Skip to content
Snippets Groups Projects
resample.c 39.6 KiB
Newer Older
  • Learn to ignore specific revisions
  • 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000
    /* Copyright (C) 2007-2008 Jean-Marc Valin
       Copyright (C) 2008      Thorvald Natvig
          
       File: resample.c
       Arbitrary resampling code
    
       Redistribution and use in source and binary forms, with or without
       modification, are permitted provided that the following conditions are
       met:
    
       1. Redistributions of source code must retain the above copyright notice,
       this list of conditions and the following disclaimer.
    
       2. Redistributions in binary form must reproduce the above copyright
       notice, this list of conditions and the following disclaimer in the
       documentation and/or other materials provided with the distribution.
    
       3. The name of the author may not be used to endorse or promote products
       derived from this software without specific prior written permission.
    
       THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
       IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
       OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
       DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
       INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
       (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
       SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
       HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
       STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
       ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
       POSSIBILITY OF SUCH DAMAGE.
    */
    
    /*
       The design goals of this code are:
          - Very fast algorithm
          - SIMD-friendly algorithm
          - Low memory requirement
          - Good *perceptual* quality (and not best SNR)
    
       Warning: This resampler is relatively new. Although I think I got rid of 
       all the major bugs and I don't expect the API to change anymore, there
       may be something I've missed. So use with caution.
    
       This algorithm is based on this original resampling algorithm:
       Smith, Julius O. Digital Audio Resampling Home Page
       Center for Computer Research in Music and Acoustics (CCRMA), 
       Stanford University, 2007.
       Web published at http://www-ccrma.stanford.edu/~jos/resample/.
    
       There is one main difference, though. This resampler uses cubic 
       interpolation instead of linear interpolation in the above paper. This
       makes the table much smaller and makes it possible to compute that table
       on a per-stream basis. In turn, being able to tweak the table for each 
       stream makes it possible to both reduce complexity on simple ratios 
       (e.g. 2/3), and get rid of the rounding operations in the inner loop. 
       The latter both reduces CPU time and makes the algorithm more SIMD-friendly.
    */
    
    #ifdef HAVE_CONFIG_H
    #include "config.h"
    #endif
    
    #include <stdlib.h>
    static void *speex_alloc (int size) {return calloc(size,1);}
    static void *speex_realloc (void *ptr, int size) {return realloc(ptr, size);}
    static void speex_free (void *ptr) {free(ptr);}
    #include "speex_resampler.h"
    #include "arch.h"
    
    #include "stack_alloc.h"
    #include <math.h>
    
    #ifndef M_PI
    #define M_PI 3.14159263
    #endif
    
    #ifdef FIXED_POINT
    #define WORD2INT(x) ((x) < -32767 ? -32768 : ((x) > 32766 ? 32767 : (x)))
    #else
    #define WORD2INT(x) ((x) < -32767.5f ? -32768 : ((x) > 32766.5f ? 32767 : floor(.5+(x))))
    #endif
    
    #define IMAX(a,b) ((a) > (b) ? (a) : (b))
    #define IMIN(a,b) ((a) < (b) ? (a) : (b))
    
    #ifndef NULL
    #define NULL 0
    #endif
    
    #ifdef _USE_SSE
    #include "resample_sse.h"
    #endif
    
    /* Numer of elements to allocate on the stack */
    #ifdef VAR_ARRAYS
    #define FIXED_STACK_ALLOC 8192
    #else
    #define FIXED_STACK_ALLOC 1024
    #endif
    
    typedef int (*resampler_basic_func)(SpeexResamplerState *, spx_uint32_t , const spx_word16_t *, spx_uint32_t *, spx_word16_t *, spx_uint32_t *);
    
    struct SpeexResamplerState_ {
       spx_uint32_t in_rate;
       spx_uint32_t out_rate;
       spx_uint32_t num_rate;
       spx_uint32_t den_rate;
       
       int    quality;
       spx_uint32_t nb_channels;
       spx_uint32_t filt_len;
       spx_uint32_t mem_alloc_size;
       spx_uint32_t buffer_size;
       int          int_advance;
       int          frac_advance;
       float  cutoff;
       spx_uint32_t oversample;
       int          initialised;
       int          started;
       
       /* These are per-channel */
       spx_int32_t  *last_sample;
       spx_uint32_t *samp_frac_num;
       spx_uint32_t *magic_samples;
       
       spx_word16_t *mem;
       spx_word16_t *sinc_table;
       spx_uint32_t sinc_table_length;
       resampler_basic_func resampler_ptr;
             
       int    in_stride;
       int    out_stride;
    } ;
    
    static double kaiser12_table[68] = {
       0.99859849, 1.00000000, 0.99859849, 0.99440475, 0.98745105, 0.97779076,
       0.96549770, 0.95066529, 0.93340547, 0.91384741, 0.89213598, 0.86843014,
       0.84290116, 0.81573067, 0.78710866, 0.75723148, 0.72629970, 0.69451601,
       0.66208321, 0.62920216, 0.59606986, 0.56287762, 0.52980938, 0.49704014,
       0.46473455, 0.43304576, 0.40211431, 0.37206735, 0.34301800, 0.31506490,
       0.28829195, 0.26276832, 0.23854851, 0.21567274, 0.19416736, 0.17404546,
       0.15530766, 0.13794294, 0.12192957, 0.10723616, 0.09382272, 0.08164178,
       0.07063950, 0.06075685, 0.05193064, 0.04409466, 0.03718069, 0.03111947,
       0.02584161, 0.02127838, 0.01736250, 0.01402878, 0.01121463, 0.00886058,
       0.00691064, 0.00531256, 0.00401805, 0.00298291, 0.00216702, 0.00153438,
       0.00105297, 0.00069463, 0.00043489, 0.00025272, 0.00013031, 0.0000527734,
       0.00001000, 0.00000000};
    /*
    static double kaiser12_table[36] = {
       0.99440475, 1.00000000, 0.99440475, 0.97779076, 0.95066529, 0.91384741,
       0.86843014, 0.81573067, 0.75723148, 0.69451601, 0.62920216, 0.56287762,
       0.49704014, 0.43304576, 0.37206735, 0.31506490, 0.26276832, 0.21567274,
       0.17404546, 0.13794294, 0.10723616, 0.08164178, 0.06075685, 0.04409466,
       0.03111947, 0.02127838, 0.01402878, 0.00886058, 0.00531256, 0.00298291,
       0.00153438, 0.00069463, 0.00025272, 0.0000527734, 0.00000500, 0.00000000};
    */
    static double kaiser10_table[36] = {
       0.99537781, 1.00000000, 0.99537781, 0.98162644, 0.95908712, 0.92831446,
       0.89005583, 0.84522401, 0.79486424, 0.74011713, 0.68217934, 0.62226347,
       0.56155915, 0.50119680, 0.44221549, 0.38553619, 0.33194107, 0.28205962,
       0.23636152, 0.19515633, 0.15859932, 0.12670280, 0.09935205, 0.07632451,
       0.05731132, 0.04193980, 0.02979584, 0.02044510, 0.01345224, 0.00839739,
       0.00488951, 0.00257636, 0.00115101, 0.00035515, 0.00000000, 0.00000000};
    
    static double kaiser8_table[36] = {
       0.99635258, 1.00000000, 0.99635258, 0.98548012, 0.96759014, 0.94302200,
       0.91223751, 0.87580811, 0.83439927, 0.78875245, 0.73966538, 0.68797126,
       0.63451750, 0.58014482, 0.52566725, 0.47185369, 0.41941150, 0.36897272,
       0.32108304, 0.27619388, 0.23465776, 0.19672670, 0.16255380, 0.13219758,
       0.10562887, 0.08273982, 0.06335451, 0.04724088, 0.03412321, 0.02369490,
       0.01563093, 0.00959968, 0.00527363, 0.00233883, 0.00050000, 0.00000000};
       
    static double kaiser6_table[36] = {
       0.99733006, 1.00000000, 0.99733006, 0.98935595, 0.97618418, 0.95799003,
       0.93501423, 0.90755855, 0.87598009, 0.84068475, 0.80211977, 0.76076565,
       0.71712752, 0.67172623, 0.62508937, 0.57774224, 0.53019925, 0.48295561,
       0.43647969, 0.39120616, 0.34752997, 0.30580127, 0.26632152, 0.22934058,
       0.19505503, 0.16360756, 0.13508755, 0.10953262, 0.08693120, 0.06722600,
       0.05031820, 0.03607231, 0.02432151, 0.01487334, 0.00752000, 0.00000000};
    
    struct FuncDef {
       double *table;
       int oversample;
    };
          
    static struct FuncDef _KAISER12 = {kaiser12_table, 64};
    #define KAISER12 (&_KAISER12)
    /*static struct FuncDef _KAISER12 = {kaiser12_table, 32};
    #define KAISER12 (&_KAISER12)*/
    static struct FuncDef _KAISER10 = {kaiser10_table, 32};
    #define KAISER10 (&_KAISER10)
    static struct FuncDef _KAISER8 = {kaiser8_table, 32};
    #define KAISER8 (&_KAISER8)
    static struct FuncDef _KAISER6 = {kaiser6_table, 32};
    #define KAISER6 (&_KAISER6)
    
    struct QualityMapping {
       int base_length;
       int oversample;
       float downsample_bandwidth;
       float upsample_bandwidth;
       struct FuncDef *window_func;
    };
    
    
    /* This table maps conversion quality to internal parameters. There are two
       reasons that explain why the up-sampling bandwidth is larger than the 
       down-sampling bandwidth:
       1) When up-sampling, we can assume that the spectrum is already attenuated
          close to the Nyquist rate (from an A/D or a previous resampling filter)
       2) Any aliasing that occurs very close to the Nyquist rate will be masked
          by the sinusoids/noise just below the Nyquist rate (guaranteed only for
          up-sampling).
    */
    static const struct QualityMapping quality_map[11] = {
       {  8,  4, 0.830f, 0.860f, KAISER6 }, /* Q0 */
       { 16,  4, 0.850f, 0.880f, KAISER6 }, /* Q1 */
       { 32,  4, 0.882f, 0.910f, KAISER6 }, /* Q2 */  /* 82.3% cutoff ( ~60 dB stop) 6  */
       { 48,  8, 0.895f, 0.917f, KAISER8 }, /* Q3 */  /* 84.9% cutoff ( ~80 dB stop) 8  */
       { 64,  8, 0.921f, 0.940f, KAISER8 }, /* Q4 */  /* 88.7% cutoff ( ~80 dB stop) 8  */
       { 80, 16, 0.922f, 0.940f, KAISER10}, /* Q5 */  /* 89.1% cutoff (~100 dB stop) 10 */
       { 96, 16, 0.940f, 0.945f, KAISER10}, /* Q6 */  /* 91.5% cutoff (~100 dB stop) 10 */
       {128, 16, 0.950f, 0.950f, KAISER10}, /* Q7 */  /* 93.1% cutoff (~100 dB stop) 10 */
       {160, 16, 0.960f, 0.960f, KAISER10}, /* Q8 */  /* 94.5% cutoff (~100 dB stop) 10 */
       {192, 32, 0.968f, 0.968f, KAISER12}, /* Q9 */  /* 95.5% cutoff (~100 dB stop) 10 */
       {256, 32, 0.975f, 0.975f, KAISER12}, /* Q10 */ /* 96.6% cutoff (~100 dB stop) 10 */
    };
    /*8,24,40,56,80,104,128,160,200,256,320*/
    static double compute_func(float x, struct FuncDef *func)
    {
       float y, frac;
       double interp[4];
       int ind; 
       y = x*func->oversample;
       ind = (int)floor(y);
       frac = (y-ind);
       /* CSE with handle the repeated powers */
       interp[3] =  -0.1666666667*frac + 0.1666666667*(frac*frac*frac);
       interp[2] = frac + 0.5*(frac*frac) - 0.5*(frac*frac*frac);
       /*interp[2] = 1.f - 0.5f*frac - frac*frac + 0.5f*frac*frac*frac;*/
       interp[0] = -0.3333333333*frac + 0.5*(frac*frac) - 0.1666666667*(frac*frac*frac);
       /* Just to make sure we don't have rounding problems */
       interp[1] = 1.f-interp[3]-interp[2]-interp[0];
       
       /*sum = frac*accum[1] + (1-frac)*accum[2];*/
       return interp[0]*func->table[ind] + interp[1]*func->table[ind+1] + interp[2]*func->table[ind+2] + interp[3]*func->table[ind+3];
    }
    
    #if 0
    #include <stdio.h>
    int main(int argc, char **argv)
    {
       int i;
       for (i=0;i<256;i++)
       {
          printf ("%f\n", compute_func(i/256., KAISER12));
       }
       return 0;
    }
    #endif
    
    #ifdef FIXED_POINT
    /* The slow way of computing a sinc for the table. Should improve that some day */
    static spx_word16_t sinc(float cutoff, float x, int N, struct FuncDef *window_func)
    {
       /*fprintf (stderr, "%f ", x);*/
       float xx = x * cutoff;
       if (fabs(x)<1e-6f)
          return WORD2INT(32768.*cutoff);
       else if (fabs(x) > .5f*N)
          return 0;
       /*FIXME: Can it really be any slower than this? */
       return WORD2INT(32768.*cutoff*sin(M_PI*xx)/(M_PI*xx) * compute_func(fabs(2.*x/N), window_func));
    }
    #else
    /* The slow way of computing a sinc for the table. Should improve that some day */
    static spx_word16_t sinc(float cutoff, float x, int N, struct FuncDef *window_func)
    {
       /*fprintf (stderr, "%f ", x);*/
       float xx = x * cutoff;
       if (fabs(x)<1e-6)
          return cutoff;
       else if (fabs(x) > .5*N)
          return 0;
       /*FIXME: Can it really be any slower than this? */
       return cutoff*sin(M_PI*xx)/(M_PI*xx) * compute_func(fabs(2.*x/N), window_func);
    }
    #endif
    
    #ifdef FIXED_POINT
    static void cubic_coef(spx_word16_t x, spx_word16_t interp[4])
    {
       /* Compute interpolation coefficients. I'm not sure whether this corresponds to cubic interpolation
       but I know it's MMSE-optimal on a sinc */
       spx_word16_t x2, x3;
       x2 = MULT16_16_P15(x, x);
       x3 = MULT16_16_P15(x, x2);
       interp[0] = PSHR32(MULT16_16(QCONST16(-0.16667f, 15),x) + MULT16_16(QCONST16(0.16667f, 15),x3),15);
       interp[1] = EXTRACT16(EXTEND32(x) + SHR32(SUB32(EXTEND32(x2),EXTEND32(x3)),1));
       interp[3] = PSHR32(MULT16_16(QCONST16(-0.33333f, 15),x) + MULT16_16(QCONST16(.5f,15),x2) - MULT16_16(QCONST16(0.16667f, 15),x3),15);
       /* Just to make sure we don't have rounding problems */
       interp[2] = Q15_ONE-interp[0]-interp[1]-interp[3];
       if (interp[2]<32767)
          interp[2]+=1;
    }
    #else
    static void cubic_coef(spx_word16_t frac, spx_word16_t interp[4])
    {
       /* Compute interpolation coefficients. I'm not sure whether this corresponds to cubic interpolation
       but I know it's MMSE-optimal on a sinc */
       interp[0] =  -0.16667f*frac + 0.16667f*frac*frac*frac;
       interp[1] = frac + 0.5f*frac*frac - 0.5f*frac*frac*frac;
       /*interp[2] = 1.f - 0.5f*frac - frac*frac + 0.5f*frac*frac*frac;*/
       interp[3] = -0.33333f*frac + 0.5f*frac*frac - 0.16667f*frac*frac*frac;
       /* Just to make sure we don't have rounding problems */
       interp[2] = 1.-interp[0]-interp[1]-interp[3];
    }
    #endif
    
    static int resampler_basic_direct_single(SpeexResamplerState *st, spx_uint32_t channel_index, const spx_word16_t *in, spx_uint32_t *in_len, spx_word16_t *out, spx_uint32_t *out_len)
    {
       const int N = st->filt_len;
       int out_sample = 0;
       int last_sample = st->last_sample[channel_index];
       spx_uint32_t samp_frac_num = st->samp_frac_num[channel_index];
       const spx_word16_t *sinc_table = st->sinc_table;
       const int out_stride = st->out_stride;
       const int int_advance = st->int_advance;
       const int frac_advance = st->frac_advance;
       const spx_uint32_t den_rate = st->den_rate;
       spx_word32_t sum;
       int j;
    
       while (!(last_sample >= (spx_int32_t)*in_len || out_sample >= (spx_int32_t)*out_len))
       {
          const spx_word16_t *sinc = & sinc_table[samp_frac_num*N];
          const spx_word16_t *iptr = & in[last_sample];
    
    #ifndef OVERRIDE_INNER_PRODUCT_SINGLE
          float accum[4] = {0,0,0,0};
    
          for(j=0;j<N;j+=4) {
            accum[0] += sinc[j]*iptr[j];
            accum[1] += sinc[j+1]*iptr[j+1];
            accum[2] += sinc[j+2]*iptr[j+2];
            accum[3] += sinc[j+3]*iptr[j+3];
          }
          sum = accum[0] + accum[1] + accum[2] + accum[3];
    #else
          sum = inner_product_single(sinc, iptr, N);
    #endif
    
          out[out_stride * out_sample++] = PSHR32(sum, 15);
          last_sample += int_advance;
          samp_frac_num += frac_advance;
          if (samp_frac_num >= den_rate)
          {
             samp_frac_num -= den_rate;
             last_sample++;
          }
       }
    
       st->last_sample[channel_index] = last_sample;
       st->samp_frac_num[channel_index] = samp_frac_num;
       return out_sample;
    }
    
    #ifdef FIXED_POINT
    #else
    /* This is the same as the previous function, except with a double-precision accumulator */
    static int resampler_basic_direct_double(SpeexResamplerState *st, spx_uint32_t channel_index, const spx_word16_t *in, spx_uint32_t *in_len, spx_word16_t *out, spx_uint32_t *out_len)
    {
       const int N = st->filt_len;
       int out_sample = 0;
       int last_sample = st->last_sample[channel_index];
       spx_uint32_t samp_frac_num = st->samp_frac_num[channel_index];
       const spx_word16_t *sinc_table = st->sinc_table;
       const int out_stride = st->out_stride;
       const int int_advance = st->int_advance;
       const int frac_advance = st->frac_advance;
       const spx_uint32_t den_rate = st->den_rate;
       double sum;
       int j;
    
       while (!(last_sample >= (spx_int32_t)*in_len || out_sample >= (spx_int32_t)*out_len))
       {
          const spx_word16_t *sinc = & sinc_table[samp_frac_num*N];
          const spx_word16_t *iptr = & in[last_sample];
    
    #ifndef OVERRIDE_INNER_PRODUCT_DOUBLE
          double accum[4] = {0,0,0,0};
    
          for(j=0;j<N;j+=4) {
            accum[0] += sinc[j]*iptr[j];
            accum[1] += sinc[j+1]*iptr[j+1];
            accum[2] += sinc[j+2]*iptr[j+2];
            accum[3] += sinc[j+3]*iptr[j+3];
          }
          sum = accum[0] + accum[1] + accum[2] + accum[3];
    #else
          sum = inner_product_double(sinc, iptr, N);
    #endif
    
          out[out_stride * out_sample++] = PSHR32(sum, 15);
          last_sample += int_advance;
          samp_frac_num += frac_advance;
          if (samp_frac_num >= den_rate)
          {
             samp_frac_num -= den_rate;
             last_sample++;
          }
       }
    
       st->last_sample[channel_index] = last_sample;
       st->samp_frac_num[channel_index] = samp_frac_num;
       return out_sample;
    }
    #endif
    
    static int resampler_basic_interpolate_single(SpeexResamplerState *st, spx_uint32_t channel_index, const spx_word16_t *in, spx_uint32_t *in_len, spx_word16_t *out, spx_uint32_t *out_len)
    {
       const int N = st->filt_len;
       int out_sample = 0;
       int last_sample = st->last_sample[channel_index];
       spx_uint32_t samp_frac_num = st->samp_frac_num[channel_index];
       const int out_stride = st->out_stride;
       const int int_advance = st->int_advance;
       const int frac_advance = st->frac_advance;
       const spx_uint32_t den_rate = st->den_rate;
       int j;
       spx_word32_t sum;
    
       while (!(last_sample >= (spx_int32_t)*in_len || out_sample >= (spx_int32_t)*out_len))
       {
          const spx_word16_t *iptr = & in[last_sample];
    
          const int offset = samp_frac_num*st->oversample/st->den_rate;
    #ifdef FIXED_POINT
          const spx_word16_t frac = PDIV32(SHL32((samp_frac_num*st->oversample) % st->den_rate,15),st->den_rate);
    #else
          const spx_word16_t frac = ((float)((samp_frac_num*st->oversample) % st->den_rate))/st->den_rate;
    #endif
          spx_word16_t interp[4];
    
    
    #ifndef OVERRIDE_INTERPOLATE_PRODUCT_SINGLE
          spx_word32_t accum[4] = {0,0,0,0};
    
          for(j=0;j<N;j++) {
            const spx_word16_t curr_in=iptr[j];
            accum[0] += MULT16_16(curr_in,st->sinc_table[4+(j+1)*st->oversample-offset-2]);
            accum[1] += MULT16_16(curr_in,st->sinc_table[4+(j+1)*st->oversample-offset-1]);
            accum[2] += MULT16_16(curr_in,st->sinc_table[4+(j+1)*st->oversample-offset]);
            accum[3] += MULT16_16(curr_in,st->sinc_table[4+(j+1)*st->oversample-offset+1]);
          }
    
          cubic_coef(frac, interp);
          sum = MULT16_32_Q15(interp[0],accum[0]) + MULT16_32_Q15(interp[1],accum[1]) + MULT16_32_Q15(interp[2],accum[2]) + MULT16_32_Q15(interp[3],accum[3]);
    #else
          cubic_coef(frac, interp);
          sum = interpolate_product_single(iptr, st->sinc_table + st->oversample + 4 - offset - 2, N, st->oversample, interp);
    #endif
          
          out[out_stride * out_sample++] = PSHR32(sum,15);
          last_sample += int_advance;
          samp_frac_num += frac_advance;
          if (samp_frac_num >= den_rate)
          {
             samp_frac_num -= den_rate;
             last_sample++;
          }
       }
    
       st->last_sample[channel_index] = last_sample;
       st->samp_frac_num[channel_index] = samp_frac_num;
       return out_sample;
    }
    
    #ifdef FIXED_POINT
    #else
    /* This is the same as the previous function, except with a double-precision accumulator */
    static int resampler_basic_interpolate_double(SpeexResamplerState *st, spx_uint32_t channel_index, const spx_word16_t *in, spx_uint32_t *in_len, spx_word16_t *out, spx_uint32_t *out_len)
    {
       const int N = st->filt_len;
       int out_sample = 0;
       int last_sample = st->last_sample[channel_index];
       spx_uint32_t samp_frac_num = st->samp_frac_num[channel_index];
       const int out_stride = st->out_stride;
       const int int_advance = st->int_advance;
       const int frac_advance = st->frac_advance;
       const spx_uint32_t den_rate = st->den_rate;
       int j;
       spx_word32_t sum;
    
       while (!(last_sample >= (spx_int32_t)*in_len || out_sample >= (spx_int32_t)*out_len))
       {
          const spx_word16_t *iptr = & in[last_sample];
    
          const int offset = samp_frac_num*st->oversample/st->den_rate;
    #ifdef FIXED_POINT
          const spx_word16_t frac = PDIV32(SHL32((samp_frac_num*st->oversample) % st->den_rate,15),st->den_rate);
    #else
          const spx_word16_t frac = ((float)((samp_frac_num*st->oversample) % st->den_rate))/st->den_rate;
    #endif
          spx_word16_t interp[4];
    
    
    #ifndef OVERRIDE_INTERPOLATE_PRODUCT_DOUBLE
          double accum[4] = {0,0,0,0};
    
          for(j=0;j<N;j++) {
            const double curr_in=iptr[j];
            accum[0] += MULT16_16(curr_in,st->sinc_table[4+(j+1)*st->oversample-offset-2]);
            accum[1] += MULT16_16(curr_in,st->sinc_table[4+(j+1)*st->oversample-offset-1]);
            accum[2] += MULT16_16(curr_in,st->sinc_table[4+(j+1)*st->oversample-offset]);
            accum[3] += MULT16_16(curr_in,st->sinc_table[4+(j+1)*st->oversample-offset+1]);
          }
    
          cubic_coef(frac, interp);
          sum = MULT16_32_Q15(interp[0],accum[0]) + MULT16_32_Q15(interp[1],accum[1]) + MULT16_32_Q15(interp[2],accum[2]) + MULT16_32_Q15(interp[3],accum[3]);
    #else
          cubic_coef(frac, interp);
          sum = interpolate_product_double(iptr, st->sinc_table + st->oversample + 4 - offset - 2, N, st->oversample, interp);
    #endif
          
          out[out_stride * out_sample++] = PSHR32(sum,15);
          last_sample += int_advance;
          samp_frac_num += frac_advance;
          if (samp_frac_num >= den_rate)
          {
             samp_frac_num -= den_rate;
             last_sample++;
          }
       }
    
       st->last_sample[channel_index] = last_sample;
       st->samp_frac_num[channel_index] = samp_frac_num;
       return out_sample;
    }
    #endif
    
    static void update_filter(SpeexResamplerState *st)
    {
       spx_uint32_t old_length;
       
       old_length = st->filt_len;
       st->oversample = quality_map[st->quality].oversample;
       st->filt_len = quality_map[st->quality].base_length;
       
       if (st->num_rate > st->den_rate)
       {
          /* down-sampling */
          st->cutoff = quality_map[st->quality].downsample_bandwidth * st->den_rate / st->num_rate;
          /* FIXME: divide the numerator and denominator by a certain amount if they're too large */
          st->filt_len = st->filt_len*st->num_rate / st->den_rate;
          /* Round down to make sure we have a multiple of 4 */
          st->filt_len &= (~0x3);
          if (2*st->den_rate < st->num_rate)
             st->oversample >>= 1;
          if (4*st->den_rate < st->num_rate)
             st->oversample >>= 1;
          if (8*st->den_rate < st->num_rate)
             st->oversample >>= 1;
          if (16*st->den_rate < st->num_rate)
             st->oversample >>= 1;
          if (st->oversample < 1)
             st->oversample = 1;
       } else {
          /* up-sampling */
          st->cutoff = quality_map[st->quality].upsample_bandwidth;
       }
       
       /* Choose the resampling type that requires the least amount of memory */
       if (st->den_rate <= st->oversample)
       {
          spx_uint32_t i;
          if (!st->sinc_table)
             st->sinc_table = (spx_word16_t *)speex_alloc(st->filt_len*st->den_rate*sizeof(spx_word16_t));
          else if (st->sinc_table_length < st->filt_len*st->den_rate)
          {
             st->sinc_table = (spx_word16_t *)speex_realloc(st->sinc_table,st->filt_len*st->den_rate*sizeof(spx_word16_t));
             st->sinc_table_length = st->filt_len*st->den_rate;
          }
          for (i=0;i<st->den_rate;i++)
          {
             spx_int32_t j;
             for (j=0;j<st->filt_len;j++)
             {
                st->sinc_table[i*st->filt_len+j] = sinc(st->cutoff,((j-(spx_int32_t)st->filt_len/2+1)-((float)i)/st->den_rate), st->filt_len, quality_map[st->quality].window_func);
             }
          }
    #ifdef FIXED_POINT
          st->resampler_ptr = resampler_basic_direct_single;
    #else
          if (st->quality>8)
             st->resampler_ptr = resampler_basic_direct_double;
          else
             st->resampler_ptr = resampler_basic_direct_single;
    #endif
          /*fprintf (stderr, "resampler uses direct sinc table and normalised cutoff %f\n", cutoff);*/
       } else {
          spx_int32_t i;
          if (!st->sinc_table)
             st->sinc_table = (spx_word16_t *)speex_alloc((st->filt_len*st->oversample+8)*sizeof(spx_word16_t));
          else if (st->sinc_table_length < st->filt_len*st->oversample+8)
          {
             st->sinc_table = (spx_word16_t *)speex_realloc(st->sinc_table,(st->filt_len*st->oversample+8)*sizeof(spx_word16_t));
             st->sinc_table_length = st->filt_len*st->oversample+8;
          }
          for (i=-4;i<(spx_int32_t)(st->oversample*st->filt_len+4);i++)
             st->sinc_table[i+4] = sinc(st->cutoff,(i/(float)st->oversample - st->filt_len/2), st->filt_len, quality_map[st->quality].window_func);
    #ifdef FIXED_POINT
          st->resampler_ptr = resampler_basic_interpolate_single;
    #else
          if (st->quality>8)
             st->resampler_ptr = resampler_basic_interpolate_double;
          else
             st->resampler_ptr = resampler_basic_interpolate_single;
    #endif
          /*fprintf (stderr, "resampler uses interpolated sinc table and normalised cutoff %f\n", cutoff);*/
       }
       st->int_advance = st->num_rate/st->den_rate;
       st->frac_advance = st->num_rate%st->den_rate;
    
       
       /* Here's the place where we update the filter memory to take into account
          the change in filter length. It's probably the messiest part of the code
          due to handling of lots of corner cases. */
       if (!st->mem)
       {
          spx_uint32_t i;
          st->mem_alloc_size = st->filt_len-1 + st->buffer_size;
          st->mem = (spx_word16_t*)speex_alloc(st->nb_channels*st->mem_alloc_size * sizeof(spx_word16_t));
          for (i=0;i<st->nb_channels*st->mem_alloc_size;i++)
             st->mem[i] = 0;
          /*speex_warning("init filter");*/
       } else if (!st->started)
       {
          spx_uint32_t i;
          st->mem_alloc_size = st->filt_len-1 + st->buffer_size;
          st->mem = (spx_word16_t*)speex_realloc(st->mem, st->nb_channels*st->mem_alloc_size * sizeof(spx_word16_t));
          for (i=0;i<st->nb_channels*st->mem_alloc_size;i++)
             st->mem[i] = 0;
          /*speex_warning("reinit filter");*/
       } else if (st->filt_len > old_length)
       {
          spx_int32_t i;
          /* Increase the filter length */
          /*speex_warning("increase filter size");*/
          int old_alloc_size = st->mem_alloc_size;
          if ((st->filt_len-1 + st->buffer_size) > st->mem_alloc_size)
          {
             st->mem_alloc_size = st->filt_len-1 + st->buffer_size;
             st->mem = (spx_word16_t*)speex_realloc(st->mem, st->nb_channels*st->mem_alloc_size * sizeof(spx_word16_t));
          }
          for (i=st->nb_channels-1;i>=0;i--)
          {
             spx_int32_t j;
             spx_uint32_t olen = old_length;
             /*if (st->magic_samples[i])*/
             {
                /* Try and remove the magic samples as if nothing had happened */
                
                /* FIXME: This is wrong but for now we need it to avoid going over the array bounds */
                olen = old_length + 2*st->magic_samples[i];
                for (j=old_length-2+st->magic_samples[i];j>=0;j--)
                   st->mem[i*st->mem_alloc_size+j+st->magic_samples[i]] = st->mem[i*old_alloc_size+j];
                for (j=0;j<st->magic_samples[i];j++)
                   st->mem[i*st->mem_alloc_size+j] = 0;
                st->magic_samples[i] = 0;
             }
             if (st->filt_len > olen)
             {
                /* If the new filter length is still bigger than the "augmented" length */
                /* Copy data going backward */
                for (j=0;j<olen-1;j++)
                   st->mem[i*st->mem_alloc_size+(st->filt_len-2-j)] = st->mem[i*st->mem_alloc_size+(olen-2-j)];
                /* Then put zeros for lack of anything better */
                for (;j<st->filt_len-1;j++)
                   st->mem[i*st->mem_alloc_size+(st->filt_len-2-j)] = 0;
                /* Adjust last_sample */
                st->last_sample[i] += (st->filt_len - olen)/2;
             } else {
                /* Put back some of the magic! */
                st->magic_samples[i] = (olen - st->filt_len)/2;
                for (j=0;j<st->filt_len-1+st->magic_samples[i];j++)
                   st->mem[i*st->mem_alloc_size+j] = st->mem[i*st->mem_alloc_size+j+st->magic_samples[i]];
             }
          }
       } else if (st->filt_len < old_length)
       {
          spx_uint32_t i;
          /* Reduce filter length, this a bit tricky. We need to store some of the memory as "magic"
             samples so they can be used directly as input the next time(s) */
          for (i=0;i<st->nb_channels;i++)
          {
             spx_uint32_t j;
             spx_uint32_t old_magic = st->magic_samples[i];
             st->magic_samples[i] = (old_length - st->filt_len)/2;
             /* We must copy some of the memory that's no longer used */
             /* Copy data going backward */
             for (j=0;j<st->filt_len-1+st->magic_samples[i]+old_magic;j++)
                st->mem[i*st->mem_alloc_size+j] = st->mem[i*st->mem_alloc_size+j+st->magic_samples[i]];
             st->magic_samples[i] += old_magic;
          }
       }
    
    }
    
     SpeexResamplerState *speex_resampler_init(spx_uint32_t nb_channels, spx_uint32_t in_rate, spx_uint32_t out_rate, int quality, int *err)
    {
       return speex_resampler_init_frac(nb_channels, in_rate, out_rate, in_rate, out_rate, quality, err);
    }
    
     SpeexResamplerState *speex_resampler_init_frac(spx_uint32_t nb_channels, spx_uint32_t ratio_num, spx_uint32_t ratio_den, spx_uint32_t in_rate, spx_uint32_t out_rate, int quality, int *err)
    {
       spx_uint32_t i;
       SpeexResamplerState *st;
       if (quality > 10 || quality < 0)
       {
          if (err)
             *err = RESAMPLER_ERR_INVALID_ARG;
          return NULL;
       }
       st = (SpeexResamplerState *)speex_alloc(sizeof(SpeexResamplerState));
       st->initialised = 0;
       st->started = 0;
       st->in_rate = 0;
       st->out_rate = 0;
       st->num_rate = 0;
       st->den_rate = 0;
       st->quality = -1;
       st->sinc_table_length = 0;
       st->mem_alloc_size = 0;
       st->filt_len = 0;
       st->mem = 0;
       st->resampler_ptr = 0;
             
       st->cutoff = 1.f;
       st->nb_channels = nb_channels;
       st->in_stride = 1;
       st->out_stride = 1;
       
    #ifdef FIXED_POINT
       st->buffer_size = 160;
    #else
       st->buffer_size = 160;
    #endif
       
       /* Per channel data */
       st->last_sample = (spx_int32_t*)speex_alloc(nb_channels*sizeof(int));
       st->magic_samples = (spx_uint32_t*)speex_alloc(nb_channels*sizeof(int));
       st->samp_frac_num = (spx_uint32_t*)speex_alloc(nb_channels*sizeof(int));
       for (i=0;i<nb_channels;i++)
       {
          st->last_sample[i] = 0;
          st->magic_samples[i] = 0;
          st->samp_frac_num[i] = 0;
       }
    
       speex_resampler_set_quality(st, quality);
       speex_resampler_set_rate_frac(st, ratio_num, ratio_den, in_rate, out_rate);
    
       
       update_filter(st);
       
       st->initialised = 1;
       if (err)
          *err = RESAMPLER_ERR_SUCCESS;
    
       return st;
    }
    
     void speex_resampler_destroy(SpeexResamplerState *st)
    {
       speex_free(st->mem);
       speex_free(st->sinc_table);
       speex_free(st->last_sample);
       speex_free(st->magic_samples);
       speex_free(st->samp_frac_num);
       speex_free(st);
    }
    
    static int speex_resampler_process_native(SpeexResamplerState *st, spx_uint32_t channel_index, spx_uint32_t *in_len, spx_word16_t *out, spx_uint32_t *out_len)
    {
       int j=0;
       const int N = st->filt_len;
       int out_sample = 0;
       spx_word16_t *mem = st->mem + channel_index * st->mem_alloc_size;
       spx_uint32_t ilen;
       
       st->started = 1;
       
       /* Call the right resampler through the function ptr */
       out_sample = st->resampler_ptr(st, channel_index, mem, in_len, out, out_len);
       
       if (st->last_sample[channel_index] < (spx_int32_t)*in_len)
          *in_len = st->last_sample[channel_index];
       *out_len = out_sample;
       st->last_sample[channel_index] -= *in_len;
       
       ilen = *in_len;
    
       for(j=0;j<N-1;++j)
         mem[j] = mem[j+ilen];
    
       return RESAMPLER_ERR_SUCCESS;
    }
    
    static int speex_resampler_magic(SpeexResamplerState *st, spx_uint32_t channel_index, spx_word16_t **out, spx_uint32_t out_len) {
       spx_uint32_t tmp_in_len = st->magic_samples[channel_index];
       spx_word16_t *mem = st->mem + channel_index * st->mem_alloc_size;
       const int N = st->filt_len;
       
       speex_resampler_process_native(st, channel_index, &tmp_in_len, *out, &out_len);
    
       st->magic_samples[channel_index] -= tmp_in_len;
       
       /* If we couldn't process all "magic" input samples, save the rest for next time */
       if (st->magic_samples[channel_index])
       {
          spx_uint32_t i;
          for (i=0;i<st->magic_samples[channel_index];i++)
             mem[N-1+i]=mem[N-1+i+tmp_in_len];
       }
       *out += out_len*st->out_stride;
       return out_len;
    }
    
    #ifdef FIXED_POINT
     int speex_resampler_process_int(SpeexResamplerState *st, spx_uint32_t channel_index, const spx_int16_t *in, spx_uint32_t *in_len, spx_int16_t *out, spx_uint32_t *out_len)
    #else
     int speex_resampler_process_float(SpeexResamplerState *st, spx_uint32_t channel_index, const float *in, spx_uint32_t *in_len, float *out, spx_uint32_t *out_len)
    #endif
    {
       int j;
       spx_uint32_t ilen = *in_len;
       spx_uint32_t olen = *out_len;
       spx_word16_t *x = st->mem + channel_index * st->mem_alloc_size;
       const int filt_offs = st->filt_len - 1;
       const spx_uint32_t xlen = st->mem_alloc_size - filt_offs;
       const int istride = st->in_stride;
    
       if (st->magic_samples[channel_index]) 
          olen -= speex_resampler_magic(st, channel_index, &out, olen);
       if (! st->magic_samples[channel_index]) {
          while (ilen && olen) {
            spx_uint32_t ichunk = (ilen > xlen) ? xlen : ilen;
            spx_uint32_t ochunk = olen;
     
            if (in) {
               for(j=0;j<ichunk;++j)
                  x[j+filt_offs]=in[j*istride];
            } else {
              for(j=0;j<ichunk;++j)
                x[j+filt_offs]=0;
            }
            speex_resampler_process_native(st, channel_index, &ichunk, out, &ochunk);
            ilen -= ichunk;
            olen -= ochunk;
            out += ochunk * st->out_stride;
            if (in)
               in += ichunk * istride;
          }
       }
       *in_len -= ilen;
       *out_len -= olen;
       return RESAMPLER_ERR_SUCCESS;
    }
    
    #ifdef FIXED_POINT
     int speex_resampler_process_float(SpeexResamplerState *st, spx_uint32_t channel_index, const float *in, spx_uint32_t *in_len, float *out, spx_uint32_t *out_len)
    #else
     int speex_resampler_process_int(SpeexResamplerState *st, spx_uint32_t channel_index, const spx_int16_t *in, spx_uint32_t *in_len, spx_int16_t *out, spx_uint32_t *out_len)
    #endif
    {
       int j;
       const int istride_save = st->in_stride;
       const int ostride_save = st->out_stride;
       spx_uint32_t ilen = *in_len;
       spx_uint32_t olen = *out_len;
       spx_word16_t *x = st->mem + channel_index * st->mem_alloc_size;
       const spx_uint32_t xlen = st->mem_alloc_size - (st->filt_len - 1);
    #ifdef VAR_ARRAYS
       const unsigned int ylen = (olen < FIXED_STACK_ALLOC) ? olen : FIXED_STACK_ALLOC;
       VARDECL(spx_word16_t *ystack);
       ALLOC(ystack, ylen, spx_word16_t);
    #else
       const unsigned int ylen = FIXED_STACK_ALLOC;
       spx_word16_t ystack[FIXED_STACK_ALLOC];
    #endif
    
       st->out_stride = 1;
       
       while (ilen && olen) {
         spx_word16_t *y = ystack;
         spx_uint32_t ichunk = (ilen > xlen) ? xlen : ilen;
         spx_uint32_t ochunk = (olen > ylen) ? ylen : olen;
         spx_uint32_t omagic = 0;
    
         if (st->magic_samples[channel_index]) {
           omagic = speex_resampler_magic(st, channel_index, &y, ochunk);
           ochunk -= omagic;
           olen -= omagic;
         }
         if (! st->magic_samples[channel_index]) {
           if (in) {
             for(j=0;j<ichunk;++j)
    #ifdef FIXED_POINT
               x[j+st->filt_len-1]=WORD2INT(in[j*istride_save]);
    #else
               x[j+st->filt_len-1]=in[j*istride_save];
    #endif
           } else {
             for(j=0;j<ichunk;++j)
               x[j+st->filt_len-1]=0;
           }
    
           speex_resampler_process_native(st, channel_index, &ichunk, y, &ochunk);
         } else {
           ichunk = 0;
           ochunk = 0;
         }
    
         for (j=0;j<ochunk+omagic;++j)
    #ifdef FIXED_POINT
            out[j*ostride_save] = ystack[j];
    #else
            out[j*ostride_save] = WORD2INT(ystack[j]);
    #endif
         
         ilen -= ichunk;
         olen -= ochunk;
         out += (ochunk+omagic) * ostride_save;
         if (in)
           in += ichunk * istride_save;
       }
       st->out_stride = ostride_save;
       *in_len -= ilen;
       *out_len -= olen;
    
       return RESAMPLER_ERR_SUCCESS;
    }
    
     int speex_resampler_process_interleaved_float(SpeexResamplerState *st, const float *in, spx_uint32_t *in_len, float *out, spx_uint32_t *out_len)
    {
       spx_uint32_t i;
       int istride_save, ostride_save;
       spx_uint32_t bak_len = *out_len;
       istride_save = st->in_stride;
       ostride_save = st->out_stride;
       st->in_stride = st->out_stride = st->nb_channels;
       for (i=0;i<st->nb_channels;i++)
       {
          *out_len = bak_len;
          if (in != NULL)
             speex_resampler_process_float(st, i, in+i, in_len, out+i, out_len);
          else
             speex_resampler_process_float(st, i, NULL, in_len, out+i, out_len);
       }
       st->in_stride = istride_save;
       st->out_stride = ostride_save;
       return RESAMPLER_ERR_SUCCESS;
    }
                   
     int speex_resampler_process_interleaved_int(SpeexResamplerState *st, const spx_int16_t *in, spx_uint32_t *in_len, spx_int16_t *out, spx_uint32_t *out_len)
    {
       spx_uint32_t i;
       int istride_save, ostride_save;
       spx_uint32_t bak_len = *out_len;
       istride_save = st->in_stride;
       ostride_save = st->out_stride;
       st->in_stride = st->out_stride = st->nb_channels;
       for (i=0;i<st->nb_channels;i++)
       {
          *out_len = bak_len;
          if (in != NULL)
             speex_resampler_process_int(st, i, in+i, in_len, out+i, out_len);
          else
             speex_resampler_process_int(st, i, NULL, in_len, out+i, out_len);
       }
       st->in_stride = istride_save;
       st->out_stride = ostride_save;
       return RESAMPLER_ERR_SUCCESS;
    }
    
     int speex_resampler_set_rate(SpeexResamplerState *st, spx_uint32_t in_rate, spx_uint32_t out_rate)
    {
       return speex_resampler_set_rate_frac(st, in_rate, out_rate, in_rate, out_rate);
    }
    
     void speex_resampler_get_rate(SpeexResamplerState *st, spx_uint32_t *in_rate, spx_uint32_t *out_rate)
    {
       *in_rate = st->in_rate;
       *out_rate = st->out_rate;
    }
    
     int speex_resampler_set_rate_frac(SpeexResamplerState *st, spx_uint32_t ratio_num, spx_uint32_t ratio_den, spx_uint32_t in_rate, spx_uint32_t out_rate)
    {