
    	int *randdata = data;
    	SCOPED_MUTEX(lock, &load_task_results.lock);
    	load_task_results.task_rand[load_task_results.tasks_completed++] = *randdata;
    	ast_cond_signal(&load_task_results.cond);
    	return 0;
    }
    
    
    /*!
     * \brief Load test for taskprocessor with default listener
     *
     * This test queues a large number of tasks, each with random data associated.
     * The test ensures that all of the tasks are run and that the tasks are executed
     * in the same order that they were queued
     */
    
    AST_TEST_DEFINE(default_taskprocessor_load)
    {
    	struct ast_taskprocessor *tps;
    	struct timeval start;
    	struct timespec ts;
    	enum ast_test_result_state res = AST_TEST_PASS;
    	int timedwait_res;
    	int i;
    
    
    	switch (cmd) {
    	case TEST_INIT:
    		info->name = "default_taskprocessor_load";
    		info->category = "/main/taskprocessor/";
    		info->summary = "Load test of default taskproccesor";
    		info->description =
    
    			"Ensure that a large number of queued tasks are executed in the proper order.";
    
    		return AST_TEST_NOT_RUN;
    	case TEST_EXECUTE:
    		break;
    	}
    
    	tps = ast_taskprocessor_get("test", TPS_REF_DEFAULT);
    
    	if (!tps) {
    		ast_test_status_update(test, "Unable to create test taskprocessor\n");
    		return AST_TEST_FAIL;
    	}
    
    	start = ast_tvnow();
    
    	ts.tv_sec = start.tv_sec + 60;
    	ts.tv_nsec = start.tv_usec * 1000;
    
    
    	ast_cond_init(&load_task_results.cond, NULL);
    	ast_mutex_init(&load_task_results.lock);
    	load_task_results.tasks_completed = 0;
    
    		rand_data[i] = ast_random();
    		ast_taskprocessor_push(tps, load_task, &rand_data[i]);
    
    	ast_mutex_lock(&load_task_results.lock);
    	while (load_task_results.tasks_completed < NUM_TASKS) {
    		timedwait_res = ast_cond_timedwait(&load_task_results.cond, &load_task_results.lock, &ts);
    
    		if (timedwait_res == ETIMEDOUT) {
    			break;
    		}
    	}
    
    	ast_mutex_unlock(&load_task_results.lock);
    
    	if (load_task_results.tasks_completed != NUM_TASKS) {
    
    		ast_test_status_update(test, "Unexpected number of tasks executed. Expected %d but got %d\n",
    
    				NUM_TASKS, load_task_results.tasks_completed);
    
    	for (i = 0; i < NUM_TASKS; ++i) {
    		if (rand_data[i] != load_task_results.task_rand[i]) {
    			ast_test_status_update(test, "Queued tasks did not execute in order\n");
    			res = AST_TEST_FAIL;
    			goto test_end;
    		}
    	}
    
    
    test_end:
    	tps = ast_taskprocessor_unreference(tps);
    
    	ast_mutex_destroy(&load_task_results.lock);
    	ast_cond_destroy(&load_task_results.cond);
    
    /*!
     * \brief Private data for the test taskprocessor listener
     */
    
    	/* Counter of number of tasks pushed to the queue */
    
    	/* Counter of number of times the queue was emptied */
    
    	/* Counter of number of times that a pushed task occurred on an empty queue */
    
    	/* Boolean indicating whether the shutdown callback was called */
    
    /*!
     * \brief test taskprocessor listener's alloc callback
     */
    
    static void *test_listener_pvt_alloc(void)
    
    {
    	struct test_listener_pvt *pvt;
    
    	pvt = ast_calloc(1, sizeof(*pvt));
    	return pvt;
    }
    
    
    /*!
     * \brief test taskprocessor listener's start callback
     */
    static int test_start(struct ast_taskprocessor_listener *listener)
    {
    	return 0;
    }
    
    
    /*!
     * \brief test taskprocessor listener's task_pushed callback
     *
     * Adjusts private data's stats as indicated by the parameters.
     */
    
    static void test_task_pushed(struct ast_taskprocessor_listener *listener, int was_empty)
    {
    
    	struct test_listener_pvt *pvt = ast_taskprocessor_listener_get_user_data(listener);
    
    	if (was_empty) {
    		++pvt->num_was_empty;
    	}
    
    /*!
     * \brief test taskprocessor listener's emptied callback.
     */
    
    static void test_emptied(struct ast_taskprocessor_listener *listener)
    {
    
    	struct test_listener_pvt *pvt = ast_taskprocessor_listener_get_user_data(listener);
    
    /*!
     * \brief test taskprocessor listener's shutdown callback.
     */
    
    static void test_shutdown(struct ast_taskprocessor_listener *listener)
    {
    
    	struct test_listener_pvt *pvt = ast_taskprocessor_listener_get_user_data(listener);
    
    static const struct ast_taskprocessor_listener_callbacks test_callbacks = {
    
    	.task_pushed = test_task_pushed,
    	.emptied = test_emptied,
    
    	.shutdown = test_shutdown,
    
    /*!
     * \brief Queued task for taskprocessor listener test.
     *
     * Does nothing.
     */
    
    static int listener_test_task(void *ignore)
    {
    	return 0;
    }
    
    
    /*!
     * \brief helper to ensure that statistics the listener is keeping are what we expect
     *
     * \param test The currently-running test
     * \param pvt The private data for the taskprocessor listener
     * \param num_pushed The expected current number of tasks pushed to the processor
     * \param num_emptied The expected current number of times the taskprocessor has become empty
     * \param num_was_empty The expected current number of times that tasks were pushed to an empty taskprocessor
     * \retval -1 Stats were not as expected
     * \retval 0 Stats were as expected
     */
    
    static int check_stats(struct ast_test *test, const struct test_listener_pvt *pvt, int num_pushed, int num_emptied, int num_was_empty)
    {
    	if (pvt->num_pushed != num_pushed) {
    		ast_test_status_update(test, "Unexpected number of tasks pushed. Expected %d but got %d\n",
    				num_pushed, pvt->num_pushed);
    		return -1;
    	}
    
    	if (pvt->num_emptied != num_emptied) {
    		ast_test_status_update(test, "Unexpected number of empties. Expected %d but got %d\n",
    				num_emptied, pvt->num_emptied);
    		return -1;
    	}
    
    	if (pvt->num_was_empty != num_was_empty) {
    		ast_test_status_update(test, "Unexpected number of empties. Expected %d but got %d\n",
    				num_was_empty, pvt->num_emptied);
    		return -1;
    	}
    
    	return 0;
    }
    
    
    /*!
     * \brief Test for a taskprocessor with custom listener.
     *
     * This test pushes tasks to a taskprocessor with a custom listener, executes the taskss,
     * and destroys the taskprocessor.
     *
     * The test ensures that the listener's callbacks are called when expected and that the data
     * being passed in is accurate.
     */
    
    AST_TEST_DEFINE(taskprocessor_listener)
    {
    
    	struct ast_taskprocessor *tps = NULL;
    	struct ast_taskprocessor_listener *listener = NULL;
    	struct test_listener_pvt *pvt = NULL;
    
    	enum ast_test_result_state res = AST_TEST_PASS;
    
    	switch (cmd) {
    	case TEST_INIT:
    		info->name = "taskprocessor_listener";
    		info->category = "/main/taskprocessor/";
    		info->summary = "Test of taskproccesor listeners";
    		info->description =
    			"Ensures that listener callbacks are called when expected.";
    		return AST_TEST_NOT_RUN;
    	case TEST_EXECUTE:
    		break;
    	}
    
    
    	pvt = test_listener_pvt_alloc();
    	if (!pvt) {
    		ast_test_status_update(test, "Unable to allocate test taskprocessor listener user data\n");
    		return AST_TEST_FAIL;
    	}
    
    	listener = ast_taskprocessor_listener_alloc(&test_callbacks, pvt);
    
    	if (!listener) {
    		ast_test_status_update(test, "Unable to allocate test taskprocessor listener\n");
    
    		res = AST_TEST_FAIL;
    		goto test_exit;
    
    	}
    
    	tps = ast_taskprocessor_create_with_listener("test_listener", listener);
    	if (!tps) {
    		ast_test_status_update(test, "Unable to allocate test taskprocessor\n");
    		res = AST_TEST_FAIL;
    		goto test_exit;
    	}
    
    	ast_taskprocessor_push(tps, listener_test_task, NULL);
    
    
    	if (check_stats(test, pvt, 1, 0, 1) < 0) {
    		res = AST_TEST_FAIL;
    		goto test_exit;
    	}
    
    
    	ast_taskprocessor_push(tps, listener_test_task, NULL);
    
    
    	if (check_stats(test, pvt, 2, 0, 1) < 0) {
    		res = AST_TEST_FAIL;
    		goto test_exit;
    	}
    
    
    	if (check_stats(test, pvt, 2, 0, 1) < 0) {
    
    	ast_taskprocessor_execute(tps);
    
    	if (check_stats(test, pvt, 2, 1, 1) < 0) {
    
    	tps = ast_taskprocessor_unreference(tps);
    
    	if (!pvt->shutdown) {
    		res = AST_TEST_FAIL;
    		goto test_exit;
    	}
    
    
    	/* This is safe even if tps is NULL */
    
    	ast_taskprocessor_unreference(tps);
    
    struct shutdown_data {
    	ast_cond_t in;
    	ast_cond_t out;
    	ast_mutex_t lock;
    	int task_complete;
    	int task_started;
    	int task_stop_waiting;
    };
    
    static void shutdown_data_dtor(void *data)
    {
    	struct shutdown_data *shutdown_data = data;
    	ast_mutex_destroy(&shutdown_data->lock);
    	ast_cond_destroy(&shutdown_data->in);
    	ast_cond_destroy(&shutdown_data->out);
    }
    
    static struct shutdown_data *shutdown_data_create(int dont_wait)
    {
    	RAII_VAR(struct shutdown_data *, shutdown_data, NULL, ao2_cleanup);
    
    	shutdown_data = ao2_alloc(sizeof(*shutdown_data), shutdown_data_dtor);
    	if (!shutdown_data) {
    		return NULL;
    	}
    
    	ast_mutex_init(&shutdown_data->lock);
    	ast_cond_init(&shutdown_data->in, NULL);
    	ast_cond_init(&shutdown_data->out, NULL);
    	shutdown_data->task_stop_waiting = dont_wait;
    	ao2_ref(shutdown_data, +1);
    	return shutdown_data;
    }
    
    static int shutdown_task_exec(void *data)
    {
    	struct shutdown_data *shutdown_data = data;
    	SCOPED_MUTEX(lock, &shutdown_data->lock);
    	shutdown_data->task_started = 1;
    	ast_cond_signal(&shutdown_data->out);
    	while (!shutdown_data->task_stop_waiting) {
    		ast_cond_wait(&shutdown_data->in, &shutdown_data->lock);
    	}
    	shutdown_data->task_complete = 1;
    	ast_cond_signal(&shutdown_data->out);
    	return 0;
    }
    
    static int shutdown_waitfor_completion(struct shutdown_data *shutdown_data)
    {
    	struct timeval start = ast_tvnow();
    	struct timespec end = {
    		.tv_sec = start.tv_sec + 5,
    		.tv_nsec = start.tv_usec * 1000
    	};
    	SCOPED_MUTEX(lock, &shutdown_data->lock);
    
    	while (!shutdown_data->task_complete) {
    		if (ast_cond_timedwait(&shutdown_data->out, &shutdown_data->lock, &end) == ETIMEDOUT) {
    			break;
    		}
    	}
    
    	return shutdown_data->task_complete;
    }
    
    static int shutdown_has_completed(struct shutdown_data *shutdown_data)
    {
    	SCOPED_MUTEX(lock, &shutdown_data->lock);
    	return shutdown_data->task_complete;
    }
    
    static int shutdown_waitfor_start(struct shutdown_data *shutdown_data)
    {
    	struct timeval start = ast_tvnow();
    	struct timespec end = {
    		.tv_sec = start.tv_sec + 5,
    		.tv_nsec = start.tv_usec * 1000
    	};
    	SCOPED_MUTEX(lock, &shutdown_data->lock);
    
    	while (!shutdown_data->task_started) {
    		if (ast_cond_timedwait(&shutdown_data->out, &shutdown_data->lock, &end) == ETIMEDOUT) {
    			break;
    		}
    	}
    
    	return shutdown_data->task_started;
    }
    
    static void shutdown_poke(struct shutdown_data *shutdown_data)
    {
    	SCOPED_MUTEX(lock, &shutdown_data->lock);
    	shutdown_data->task_stop_waiting = 1;
    	ast_cond_signal(&shutdown_data->in);
    }
    
    static void *tps_shutdown_thread(void *data)
    {
    	struct ast_taskprocessor *tps = data;
    	ast_taskprocessor_unreference(tps);
    	return NULL;
    }
    
    AST_TEST_DEFINE(taskprocessor_shutdown)
    {
    	RAII_VAR(struct ast_taskprocessor *, tps, NULL, ast_taskprocessor_unreference);
    	RAII_VAR(struct shutdown_data *, task1, NULL, ao2_cleanup);
    	RAII_VAR(struct shutdown_data *, task2, NULL, ao2_cleanup);
    	int push_res;
    	int wait_res;
    	int pthread_res;
    	pthread_t shutdown_thread;
    
    	switch (cmd) {
    	case TEST_INIT:
    		info->name = "taskprocessor_shutdown";
    		info->category = "/main/taskprocessor/";
    		info->summary = "Test of taskproccesor shutdown sequence";
    		info->description =
    			"Ensures that all tasks run to completion after the taskprocessor has been unref'ed.";
    		return AST_TEST_NOT_RUN;
    	case TEST_EXECUTE:
    		break;
    	}
    
    	tps = ast_taskprocessor_get("test_shutdown", TPS_REF_DEFAULT);
    	task1 = shutdown_data_create(0); /* task1 waits to be poked */
    	task2 = shutdown_data_create(1); /* task2 waits for nothing */
    
    	if (!tps || !task1 || !task2) {
    		ast_test_status_update(test, "Allocation error\n");
    		return AST_TEST_FAIL;
    	}
    
    	push_res = ast_taskprocessor_push(tps, shutdown_task_exec, task1);
    	if (push_res != 0) {
    		ast_test_status_update(test, "Could not push task1\n");
    		return AST_TEST_FAIL;
    	}
    
    	push_res = ast_taskprocessor_push(tps, shutdown_task_exec, task2);
    	if (push_res != 0) {
    		ast_test_status_update(test, "Could not push task2\n");
    		return AST_TEST_FAIL;
    	}
    
    	wait_res = shutdown_waitfor_start(task1);
    	if (!wait_res) {
    		ast_test_status_update(test, "Task1 didn't start\n");
    		return AST_TEST_FAIL;
    	}
    
    	pthread_res = ast_pthread_create(&shutdown_thread, NULL, tps_shutdown_thread, tps);
    	if (pthread_res != 0) {
    		ast_test_status_update(test, "Failed to create shutdown thread\n");
    		return AST_TEST_FAIL;
    	}
    	tps = NULL;
    
    	/* Wakeup task1; it should complete */
    	shutdown_poke(task1);
    	wait_res = shutdown_waitfor_completion(task1);
    	if (!wait_res) {
    		ast_test_status_update(test, "Task1 didn't complete\n");
    		return AST_TEST_FAIL;
    	}
    
    	/* Wait for shutdown to complete */
    	pthread_join(shutdown_thread, NULL);
    
    	/* Should have also also completed task2 */
    	wait_res = shutdown_has_completed(task2);
    	if (!wait_res) {
    		ast_test_status_update(test, "Task2 didn't finish\n");
    		return AST_TEST_FAIL;
    	}
    
    	return AST_TEST_PASS;
    }
    
    
    static int local_task_exe(struct ast_taskprocessor_local *local)
    {
    	int *local_data = local->local_data;
    	struct task_data *task_data = local->data;
    
    	*local_data = 1;
    	task(task_data);
    
    	return 0;
    }
    
    AST_TEST_DEFINE(taskprocessor_push_local)
    {
    	RAII_VAR(struct ast_taskprocessor *, tps, NULL,
    		ast_taskprocessor_unreference);
    	struct task_data *task_data;
    	int local_data;
    	int res;
    
    	switch (cmd) {
    	case TEST_INIT:
    		info->name = __func__;
    		info->category = "/main/taskprocessor/";
    		info->summary = "Test of pushing local data";
    		info->description =
    			"Ensures that local data is passed along.";
    		return AST_TEST_NOT_RUN;
    	case TEST_EXECUTE:
    		break;
    	}
    
    
    	tps = ast_taskprocessor_get("test", TPS_REF_DEFAULT);
    	if (!tps) {
    		ast_test_status_update(test, "Unable to create test taskprocessor\n");
    		return AST_TEST_FAIL;
    	}
    
    
    	task_data = task_data_create();
    	if (!task_data) {
    		ast_test_status_update(test, "Unable to create task_data\n");
    		return AST_TEST_FAIL;
    	}
    
    	local_data = 0;
    	ast_taskprocessor_set_local(tps, &local_data);
    
    	ast_taskprocessor_push_local(tps, local_task_exe, task_data);
    
    	res = task_wait(task_data);
    	if (res != 0) {
    		ast_test_status_update(test, "Queued task did not execute!\n");
    		return AST_TEST_FAIL;
    	}
    
    	if (local_data != 1) {
    		ast_test_status_update(test,
    			"Queued task did not set local_data!\n");
    		return AST_TEST_FAIL;
    	}
    
    	return AST_TEST_PASS;
    }
    
    
    static int unload_module(void)
    {
    	ast_test_unregister(default_taskprocessor);
    
    	ast_test_unregister(default_taskprocessor_load);
    
    	ast_test_unregister(taskprocessor_listener);
    
    	ast_test_unregister(taskprocessor_shutdown);
    
    	ast_test_unregister(taskprocessor_push_local);
    
    	return 0;
    }
    
    static int load_module(void)
    {
    	ast_test_register(default_taskprocessor);
    
    	ast_test_register(default_taskprocessor_load);
    
    	ast_test_register(taskprocessor_listener);
    
    	ast_test_register(taskprocessor_shutdown);
    
    	ast_test_register(taskprocessor_push_local);
    
    	return AST_MODULE_LOAD_SUCCESS;
    }
    
    AST_MODULE_INFO_STANDARD(ASTERISK_GPL_KEY, "taskprocessor test module");