Newer
Older
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
* 2) Transferer is in either bridge.
* 3) Transferee is off hold.
*
* Transitions to TRANSFER_COMPLETE:
* 1) TRANSFER_CONSULTING: transferer hangs up or presses the DTMF complete sequence.
* 2) TRANSFER_DOUBLECHECKING: transferer hangs up or presses the DTMF complete sequence.
*
* State operation:
* The transfer target bridge is merged into the transferee bridge. The transferer
* channel is kicked out of the bridges as part of the merge.
*
* State operations:
* 1) Merge the transfer target bridge into the transferee bridge,
* excluding the transferer channel from the merge.
* 2) Publish a stasis transfer message.
*
* Exit operations:
* This is a terminal state, so there are no exit operations.
*/
TRANSFER_COMPLETE,
/*!
* \brief Blond state
*
* This is a terminal state where a transferer has completed an attended transfer prior
* to the transfer target answering. This state is only entered if atxferdropcall
* is set to 'yes'. This is considered to be a successful attended transfer.
*
* Superstate: Transfer
*
* Preconditions:
* 1) Transfer target is RINGING.
* 2) Transferer is in either bridge.
* 3) Transferee is off hold.
*
* Transitions to TRANSFER_BLOND:
* 1) TRANSFER_CALLING_TARGET: Transferer hangs up or presses the DTMF complete sequence.
* atxferdropcall is set to 'yes'.
* 2) TRANSFER_HESITANT: Transferer hangs up or presses the DTMF complete sequence.
* atxferdropcall is set to 'yes'.
*
* State operations:
* The transfer target bridge is merged into the transferee bridge. The transferer
* channel is kicked out of the bridges as part of the merge. A stasis transfer
* publication is sent indicating a successful transfer.
*
* Transitions from TRANSFER_BLOND:
* None
*/
TRANSFER_BLOND,
/*!
* \brief Blond non-final state
*
* This state is very similar to the TRANSFER_BLOND state, except that
* this state is entered when atxferdropcall is set to 'no'. This is the
* initial state of the Recall superstate, so state operations mainly involve
* moving to the Recall superstate. This means that the transfer target, that
* is currently ringing is now known as the recall target.
*
* Superstate: Recall
*
* Preconditions:
* 1) Recall target is RINGING.
* 2) Transferee is off hold.
*
* Transitions to TRANSFER_BLOND_NONFINAL:
* 1) TRANSFER_CALLING_TARGET: Transferer hangs up or presses the DTMF complete sequence.
* atxferdropcall is set to 'no'.
* 2) TRANSFER_HESITANT: Transferer hangs up or presses the DTMF complete sequence.
* atxferdropcall is set to 'no'.
*
* State operation:
* The superstate of the attended transfer is changed from Transfer to Recall.
* The transfer target bridge is merged into the transferee bridge. The transferer
* channel is kicked out of the bridges as part of the merge.
*
* Transitions from TRANSFER_BLOND_NONFINAL:
* 1) TRANSFER_FAIL: Transferee hangs up
* 2) TRANSFER_RESUME: Recall target answers
* 3) TRANSFER_RECALLING: Recall target hangs up or time expires.
*/
TRANSFER_BLOND_NONFINAL,
/*!
* \brief Recalling state
*
* This state is entered if the recall target from the TRANSFER_BLOND_NONFINAL
* or TRANSFER_RETRANSFER states hangs up or does not answer. The goal of this
* state is to call back the original transferer in an attempt to recover the
* original call.
*
* Superstate: Recall
*
* Preconditions:
* 1) Recall target is down.
* 2) Transferee is off hold.
*
* Transitions to TRANSFER_RECALLING:
* 1) TRANSFER_BLOND_NONFINAL: Recall target hangs up or time expires.
* 2) TRANSFER_RETRANSFER: Recall target hangs up or time expires.
* atxferloopdelay is non-zero.
* 3) TRANSFER_WAIT_TO_RECALL: Time expires.
*
* State operation:
* The original transferer becomes the recall target and is called using the Dialing API.
* Ringing is indicated to the transferee.
*
* Transitions from TRANSFER_RECALLING:
* 1) TRANSFER_FAIL:
* a) Transferee hangs up.
* b) Recall target hangs up or time expires, and number of recall attempts exceeds atxfercallbackretries
* 2) TRANSFER_WAIT_TO_RETRANSFER: Recall target hangs up or time expires.
* atxferloopdelay is non-zero.
* 3) TRANSFER_RETRANSFER: Recall target hangs up or time expires.
* atxferloopdelay is zero.
* 4) TRANSFER_RESUME: Recall target answers.
*/
TRANSFER_RECALLING,
/*!
* \brief Wait to Retransfer state
*
* This state is used simply to give a bit of breathing room between attempting
* to call back the original transferer and attempting to call back the original
* transfer target. The transferee hears music on hold during this state as an
* auditory clue that no one is currently being dialed.
*
* Superstate: Recall
*
* Preconditions:
* 1) Recall target is down.
* 2) Transferee is off hold.
*
* Transitions to TRANSFER_WAIT_TO_RETRANSFER:
* 1) TRANSFER_RECALLING: Recall target hangs up or time expires.
* atxferloopdelay is non-zero.
*
* State operation:
* The transferee is placed on hold.
*
* Transitions from TRANSFER_WAIT_TO_RETRANSFER:
* 1) TRANSFER_FAIL: Transferee hangs up.
* 2) TRANSFER_RETRANSFER: Time expires.
*/
TRANSFER_WAIT_TO_RETRANSFER,
/*!
* \brief Retransfer state
*
* This state is used in order to attempt to call back the original
* transfer target channel from the transfer. The transferee hears
* ringing during this state as an auditory cue that a party is being
* dialed.
*
* Superstate: Recall
*
* Preconditions:
* 1) Recall target is down.
* 2) Transferee is off hold.
*
* Transitions to TRANSFER_RETRANSFER:
* 1) TRANSFER_RECALLING: Recall target hangs up or time expires.
* atxferloopdelay is zero.
* 2) TRANSFER_WAIT_TO_RETRANSFER: Time expires.
*
* State operation:
* The original transfer target is requested and is set as the recall target.
* The recall target is called and placed into the transferee bridge.
*
* Transitions from TRANSFER_RETRANSFER:
* 1) TRANSFER_FAIL: Transferee hangs up.
* 2) TRANSFER_WAIT_TO_RECALL: Recall target hangs up or time expires.
* atxferloopdelay is non-zero.
* 3) TRANSFER_RECALLING: Recall target hangs up or time expires.
* atxferloopdelay is zero.
*/
TRANSFER_RETRANSFER,
/*!
* \brief Wait to recall state
*
* This state is used simply to give a bit of breathing room between attempting
* to call back the original transfer target and attempting to call back the
* original transferer. The transferee hears music on hold during this state as an
* auditory clue that no one is currently being dialed.
*
* Superstate: Recall
*
* Preconditions:
* 1) Recall target is down.
* 2) Transferee is off hold.
*
* Transitions to TRANSFER_WAIT_TO_RECALL:
* 1) TRANSFER_RETRANSFER: Recall target hangs up or time expires.
* atxferloopdelay is non-zero.
*
* State operation:
* Transferee is placed on hold.
*
* Transitions from TRANSFER_WAIT_TO_RECALL:
* 1) TRANSFER_FAIL: Transferee hangs up
* 2) TRANSFER_RECALLING: Time expires
*/
TRANSFER_WAIT_TO_RECALL,
/*!
* \brief Fail state
*
* This state indicates that something occurred during the transfer that
* makes a graceful completion impossible. The most common stimulus for this
* state is when the transferee hangs up.
*
* Superstate: Transfer and Recall
*
* Preconditions:
* None
*
* Transitions to TRANSFER_FAIL:
* 1) TRANSFER_CALLING_TARGET: Transferee hangs up.
* 2) TRANSFER_HESITANT: Transferee hangs up.
* 3) TRANSFER_DOUBLECHECKING: Transferee hangs up.
* 4) TRANSFER_BLOND_NONFINAL: Transferee hangs up.
* 5) TRANSFER_RECALLING:
* a) Transferee hangs up.
* b) Recall target hangs up or time expires, and number of
* recall attempts exceeds atxfercallbackretries.
* 6) TRANSFER_WAIT_TO_RETRANSFER: Transferee hangs up.
* 7) TRANSFER_RETRANSFER: Transferee hangs up.
* 8) TRANSFER_WAIT_TO_RECALL: Transferee hangs up.
*
* State operation:
* A transfer stasis publication is made indicating a failed transfer.
* The transferee bridge is destroyed.
*
* Transitions from TRANSFER_FAIL:
* None.
*/
TRANSFER_FAIL,
};
/*!
* \brief Stimuli that can cause transfer state changes
*/
enum attended_transfer_stimulus {
/*! No stimulus. This literally can never happen. */
STIMULUS_NONE,
/*! All of the transferee channels have been hung up. */
STIMULUS_TRANSFEREE_HANGUP,
/*! The transferer has hung up. */
STIMULUS_TRANSFERER_HANGUP,
/*! The transfer target channel has hung up. */
STIMULUS_TRANSFER_TARGET_HANGUP,
/*! The transfer target channel has answered. */
STIMULUS_TRANSFER_TARGET_ANSWER,
/*! The recall target channel has hung up. */
STIMULUS_RECALL_TARGET_HANGUP,
/*! The recall target channel has answered. */
STIMULUS_RECALL_TARGET_ANSWER,
/*! The current state's timer has expired. */
STIMULUS_TIMEOUT,
/*! The transferer pressed the abort DTMF sequence. */
STIMULUS_DTMF_ATXFER_ABORT,
/*! The transferer pressed the complete DTMF sequence. */
STIMULUS_DTMF_ATXFER_COMPLETE,
/*! The transferer pressed the three-way DTMF sequence. */
STIMULUS_DTMF_ATXFER_THREEWAY,
/*! The transferer pressed the swap DTMF sequence. */
STIMULUS_DTMF_ATXFER_SWAP,
};
/*!
* \brief String representations of the various stimuli
*
* Used for debugging purposes
*/
const char *stimulus_strs[] = {
[STIMULUS_NONE] = "None",
[STIMULUS_TRANSFEREE_HANGUP] = "Transferee Hangup",
[STIMULUS_TRANSFERER_HANGUP] = "Transferer Hangup",
[STIMULUS_TRANSFER_TARGET_HANGUP] = "Transfer Target Hangup",
[STIMULUS_TRANSFER_TARGET_ANSWER] = "Transfer Target Answer",
[STIMULUS_RECALL_TARGET_HANGUP] = "Recall Target Hangup",
[STIMULUS_RECALL_TARGET_ANSWER] = "Recall Target Answer",
[STIMULUS_TIMEOUT] = "Timeout",
[STIMULUS_DTMF_ATXFER_ABORT] = "DTMF Abort",
[STIMULUS_DTMF_ATXFER_COMPLETE] = "DTMF Complete",
[STIMULUS_DTMF_ATXFER_THREEWAY] = "DTMF Threeway",
[STIMULUS_DTMF_ATXFER_SWAP] = "DTMF Swap",
};
struct stimulus_list {
enum attended_transfer_stimulus stimulus;
AST_LIST_ENTRY(stimulus_list) next;
};
/*!
* \brief Collection of data related to an attended transfer attempt
*/
struct attended_transfer_properties {
AST_DECLARE_STRING_FIELDS (
/*! Extension of transfer target */
AST_STRING_FIELD(exten);
/*! Context of transfer target */
AST_STRING_FIELD(context);
/*! Sound to play when transfer completes */
AST_STRING_FIELD(xfersound);
/*! The channel technology of the transferer channel */
AST_STRING_FIELD(transferer_type);
/*! The transferer channel address */
AST_STRING_FIELD(transferer_addr);
);
/*! Condition used to synchronize when stimuli are reported to the monitor thread */
ast_cond_t cond;
/*! The bridge where the transferee resides. This bridge is also the bridge that
* survives a successful attended transfer.
*/
struct ast_bridge *transferee_bridge;
/*! The bridge used to place an outbound call to the transfer target. This
* bridge is merged with the transferee_bridge on a successful transfer.
*/
struct ast_bridge *target_bridge;
/*! The party that performs the attended transfer. */
struct ast_channel *transferer;
/*! The local channel dialed to reach the transfer target. */
struct ast_channel *transfer_target;
/*! The party that is currently being recalled. Depending on
* the current state, this may be either the party that originally
* was the transferer or the original transfer target. This is
* set with reference when entering the BLOND_NONFINAL, RECALLING,
* and RETRANSFER states, and the reference released on state exit
* if continuing with recall or retransfer to avoid leak.
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
*/
struct ast_channel *recall_target;
/*! The absolute starting time for running timers */
struct timeval start;
AST_LIST_HEAD_NOLOCK(,stimulus_list) stimulus_queue;
/*! The current state of the attended transfer */
enum attended_transfer_state state;
/*! The current superstate of the attended transfer */
enum attended_transfer_superstate superstate;
/*! Configured atxferdropcall from features.conf */
int atxferdropcall;
/*! Configured atxfercallbackretries from features.conf */
int atxfercallbackretries;
/*! Configured atxferloopdelay from features.conf */
int atxferloopdelay;
/*! Configured atxfernoanswertimeout from features.conf */
int atxfernoanswertimeout;
/*! Count of the number of times that recalls have been attempted */
int retry_attempts;
/*! Framehook ID for outbounc call to transfer target or recall target */
int target_framehook_id;
/*! Dial structure used when recalling transferer channel */
struct ast_dial *dial;
/*! The bridging features the transferer has available */
struct ast_flags transferer_features;
Richard Mudgett
committed
/*! Saved transferer connected line data for recalling the transferer. */
struct ast_party_connected_line original_transferer_colp;
};
static void attended_transfer_properties_destructor(void *obj)
{
struct attended_transfer_properties *props = obj;
ast_debug(1, "Destroy attended transfer properties %p\n", props);
ao2_cleanup(props->target_bridge);
ao2_cleanup(props->transferee_bridge);
/* Use ast_channel_cleanup() instead of ast_channel_unref() for channels since they may be NULL */
ast_channel_cleanup(props->transferer);
ast_channel_cleanup(props->transfer_target);
ast_channel_cleanup(props->recall_target);
Richard Mudgett
committed
ast_party_connected_line_free(&props->original_transferer_colp);
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
ast_string_field_free_memory(props);
ast_cond_destroy(&props->cond);
}
/*!
* \internal
* \brief Determine the transfer context to use.
* \since 12.0.0
*
* \param transferer Channel initiating the transfer.
* \param context User supplied context if available. May be NULL.
*
* \return The context to use for the transfer.
*/
static const char *get_transfer_context(struct ast_channel *transferer, const char *context)
{
if (!ast_strlen_zero(context)) {
return context;
}
context = pbx_builtin_getvar_helper(transferer, "TRANSFER_CONTEXT");
if (!ast_strlen_zero(context)) {
return context;
}
context = ast_channel_macrocontext(transferer);
if (!ast_strlen_zero(context)) {
return context;
}
context = ast_channel_context(transferer);
if (!ast_strlen_zero(context)) {
return context;
}
return "default";
}
/*!
* \brief Allocate and initialize attended transfer properties
*
* \param transferer The channel performing the attended transfer
* \param context Suggestion for what context the transfer target extension can be found in
*
* \retval NULL Failure to allocate or initialize
* \retval non-NULL Newly allocated properties
*/
static struct attended_transfer_properties *attended_transfer_properties_alloc(
struct ast_channel *transferer, const char *context)
{
struct attended_transfer_properties *props;
char *tech;
char *addr;
char *serial;
Richard Mudgett
committed
struct ast_features_xfer_config *xfer_cfg;
struct ast_flags *transferer_features;
props = ao2_alloc(sizeof(*props), attended_transfer_properties_destructor);
if (!props) {
ast_log(LOG_ERROR, "Unable to create props - channel %s, context %s\n",
ast_channel_name(transferer), context);
return NULL;
}
ast_cond_init(&props->cond, NULL);
if (ast_string_field_init(props, 64)) {
ast_log(LOG_ERROR, "Unable to initialize prop fields - channel %s, context %s\n",
ast_channel_name(transferer), context);
ao2_ref(props, -1);
return NULL;
}
props->target_framehook_id = -1;
props->transferer = ast_channel_ref(transferer);
ast_channel_lock(props->transferer);
xfer_cfg = ast_get_chan_features_xfer_config(props->transferer);
if (!xfer_cfg) {
ast_log(LOG_ERROR, "Unable to get transfer configuration from channel %s\n", ast_channel_name(props->transferer));
Richard Mudgett
committed
ast_channel_unlock(props->transferer);
ao2_ref(props, -1);
return NULL;
}
transferer_features = ast_bridge_features_ds_get(props->transferer);
if (transferer_features) {
props->transferer_features = *transferer_features;
}
props->atxferdropcall = xfer_cfg->atxferdropcall;
props->atxfercallbackretries = xfer_cfg->atxfercallbackretries;
props->atxfernoanswertimeout = xfer_cfg->atxfernoanswertimeout;
props->atxferloopdelay = xfer_cfg->atxferloopdelay;
ast_string_field_set(props, context, get_transfer_context(transferer, context));
ast_string_field_set(props, xfersound, xfer_cfg->xfersound);
Richard Mudgett
committed
ao2_ref(xfer_cfg, -1);
Richard Mudgett
committed
/*
* Save the transferee's party information for any recall calls.
* This is the only piece of information needed that gets overwritten
* on the transferer channel by the inital call to the transfer target.
*/
ast_party_connected_line_copy(&props->original_transferer_colp,
ast_channel_connected(props->transferer));
tech = ast_strdupa(ast_channel_name(props->transferer));
addr = strchr(tech, '/');
if (!addr) {
ast_log(LOG_ERROR, "Transferer channel name does not follow typical channel naming format (tech/address)\n");
Richard Mudgett
committed
ast_channel_unlock(props->transferer);
ao2_ref(props, -1);
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
return NULL;
}
*addr++ = '\0';
serial = strrchr(addr, '-');
if (serial) {
*serial = '\0';
}
ast_string_field_set(props, transferer_type, tech);
ast_string_field_set(props, transferer_addr, addr);
ast_channel_unlock(props->transferer);
ast_debug(1, "Allocated attended transfer properties %p for transfer from %s\n",
props, ast_channel_name(props->transferer));
return props;
}
/*!
* \brief Free backlog of stimuli in the queue
*/
static void clear_stimulus_queue(struct attended_transfer_properties *props)
{
struct stimulus_list *list;
SCOPED_AO2LOCK(lock, props);
while ((list = AST_LIST_REMOVE_HEAD(&props->stimulus_queue, next))) {
ast_free(list);
}
}
/*!
* \brief Initiate shutdown of attended transfer properties
*
* Calling this indicates that the attended transfer properties are no longer needed
* because the transfer operation has concluded.
*/
static void attended_transfer_properties_shutdown(struct attended_transfer_properties *props)
{
ast_debug(1, "Shutting down attended transfer %p\n", props);
if (props->transferee_bridge) {
bridge_basic_change_personality(props->transferee_bridge,
BRIDGE_BASIC_PERSONALITY_NORMAL, NULL);
ast_bridge_merge_inhibit(props->transferee_bridge, -1);
}
if (props->target_bridge) {
Richard Mudgett
committed
ast_bridge_destroy(props->target_bridge, 0);
props->target_bridge = NULL;
}
if (props->transferer) {
ast_channel_remove_bridge_role(props->transferer, AST_TRANSFERER_ROLE_NAME);
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
}
clear_stimulus_queue(props);
ao2_cleanup(props);
}
static void stimulate_attended_transfer(struct attended_transfer_properties *props,
enum attended_transfer_stimulus stimulus)
{
struct stimulus_list *list;
list = ast_calloc(1, sizeof(*list));
if (!list) {
ast_log(LOG_ERROR, "Unable to push event to attended transfer queue. Expect transfer to fail\n");
return;
}
list->stimulus = stimulus;
ao2_lock(props);
AST_LIST_INSERT_TAIL(&props->stimulus_queue, list, next);
ast_cond_signal(&props->cond);
ao2_unlock(props);
}
static void remove_attended_transfer_stimulus(struct attended_transfer_properties *props,
enum attended_transfer_stimulus stimulus)
{
struct stimulus_list *list;
ao2_lock(props);
AST_LIST_TRAVERSE_SAFE_BEGIN(&props->stimulus_queue, list, next) {
if (list->stimulus == stimulus) {
AST_LIST_REMOVE_CURRENT(next);
ast_free(list);
break;
}
}
AST_LIST_TRAVERSE_SAFE_END;
ao2_unlock(props);
}
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
/*!
* \brief Get a desired transfer party for a bridge the transferer is not in.
*
* \param bridge The bridge to get the party from. May be NULL.
* \param[out] party The lone channel in the bridge. Will be set NULL if bridge is NULL or multiple parties are present.
*/
static void get_transfer_party_non_transferer_bridge(struct ast_bridge *bridge,
struct ast_channel **party)
{
if (bridge && bridge->num_channels == 1) {
*party = ast_channel_ref(AST_LIST_FIRST(&bridge->channels)->chan);
} else {
*party = NULL;
}
}
/*!
* \brief Get the transferee and transfer target when the transferer is in a bridge with
* one of the desired parties.
*
* \param transferer_bridge The bridge the transferer is in
* \param other_bridge The bridge the transferer is not in. May be NULL.
* \param transferer The transferer party
* \param[out] transferer_peer The party that is in the bridge with the transferer
* \param[out] other_party The party that is in the other_bridge
*/
static void get_transfer_parties_transferer_bridge(struct ast_bridge *transferer_bridge,
struct ast_bridge *other_bridge, struct ast_channel *transferer,
struct ast_channel **transferer_peer, struct ast_channel **other_party)
{
*transferer_peer = ast_bridge_peer(transferer_bridge, transferer);
get_transfer_party_non_transferer_bridge(other_bridge, other_party);
}
/*!
* \brief determine transferee and transfer target for an attended transfer
*
* In builtin attended transfers, there is a single transferer channel that jumps between
* the two bridges involved. At the time the attended transfer occurs, the transferer could
* be in either bridge, so determining the parties is a bit more complex than normal.
*
* The method used here is to determine which of the two bridges the transferer is in, and
* grabbing the peer from that bridge. The other bridge, if it only has a single channel in it,
* has the other desired channel.
*
* \param transferer The channel performing the transfer
* \param transferee_bridge The bridge that the transferee is in
* \param target_bridge The bridge that the transfer target is in
* \param[out] transferee The transferee channel
* \param[out] transfer_target The transfer target channel
*/
static void get_transfer_parties(struct ast_channel *transferer, struct ast_bridge *transferee_bridge,
struct ast_bridge *target_bridge, struct ast_channel **transferee,
struct ast_channel **transfer_target)
{
struct ast_bridge *transferer_bridge;
ast_channel_lock(transferer);
transferer_bridge = ast_channel_get_bridge(transferer);
ast_channel_unlock(transferer);
if (transferer_bridge == transferee_bridge) {
get_transfer_parties_transferer_bridge(transferee_bridge, target_bridge,
transferer, transferee, transfer_target);
} else if (transferer_bridge == target_bridge) {
get_transfer_parties_transferer_bridge(target_bridge, transferee_bridge,
transferer, transfer_target, transferee);
} else {
get_transfer_party_non_transferer_bridge(transferee_bridge, transferee);
get_transfer_party_non_transferer_bridge(target_bridge, transfer_target);
}
ao2_cleanup(transferer_bridge);
}
/*!
* \brief Send a stasis publication for a successful attended transfer
*/
static void publish_transfer_success(struct attended_transfer_properties *props,
struct ast_channel *transferee_channel, struct ast_channel *target_channel)
Mark Michelson
committed
struct ast_attended_transfer_message *transfer_msg;
Mark Michelson
committed
transfer_msg = ast_attended_transfer_message_create(0, props->transferer,
props->transferee_bridge, props->transferer, props->target_bridge,
transferee_channel, target_channel);
Mark Michelson
committed
if (!transfer_msg) {
ast_log(LOG_ERROR, "Unable to publish successful attended transfer from %s\n",
ast_channel_name(props->transferer));
return;
Mark Michelson
committed
ast_attended_transfer_message_add_merge(transfer_msg, props->transferee_bridge);
ast_bridge_publish_attended_transfer(transfer_msg);
ao2_cleanup(transfer_msg);
}
/*!
* \brief Send a stasis publication for an attended transfer that ends in a threeway call
*/
static void publish_transfer_threeway(struct attended_transfer_properties *props,
struct ast_channel *transferee_channel, struct ast_channel *target_channel)
Mark Michelson
committed
struct ast_attended_transfer_message *transfer_msg;
Mark Michelson
committed
transfer_msg = ast_attended_transfer_message_create(0, props->transferer,
props->transferee_bridge, props->transferer, props->target_bridge,
transferee_channel, target_channel);
Mark Michelson
committed
if (!transfer_msg) {
ast_log(LOG_ERROR, "Unable to publish successful three-way transfer from %s\n",
ast_channel_name(props->transferer));
return;
Mark Michelson
committed
ast_attended_transfer_message_add_threeway(transfer_msg, props->transferer,
props->transferee_bridge);
ast_bridge_publish_attended_transfer(transfer_msg);
ao2_cleanup(transfer_msg);
}
/*!
* \brief Send a stasis publication for a failed attended transfer
*/
static void publish_transfer_fail(struct attended_transfer_properties *props)
{
Mark Michelson
committed
struct ast_attended_transfer_message *transfer_msg;
Mark Michelson
committed
transfer_msg = ast_attended_transfer_message_create(0, props->transferer,
props->transferee_bridge, props->transferer, props->target_bridge,
NULL, NULL);
Mark Michelson
committed
if (!transfer_msg) {
ast_log(LOG_ERROR, "Unable to publish failed transfer from %s\n",
ast_channel_name(props->transferer));
return;
Mark Michelson
committed
transfer_msg->result = AST_BRIDGE_TRANSFER_FAIL;
ast_bridge_publish_attended_transfer(transfer_msg);
ao2_cleanup(transfer_msg);
}
/*!
* \brief Helper method to play a sound on a channel in a bridge
*
* \param chan The channel to play the sound to
* \param sound The sound to play
*/
static void play_sound(struct ast_channel *chan, const char *sound)
{
Richard Mudgett
committed
struct ast_bridge_channel *bridge_channel;
ast_channel_lock(chan);
bridge_channel = ast_channel_get_bridge_channel(chan);
ast_channel_unlock(chan);
Richard Mudgett
committed
if (bridge_channel) {
ast_bridge_channel_queue_playfile(bridge_channel, NULL, sound, NULL);
ao2_ref(bridge_channel, -1);
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
/*!
* \brief Helper method to play a fail sound on a channel in a bridge
*
* \param chan The channel to play the fail sound to
*/
static void play_failsound(struct ast_channel *chan)
{
char *sound;
ast_channel_lock(chan);
sound = ast_get_chan_features_xferfailsound(chan);
ast_channel_unlock(chan);
if (sound) {
play_sound(chan, sound);
ast_free(sound);
}
}
/*!
* \brief Helper method to stream a fail sound on a channel
*
* \param chan The channel to stream the fail sound to
*/
static void stream_failsound(struct ast_channel *chan)
{
char *sound;
ast_channel_lock(chan);
sound = ast_get_chan_features_xferfailsound(chan);
ast_channel_unlock(chan);
if (sound) {
ast_stream_and_wait(chan, sound, AST_DIGIT_NONE);
ast_free(sound);
}
}
/*!
* \brief Helper method to place a channel in a bridge on hold
*/
static void hold(struct ast_channel *chan)
{
Richard Mudgett
committed
struct ast_bridge_channel *bridge_channel;
Richard Mudgett
committed
if (!chan) {
return;
}
Richard Mudgett
committed
ast_channel_lock(chan);
bridge_channel = ast_channel_get_bridge_channel(chan);
ast_channel_unlock(chan);
Richard Mudgett
committed
if (bridge_channel) {
ast_bridge_channel_write_hold(bridge_channel, NULL);
Richard Mudgett
committed
ao2_ref(bridge_channel, -1);
}
}
/*!
* \brief Helper method to take a channel in a bridge off hold
*/
static void unhold(struct ast_channel *chan)
{
Richard Mudgett
committed
struct ast_bridge_channel *bridge_channel;
if (!chan) {
return;
}
ast_channel_lock(chan);
bridge_channel = ast_channel_get_bridge_channel(chan);
ast_channel_unlock(chan);
Richard Mudgett
committed
if (bridge_channel) {
ast_bridge_channel_write_unhold(bridge_channel);
ao2_ref(bridge_channel, -1);
}
}
/*!
* \brief Helper method to send a ringing indication to a channel in a bridge
*/
static void ringing(struct ast_channel *chan)
{
Richard Mudgett
committed
struct ast_bridge_channel *bridge_channel;
ast_channel_lock(chan);
bridge_channel = ast_channel_get_bridge_channel(chan);
ast_channel_unlock(chan);
Richard Mudgett
committed
if (bridge_channel) {
ast_bridge_channel_write_control_data(bridge_channel, AST_CONTROL_RINGING, NULL, 0);
ao2_ref(bridge_channel, -1);
}
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
}
/*!
* \brief Helper method to send a ringing indication to all channels in a bridge
*/
static void bridge_ringing(struct ast_bridge *bridge)
{
struct ast_frame ringing = {
.frametype = AST_FRAME_CONTROL,
.subclass.integer = AST_CONTROL_RINGING,
};
ast_bridge_queue_everyone_else(bridge, NULL, &ringing);
}
/*!
* \brief Helper method to send a hold frame to all channels in a bridge
*/
static void bridge_hold(struct ast_bridge *bridge)
{
struct ast_frame hold = {
.frametype = AST_FRAME_CONTROL,
.subclass.integer = AST_CONTROL_HOLD,
};
ast_bridge_queue_everyone_else(bridge, NULL, &hold);
}
/*!
* \brief Helper method to send an unhold frame to all channels in a bridge
*/
static void bridge_unhold(struct ast_bridge *bridge)
{
struct ast_frame unhold = {
.frametype = AST_FRAME_CONTROL,
.subclass.integer = AST_CONTROL_UNHOLD,
};
ast_bridge_queue_everyone_else(bridge, NULL, &unhold);
}
/*!
* \brief Wrapper for \ref bridge_do_move
Richard Mudgett
committed
static void bridge_move(struct ast_bridge *dest, struct ast_bridge *src, struct ast_channel *channel, struct ast_channel *swap)
Richard Mudgett
committed
struct ast_bridge_channel *bridge_channel;
ast_bridge_lock_both(src, dest);
ast_channel_lock(channel);
bridge_channel = ast_channel_get_bridge_channel(channel);
ast_channel_unlock(channel);
Richard Mudgett
committed
if (bridge_channel) {
ao2_lock(bridge_channel);
bridge_channel->swap = swap;
ao2_unlock(bridge_channel);
Richard Mudgett
committed
bridge_do_move(dest, bridge_channel, 1, 0);
}
ast_bridge_unlock(dest);
ast_bridge_unlock(src);
Richard Mudgett
committed
ao2_cleanup(bridge_channel);
* \brief Wrapper for \ref bridge_do_merge
*/
static void bridge_merge(struct ast_bridge *dest, struct ast_bridge *src, struct ast_channel **kick_channels, unsigned int num_channels)
{
struct ast_bridge_channel **kick_bridge_channels = num_channels ?
ast_alloca(num_channels * sizeof(*kick_bridge_channels)) : NULL;
int i;
int num_bridge_channels = 0;
ast_bridge_lock_both(dest, src);
for (i = 0; i < num_channels; ++i) {
struct ast_bridge_channel *kick_bridge_channel;
kick_bridge_channel = bridge_find_channel(src, kick_channels[i]);
if (!kick_bridge_channel) {
kick_bridge_channel = bridge_find_channel(dest, kick_channels[i]);
}
/* It's possible (and fine) for the bridge channel to be NULL at this point if the
* channel has hung up already. If that happens, we can just remove it from the list
* of bridge channels to kick from the bridge
*/
if (!kick_bridge_channel) {
continue;
}
kick_bridge_channels[num_bridge_channels++] = kick_bridge_channel;
}
bridge_do_merge(dest, src, kick_bridge_channels, num_bridge_channels, 0);
ast_bridge_unlock(dest);
ast_bridge_unlock(src);
Richard Mudgett
committed
}
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
/*!
* \brief Flags that indicate properties of attended transfer states
*/
enum attended_transfer_state_flags {
/*! This state requires that the timer be reset when entering the state */
TRANSFER_STATE_FLAG_TIMER_RESET = (1 << 0),
/*! This state's timer uses atxferloopdelay */
TRANSFER_STATE_FLAG_TIMER_LOOP_DELAY = (1 << 1),
/*! This state's timer uses atxfernoanswertimeout */
TRANSFER_STATE_FLAG_ATXFER_NO_ANSWER = (1 << 2),
/*! This state has a time limit associated with it */
TRANSFER_STATE_FLAG_TIMED = (TRANSFER_STATE_FLAG_TIMER_RESET |
TRANSFER_STATE_FLAG_TIMER_LOOP_DELAY | TRANSFER_STATE_FLAG_ATXFER_NO_ANSWER),
/*! This state does not transition to any other states */
TRANSFER_STATE_FLAG_TERMINAL = (1 << 3),
};
static int calling_target_enter(struct attended_transfer_properties *props);
static enum attended_transfer_state calling_target_exit(struct attended_transfer_properties *props,
enum attended_transfer_stimulus stimulus);
static int hesitant_enter(struct attended_transfer_properties *props);
static enum attended_transfer_state hesitant_exit(struct attended_transfer_properties *props,
enum attended_transfer_stimulus stimulus);
static int rebridge_enter(struct attended_transfer_properties *props);
static int resume_enter(struct attended_transfer_properties *props);
static int threeway_enter(struct attended_transfer_properties *props);
static int consulting_enter(struct attended_transfer_properties *props);
static enum attended_transfer_state consulting_exit(struct attended_transfer_properties *props,
enum attended_transfer_stimulus stimulus);
static int double_checking_enter(struct attended_transfer_properties *props);
static enum attended_transfer_state double_checking_exit(struct attended_transfer_properties *props,
enum attended_transfer_stimulus stimulus);
static int complete_enter(struct attended_transfer_properties *props);
static int blond_enter(struct attended_transfer_properties *props);
static int blond_nonfinal_enter(struct attended_transfer_properties *props);
static enum attended_transfer_state blond_nonfinal_exit(struct attended_transfer_properties *props,
enum attended_transfer_stimulus stimulus);
static int recalling_enter(struct attended_transfer_properties *props);
static enum attended_transfer_state recalling_exit(struct attended_transfer_properties *props,
enum attended_transfer_stimulus stimulus);
static int wait_to_retransfer_enter(struct attended_transfer_properties *props);
static enum attended_transfer_state wait_to_retransfer_exit(struct attended_transfer_properties *props,
enum attended_transfer_stimulus stimulus);
static int retransfer_enter(struct attended_transfer_properties *props);
static enum attended_transfer_state retransfer_exit(struct attended_transfer_properties *props,
enum attended_transfer_stimulus stimulus);
static int wait_to_recall_enter(struct attended_transfer_properties *props);
static enum attended_transfer_state wait_to_recall_exit(struct attended_transfer_properties *props,
enum attended_transfer_stimulus stimulus);
static int fail_enter(struct attended_transfer_properties *props);
/*!
* \brief Properties of an attended transfer state
*/
struct attended_transfer_state_properties {