Skip to content
Snippets Groups Projects
aescrypt.c 10 KiB
Newer Older
  • Learn to ignore specific revisions
  • Mark Spencer's avatar
    Mark Spencer committed
    /*
     ---------------------------------------------------------------------------
     Copyright (c) 2003, Dr Brian Gladman <brg@gladman.me.uk>, Worcester, UK.
     All rights reserved.
    
     LICENSE TERMS
    
     The free distribution and use of this software in both source and binary
     form is allowed (with or without changes) provided that:
    
       1. distributions of this source code include the above copyright
          notice, this list of conditions and the following disclaimer;
    
       2. distributions in binary form include the above copyright
          notice, this list of conditions and the following disclaimer
          in the documentation and/or other associated materials;
    
       3. the copyright holder's name is not used to endorse products
          built using this software without specific written permission.
    
     ALTERNATIVELY, provided that this notice is retained in full, this product
     may be distributed under the terms of the GNU General Public License (GPL),
     in which case the provisions of the GPL apply INSTEAD OF those given above.
    
     DISCLAIMER
    
     This software is provided 'as is' with no explicit or implied warranties
     in respect of its properties, including, but not limited to, correctness
     and/or fitness for purpose.
     ---------------------------------------------------------------------------
     Issue Date: 26/08/2003
    
     This file contains the code for implementing encryption and decryption
     for AES (Rijndael) for block and key sizes of 16, 24 and 32 bytes. It
     can optionally be replaced by code written in assembler using NASM. For
     further details see the file aesopt.h
    */
    
    #include "aesopt.h"
    
    #if defined(__cplusplus)
    extern "C"
    {
    #endif
    
    #define si(y,x,k,c) (s(y,c) = word_in(x, c) ^ (k)[c])
    #define so(y,x,c)   word_out(y, c, s(x,c))
    
    #if defined(ARRAYS)
    #define locals(y,x)     x[4],y[4]
    #else
    #define locals(y,x)     x##0,x##1,x##2,x##3,y##0,y##1,y##2,y##3
    #endif
    
    #define l_copy(y, x)    s(y,0) = s(x,0); s(y,1) = s(x,1); \
                            s(y,2) = s(x,2); s(y,3) = s(x,3);
    #define state_in(y,x,k) si(y,x,k,0); si(y,x,k,1); si(y,x,k,2); si(y,x,k,3)
    #define state_out(y,x)  so(y,x,0); so(y,x,1); so(y,x,2); so(y,x,3)
    #define round(rm,y,x,k) rm(y,x,k,0); rm(y,x,k,1); rm(y,x,k,2); rm(y,x,k,3)
    
    #if defined(ENCRYPTION) && !defined(AES_ASM)
    
    /* Visual C++ .Net v7.1 provides the fastest encryption code when using
       Pentium optimiation with small code but this is poor for decryption
       so we need to control this with the following VC++ pragmas
    */
    
    #if defined(_MSC_VER)
    #pragma optimize( "s", on )
    #endif
    
    /* Given the column (c) of the output state variable, the following
       macros give the input state variables which are needed in its
       computation for each row (r) of the state. All the alternative
       macros give the same end values but expand into different ways
       of calculating these values.  In particular the complex macro
       used for dynamically variable block sizes is designed to expand
       to a compile time constant whenever possible but will expand to
       conditional clauses on some branches (I am grateful to Frank
       Yellin for this construction)
    */
    
    #define fwd_var(x,r,c)\
     ( r == 0 ? ( c == 0 ? s(x,0) : c == 1 ? s(x,1) : c == 2 ? s(x,2) : s(x,3))\
     : r == 1 ? ( c == 0 ? s(x,1) : c == 1 ? s(x,2) : c == 2 ? s(x,3) : s(x,0))\
     : r == 2 ? ( c == 0 ? s(x,2) : c == 1 ? s(x,3) : c == 2 ? s(x,0) : s(x,1))\
     :          ( c == 0 ? s(x,3) : c == 1 ? s(x,0) : c == 2 ? s(x,1) : s(x,2)))
    
    #if defined(FT4_SET)
    #undef  dec_fmvars
    #define fwd_rnd(y,x,k,c)    (s(y,c) = (k)[c] ^ four_tables(x,t_use(f,n),fwd_var,rf1,c))
    #elif defined(FT1_SET)
    #undef  dec_fmvars
    #define fwd_rnd(y,x,k,c)    (s(y,c) = (k)[c] ^ one_table(x,upr,t_use(f,n),fwd_var,rf1,c))
    #else
    #define fwd_rnd(y,x,k,c)    (s(y,c) = (k)[c] ^ fwd_mcol(no_table(x,t_use(s,box),fwd_var,rf1,c)))
    #endif
    
    #if defined(FL4_SET)
    #define fwd_lrnd(y,x,k,c)   (s(y,c) = (k)[c] ^ four_tables(x,t_use(f,l),fwd_var,rf1,c))
    #elif defined(FL1_SET)
    #define fwd_lrnd(y,x,k,c)   (s(y,c) = (k)[c] ^ one_table(x,ups,t_use(f,l),fwd_var,rf1,c))
    #else
    #define fwd_lrnd(y,x,k,c)   (s(y,c) = (k)[c] ^ no_table(x,t_use(s,box),fwd_var,rf1,c))
    #endif
    
    aes_rval aes_encrypt(const void *in_blk, void *out_blk, const aes_encrypt_ctx cx[1])
    {   aes_32t         locals(b0, b1);
        const aes_32t   *kp = cx->ks;
    #ifdef dec_fmvars
        dec_fmvars; /* declare variables for fwd_mcol() if needed */
    #endif
    
        aes_32t nr = (kp[45] ^ kp[52] ^ kp[53] ? kp[52] : 14);
    
    #ifdef AES_ERR_CHK
        if(   (nr != 10 || !(kp[0] | kp[3] | kp[4])) 
           && (nr != 12 || !(kp[0] | kp[5] | kp[6]))
           && (nr != 14 || !(kp[0] | kp[7] | kp[8])) )
            return aes_error;
    #endif
    
        state_in(b0, in_blk, kp);
    
    #if (ENC_UNROLL == FULL)
    
        switch(nr)
        {
        case 14:
            round(fwd_rnd,  b1, b0, kp + 1 * N_COLS);
            round(fwd_rnd,  b0, b1, kp + 2 * N_COLS);
            kp += 2 * N_COLS;
        case 12:
            round(fwd_rnd,  b1, b0, kp + 1 * N_COLS);
            round(fwd_rnd,  b0, b1, kp + 2 * N_COLS);
            kp += 2 * N_COLS;
        case 10:
            round(fwd_rnd,  b1, b0, kp + 1 * N_COLS);
            round(fwd_rnd,  b0, b1, kp + 2 * N_COLS);
            round(fwd_rnd,  b1, b0, kp + 3 * N_COLS);
            round(fwd_rnd,  b0, b1, kp + 4 * N_COLS);
            round(fwd_rnd,  b1, b0, kp + 5 * N_COLS);
            round(fwd_rnd,  b0, b1, kp + 6 * N_COLS);
            round(fwd_rnd,  b1, b0, kp + 7 * N_COLS);
            round(fwd_rnd,  b0, b1, kp + 8 * N_COLS);
            round(fwd_rnd,  b1, b0, kp + 9 * N_COLS);
            round(fwd_lrnd, b0, b1, kp +10 * N_COLS);
        }
    
    #else
    
    #if (ENC_UNROLL == PARTIAL)
        {   aes_32t    rnd;
            for(rnd = 0; rnd < (nr >> 1) - 1; ++rnd)
            {
                kp += N_COLS;
                round(fwd_rnd, b1, b0, kp);
                kp += N_COLS;
                round(fwd_rnd, b0, b1, kp);
            }
            kp += N_COLS;
            round(fwd_rnd,  b1, b0, kp);
    #else
        {   aes_32t    rnd;
            for(rnd = 0; rnd < nr - 1; ++rnd)
            {
                kp += N_COLS;
                round(fwd_rnd, b1, b0, kp);
                l_copy(b0, b1);
            }
    #endif
            kp += N_COLS;
            round(fwd_lrnd, b0, b1, kp);
        }
    #endif
    
        state_out(out_blk, b0);
    #ifdef AES_ERR_CHK
        return aes_good;
    #endif
    }
    
    #endif
    
    #if defined(DECRYPTION) && !defined(AES_ASM)
    
    /* Visual C++ .Net v7.1 provides the fastest encryption code when using
       Pentium optimiation with small code but this is poor for decryption
       so we need to control this with the following VC++ pragmas
    */
    
    #if defined(_MSC_VER)
    #pragma optimize( "t", on )
    #endif
    
    /* Given the column (c) of the output state variable, the following
       macros give the input state variables which are needed in its
       computation for each row (r) of the state. All the alternative
       macros give the same end values but expand into different ways
       of calculating these values.  In particular the complex macro
       used for dynamically variable block sizes is designed to expand
       to a compile time constant whenever possible but will expand to
       conditional clauses on some branches (I am grateful to Frank
       Yellin for this construction)
    */
    
    #define inv_var(x,r,c)\
     ( r == 0 ? ( c == 0 ? s(x,0) : c == 1 ? s(x,1) : c == 2 ? s(x,2) : s(x,3))\
     : r == 1 ? ( c == 0 ? s(x,3) : c == 1 ? s(x,0) : c == 2 ? s(x,1) : s(x,2))\
     : r == 2 ? ( c == 0 ? s(x,2) : c == 1 ? s(x,3) : c == 2 ? s(x,0) : s(x,1))\
     :          ( c == 0 ? s(x,1) : c == 1 ? s(x,2) : c == 2 ? s(x,3) : s(x,0)))
    
    #if defined(IT4_SET)
    #undef  dec_imvars
    #define inv_rnd(y,x,k,c)    (s(y,c) = (k)[c] ^ four_tables(x,t_use(i,n),inv_var,rf1,c))
    #elif defined(IT1_SET)
    #undef  dec_imvars
    #define inv_rnd(y,x,k,c)    (s(y,c) = (k)[c] ^ one_table(x,upr,t_use(i,n),inv_var,rf1,c))
    #else
    #define inv_rnd(y,x,k,c)    (s(y,c) = inv_mcol((k)[c] ^ no_table(x,t_use(i,box),inv_var,rf1,c)))
    #endif
    
    #if defined(IL4_SET)
    #define inv_lrnd(y,x,k,c)   (s(y,c) = (k)[c] ^ four_tables(x,t_use(i,l),inv_var,rf1,c))
    #elif defined(IL1_SET)
    #define inv_lrnd(y,x,k,c)   (s(y,c) = (k)[c] ^ one_table(x,ups,t_use(i,l),inv_var,rf1,c))
    #else
    #define inv_lrnd(y,x,k,c)   (s(y,c) = (k)[c] ^ no_table(x,t_use(i,box),inv_var,rf1,c))
    #endif
    
    aes_rval aes_decrypt(const void *in_blk, void *out_blk, const aes_decrypt_ctx cx[1])
    {   aes_32t        locals(b0, b1);
    #ifdef dec_imvars
        dec_imvars; /* declare variables for inv_mcol() if needed */
    #endif
    
        aes_32t nr = (cx->ks[45] ^ cx->ks[52] ^ cx->ks[53] ? cx->ks[52] : 14);
        const aes_32t *kp = cx->ks + nr * N_COLS;
    
    #ifdef AES_ERR_CHK
        if(   (nr != 10 || !(cx->ks[0] | cx->ks[3] | cx->ks[4])) 
           && (nr != 12 || !(cx->ks[0] | cx->ks[5] | cx->ks[6]))
           && (nr != 14 || !(cx->ks[0] | cx->ks[7] | cx->ks[8])) )
            return aes_error;
    #endif
    
        state_in(b0, in_blk, kp);
    
    #if (DEC_UNROLL == FULL)
    
        switch(nr)
        {
        case 14:
            round(inv_rnd,  b1, b0, kp -  1 * N_COLS);
            round(inv_rnd,  b0, b1, kp -  2 * N_COLS);
            kp -= 2 * N_COLS;
        case 12:
            round(inv_rnd,  b1, b0, kp -  1 * N_COLS);
            round(inv_rnd,  b0, b1, kp -  2 * N_COLS);
            kp -= 2 * N_COLS;
        case 10:
            round(inv_rnd,  b1, b0, kp -  1 * N_COLS);
            round(inv_rnd,  b0, b1, kp -  2 * N_COLS);
            round(inv_rnd,  b1, b0, kp -  3 * N_COLS);
            round(inv_rnd,  b0, b1, kp -  4 * N_COLS);
            round(inv_rnd,  b1, b0, kp -  5 * N_COLS);
            round(inv_rnd,  b0, b1, kp -  6 * N_COLS);
            round(inv_rnd,  b1, b0, kp -  7 * N_COLS);
            round(inv_rnd,  b0, b1, kp -  8 * N_COLS);
            round(inv_rnd,  b1, b0, kp -  9 * N_COLS);
            round(inv_lrnd, b0, b1, kp - 10 * N_COLS);
        }
    
    #else
    
    #if (DEC_UNROLL == PARTIAL)
        {   aes_32t    rnd;
            for(rnd = 0; rnd < (nr >> 1) - 1; ++rnd)
            {
                kp -= N_COLS;
                round(inv_rnd, b1, b0, kp);
                kp -= N_COLS;
                round(inv_rnd, b0, b1, kp);
            }
            kp -= N_COLS;
            round(inv_rnd, b1, b0, kp);
    #else
        {   aes_32t    rnd;
            for(rnd = 0; rnd < nr - 1; ++rnd)
            {
                kp -= N_COLS;
                round(inv_rnd, b1, b0, kp);
                l_copy(b0, b1);
            }
    #endif
            kp -= N_COLS;
            round(inv_lrnd, b0, b1, kp);
        }
    #endif
    
        state_out(out_blk, b0);
    #ifdef AES_ERR_CHK
        return aes_good;
    #endif
    }
    
    #endif
    
    #if defined(__cplusplus)
    }
    #endif