Newer
Older
* Asterisk -- An open source telephony toolkit.
* Copyright (C) 1999 - 2005, Digium, Inc.
*
* Goertzel routines are borrowed from Steve Underwood's tremendous work on the
* DTMF detector.
*
* See http://www.asterisk.org for more information about
* the Asterisk project. Please do not directly contact
* any of the maintainers of this project for assistance;
* the project provides a web site, mailing lists and IRC
* channels for your use.
*
* This program is free software, distributed under the terms of
* the GNU General Public License Version 2. See the LICENSE file
* at the top of the source tree.
*/
* \brief Convenience Signal Processing routines
*
* \author Mark Spencer <markster@digium.com>
* \author Steve Underwood <steveu@coppice.org>
/*! \li \ref dsp.c uses the configuration file \ref dsp.conf
* \addtogroup configuration_file Configuration Files
*/
/*!
* \page dsp.conf dsp.conf
* \verbinclude dsp.conf.sample
*/
/* Some routines from tone_detect.c by Steven Underwood as published under the zapata library */
/*
tone_detect.c - General telephony tone detection, and specific
Copyright (C) 2001 Steve Underwood <steveu@coppice.org>
Despite my general liking of the GPL, I place this code in the
public domain for the benefit of all mankind - even the slimy
ones who might try to proprietize my work and use it to my
detriment.
/*** MODULEINFO
<support_level>core</support_level>
***/
Kevin P. Fleming
committed
#include "asterisk.h"
ASTERISK_FILE_VERSION(__FILE__, "$Revision$")
#include "asterisk/frame.h"
#include "asterisk/format_cache.h"
#include "asterisk/channel.h"
#include "asterisk/dsp.h"
#include "asterisk/ulaw.h"
#include "asterisk/alaw.h"
Russell Bryant
committed
#include "asterisk/utils.h"
#include "asterisk/options.h"
#include "asterisk/config.h"
#include "asterisk/test.h"
Russell Bryant
committed
/*! Number of goertzels for progress detect */
enum gsamp_size {
GSAMP_SIZE_NA = 183, /*!< North America - 350, 440, 480, 620, 950, 1400, 1800 Hz */
GSAMP_SIZE_CR = 188, /*!< Costa Rica, Brazil - Only care about 425 Hz */
GSAMP_SIZE_UK = 160 /*!< UK disconnect goertzel feed - should trigger 400hz */
Russell Bryant
committed
};
Russell Bryant
committed
enum prog_mode {
PROG_MODE_NA = 0,
PROG_MODE_CR,
PROG_MODE_UK
};
Russell Bryant
committed
/*! For US modes { */
HZ_350 = 0,
HZ_440,
HZ_480,
HZ_620,
HZ_950,
HZ_1400,
HZ_1800, /*!< } */
/*! For CR/BR modes */
HZ_425 = 0,
/*! For UK mode */
Tilghman Lesher
committed
HZ_350UK = 0,
HZ_400UK,
HZ_440UK
Russell Bryant
committed
};
static struct progalias {
char *name;
Russell Bryant
committed
enum prog_mode mode;
} aliases[] = {
{ "us", PROG_MODE_NA },
{ "ca", PROG_MODE_NA },
{ "cr", PROG_MODE_CR },
{ "uk", PROG_MODE_UK },
Russell Bryant
committed
enum gsamp_size size;
Russell Bryant
committed
{ GSAMP_SIZE_NA, { 350, 440, 480, 620, 950, 1400, 1800 } }, /*!< North America */
{ GSAMP_SIZE_CR, { 425 } }, /*!< Costa Rica, Brazil */
{ GSAMP_SIZE_UK, { 350, 400, 440 } }, /*!< UK */
/*!\brief This value is the minimum threshold, calculated by averaging all
* of the samples within a frame, for which a frame is determined to either
* be silence (below the threshold) or noise (above the threshold). Please
* note that while the default threshold is an even exponent of 2, there is
* no requirement that it be so. The threshold will accept any value between
* 0 and 32767.
*/
#define DEFAULT_THRESHOLD 512
Russell Bryant
committed
enum busy_detect {
BUSY_PERCENT = 10, /*!< The percentage difference between the two last silence periods */
Russell Bryant
committed
BUSY_PAT_PERCENT = 7, /*!< The percentage difference between measured and actual pattern */
BUSY_THRESHOLD = 100, /*!< Max number of ms difference between max and min times in busy */
BUSY_MIN = 75, /*!< Busy must be at least 80 ms in half-cadence */
BUSY_MAX = 3100 /*!< Busy can't be longer than 3100 ms in half-cadence */
Russell Bryant
committed
};
Russell Bryant
committed
/*! Remember last 15 units */
Russell Bryant
committed
#define TONE_THRESH 10.0 /*!< How much louder the tone should be than channel energy */
#define TONE_MIN_THRESH 1e8 /*!< How much tone there should be at least to attempt */
Russell Bryant
committed
/*! All THRESH_XXX values are in GSAMP_SIZE chunks (us = 22ms) */
enum gsamp_thresh {
THRESH_RING = 8, /*!< Need at least 150ms ring to accept */
THRESH_TALK = 2, /*!< Talk detection does not work continuously */
THRESH_BUSY = 4, /*!< Need at least 80ms to accept */
THRESH_CONGESTION = 4, /*!< Need at least 80ms to accept */
THRESH_HANGUP = 60, /*!< Need at least 1300ms to accept hangup */
Russell Bryant
committed
THRESH_RING2ANSWER = 300 /*!< Timeout from start of ring to answer (about 6600 ms) */
};
#define MAX_DTMF_DIGITS 128
/* Basic DTMF (AT&T) specs:
*
* Minimum tone on = 40ms
* Minimum tone off = 50ms
* Maximum digit rate = 10 per second
* Normal twist <= 8dB accepted
* Reverse twist <= 4dB accepted
* S/N >= 15dB will detect OK
* Attenuation <= 26dB will detect OK
* Frequency tolerance +- 1.5% will detect, +-3.5% will reject
*/
#define DTMF_THRESHOLD 8.0e7
#define DEF_DTMF_NORMAL_TWIST 6.31 /* 8.0dB */
#define DEF_RELAX_DTMF_NORMAL_TWIST 6.31 /* 8.0dB */
#ifdef RADIO_RELAX
#define DEF_DTMF_REVERSE_TWIST 2.51 /* 4.01dB */
#define DEF_RELAX_DTMF_REVERSE_TWIST 6.61 /* 8.2dB */
#else
#define DEF_DTMF_REVERSE_TWIST 2.51 /* 4.01dB */
#define DEF_RELAX_DTMF_REVERSE_TWIST 3.98 /* 6.0dB */
#endif
#define DTMF_RELATIVE_PEAK_ROW 6.3 /* 8dB */
#define DTMF_RELATIVE_PEAK_COL 6.3 /* 8dB */
#define DTMF_TO_TOTAL_ENERGY 42.0
#define BELL_MF_THRESHOLD 1.6e9
#define BELL_MF_TWIST 4.0 /* 6dB */
#define BELL_MF_RELATIVE_PEAK 12.6 /* 11dB */
#if defined(BUSYDETECT_TONEONLY) && defined(BUSYDETECT_COMPARE_TONE_AND_SILENCE)
#error You cant use BUSYDETECT_TONEONLY together with BUSYDETECT_COMPARE_TONE_AND_SILENCE
Russell Bryant
committed
#endif
/* The CNG signal consists of the transmission of 1100 Hz for 1/2 second,
* followed by a 3 second silent (2100 Hz OFF) period.
*/
#define FAX_TONE_CNG_FREQ 1100
#define FAX_TONE_CNG_DURATION 500 /* ms */
#define FAX_TONE_CNG_DB 16
/* This signal may be sent by the Terminating FAX machine anywhere between
* 1.8 to 2.5 seconds AFTER answering the call. The CED signal consists
* of a 2100 Hz tone that is from 2.6 to 4 seconds in duration.
*/
#define FAX_TONE_CED_FREQ 2100
#define FAX_TONE_CED_DURATION 2600 /* ms */
#define FAX_TONE_CED_DB 16
#define DEFAULT_SAMPLE_RATE 8000
/* MF goertzel size */
#define MF_GSIZE 120
/* DTMF goertzel size */
#define DTMF_GSIZE 102
/* How many successive hits needed to consider begin of a digit
* IE. Override with dtmf_hits_to_begin=4 in dsp.conf
*/
#define DEF_DTMF_HITS_TO_BEGIN 2
/* How many successive misses needed to consider end of a digit
* IE. Override with dtmf_misses_to_end=4 in dsp.conf
*/
#define DEF_DTMF_MISSES_TO_END 3
/*!
* \brief The default silence threshold we will use if an alternate
* configured value is not present or is invalid.
*/
static const int DEFAULT_SILENCE_THRESHOLD = 256;
#define CONFIG_FILE_NAME "dsp.conf"
/*! The previous previous sample calculation (No binary point just plain int) */
/*! The previous sample calculation (No binary point just plain int) */
/*! v2 and v3 power of two exponent to keep value in int range */
int chunky;
/*! 15 bit fixed point goertzel coefficient = 2 * cos(2 * pi * freq / sample_rate) */
typedef struct {
int value;
int power;
} goertzel_result_t;
typedef struct
{
int freq;
int block_size;
int squelch; /* Remove (squelch) tone */
goertzel_state_t tone;
float energy; /* Accumulated energy of the current block */
int samples_pending; /* Samples remain to complete the current block */
int mute_samples; /* How many additional samples needs to be muted to suppress already detected tone */
int hits_required; /* How many successive blocks with tone we are looking for */
float threshold; /* Energy of the tone relative to energy from all other signals to consider a hit */
int hit_count; /* How many successive blocks we consider tone present */
int last_hit; /* Indicates if the last processed block was a hit */
} tone_detect_state_t;
goertzel_state_t row_out[4];
goertzel_state_t col_out[4];
int hits; /* How many successive hits we have seen already */
int misses; /* How many successive misses we have seen already */
float energy;
int current_sample;
} dtmf_detect_state_t;
typedef struct
{
goertzel_state_t tone_out[6];
int hits[5];
int current_sample;
typedef struct
{
char digits[MAX_DTMF_DIGITS + 1];
Tilghman Lesher
committed
int digitlen[MAX_DTMF_DIGITS + 1];
int detected_digits;
int lost_digits;
union {
dtmf_detect_state_t dtmf;
mf_detect_state_t mf;
} td;
} digit_detect_state_t;
static const float dtmf_row[] = {
697.0, 770.0, 852.0, 941.0
static const float dtmf_col[] = {
1209.0, 1336.0, 1477.0, 1633.0
static const float mf_tones[] = {
700.0, 900.0, 1100.0, 1300.0, 1500.0, 1700.0
};
static const char dtmf_positions[] = "123A" "456B" "789C" "*0#D";
static const char bell_mf_positions[] = "1247C-358A--69*---0B----#";
static int thresholds[THRESHOLD_MAX];
static float dtmf_normal_twist; /* AT&T = 8dB */
static float dtmf_reverse_twist; /* AT&T = 4dB */
static float relax_dtmf_normal_twist; /* AT&T = 8dB */
static float relax_dtmf_reverse_twist; /* AT&T = 6dB */
static int dtmf_hits_to_begin; /* How many successive hits needed to consider begin of a digit */
static int dtmf_misses_to_end; /* How many successive misses needed to consider end of a digit */
static inline void goertzel_sample(goertzel_state_t *s, short sample)
{
/*
* Shift previous values so
* v1 is previous previous value
* v2 is previous value
* until the new v3 is calculated.
*/
/* Discard the binary fraction introduced by s->fac */
s->v3 = (s->fac * s->v2) >> 15;
/* Scale sample to match previous values */
s->v3 = s->v3 - v1 + (sample >> s->chunky);
if (abs(s->v3) > (1 << 15)) {
/* The result is now too large so increase the chunky power. */
s->chunky++;
s->v3 = s->v3 >> 1;
s->v2 = s->v2 >> 1;
}
}
static inline float goertzel_result(goertzel_state_t *s)
{
goertzel_result_t r;
r.value = (s->v3 * s->v3) + (s->v2 * s->v2);
r.value -= ((s->v2 * s->v3) >> 15) * s->fac;
/*
* We have to double the exponent because we multiplied the
* previous sample calculation values together.
*/
r.power = s->chunky * 2;
return (float)r.value * (float)(1 << r.power);
Alec L Davis
committed
static inline void goertzel_init(goertzel_state_t *s, float freq, unsigned int sample_rate)
s->v2 = s->v3 = s->chunky = 0;
s->fac = (int)(32768.0 * 2.0 * cos(2.0 * M_PI * freq / sample_rate));
}
static inline void goertzel_reset(goertzel_state_t *s)
{
s->v2 = s->v3 = s->chunky = 0;
typedef struct {
int start;
int end;
} fragment_t;
/* Note on tone suppression (squelching). Individual detectors (DTMF/MF/generic tone)
Alec L Davis
committed
* report fragments of the frame in which detected tone resides and which needs
* to be "muted" in order to suppress the tone. To mark fragment for muting,
* detectors call mute_fragment passing fragment_t there. Multiple fragments
* can be marked and ast_dsp_process later will mute all of them.
*
* Note: When tone starts in the middle of a Goertzel block, it won't be properly
* detected in that block, only in the next. If we only mute the next block
* where tone is actually detected, the user will still hear beginning
* of the tone in preceeding block. This is why we usually want to mute some amount
* of samples preceeding and following the block where tone was detected.
*/
struct ast_dsp {
struct ast_frame f;
int threshold;
int totalsilence;
int totalnoise;
int features;
int ringtimeout;
struct ast_dsp_busy_pattern busy_cadence;
int historicnoise[DSP_HISTORY];
int historicsilence[DSP_HISTORY];
goertzel_state_t freqs[FREQ_ARRAY_SIZE];
Russell Bryant
committed
enum gsamp_size gsamp_size;
enum prog_mode progmode;
int display_inband_dtmf_warning;
digit_detect_state_t digit_state;
tone_detect_state_t cng_tone_state;
tone_detect_state_t ced_tone_state;
static void mute_fragment(struct ast_dsp *dsp, fragment_t *fragment)
{
if (dsp->mute_fragments >= ARRAY_LEN(dsp->mute_data)) {
ast_log(LOG_ERROR, "Too many fragments to mute. Ignoring\n");
return;
}
dsp->mute_data[dsp->mute_fragments++] = *fragment;
}
static void ast_tone_detect_init(tone_detect_state_t *s, int freq, int duration, int amp, unsigned int sample_rate)
{
int duration_samples;
float x;
int periods_in_block;
s->freq = freq;
/* Desired tone duration in samples */
duration_samples = duration * sample_rate / 1000;
/* We want to allow 10% deviation of tone duration */
duration_samples = duration_samples * 9 / 10;
/* If we want to remove tone, it is important to have block size not
to exceed frame size. Otherwise by the moment tone is detected it is too late
to squelch it from previous frames. Block size is 20ms at the given sample rate.*/
s->block_size = (20 * sample_rate) / 1000;
periods_in_block = s->block_size * freq / sample_rate;
/* Make sure we will have at least 5 periods at target frequency for analisys.
This may make block larger than expected packet and will make squelching impossible
but at least we will be detecting the tone */
/* Now calculate final block size. It will contain integer number of periods */
s->block_size = periods_in_block * sample_rate / freq;
/* tone_detect is currently only used to detect fax tones and we
Alec L Davis
committed
do not need squelching the fax tones */
s->squelch = 0;
/* Account for the first and the last block to be incomplete
and thus no tone will be detected in them */
s->hits_required = (duration_samples - (s->block_size - 1)) / s->block_size;
Alec L Davis
committed
goertzel_init(&s->tone, freq, sample_rate);
s->samples_pending = s->block_size;
s->hit_count = 0;
s->last_hit = 0;
s->energy = 0.0;
/* We want tone energy to be amp decibels above the rest of the signal (the noise).
According to Parseval's theorem the energy computed in time domain equals to energy
computed in frequency domain. So subtracting energy in the frequency domain (Goertzel result)
from the energy in the time domain we will get energy of the remaining signal (without the tone
we are detecting). We will be checking that
10*log(Ew / (Et - Ew)) > amp
Calculate threshold so that we will be actually checking
Ew > Et * threshold
*/
x = pow(10.0, amp / 10.0);
s->threshold = x / (x + 1);
ast_debug(1, "Setup tone %d Hz, %d ms, block_size=%d, hits_required=%d\n", freq, duration, s->block_size, s->hits_required);
}
static void ast_fax_detect_init(struct ast_dsp *s)
{
ast_tone_detect_init(&s->cng_tone_state, FAX_TONE_CNG_FREQ, FAX_TONE_CNG_DURATION, FAX_TONE_CNG_DB, s->sample_rate);
ast_tone_detect_init(&s->ced_tone_state, FAX_TONE_CED_FREQ, FAX_TONE_CED_DURATION, FAX_TONE_CED_DB, s->sample_rate);
if (s->faxmode & DSP_FAXMODE_DETECT_SQUELCH) {
s->cng_tone_state.squelch = 1;
s->ced_tone_state.squelch = 1;
}
static void ast_dtmf_detect_init(dtmf_detect_state_t *s, unsigned int sample_rate)
for (i = 0; i < 4; i++) {
Alec L Davis
committed
goertzel_init(&s->row_out[i], dtmf_row[i], sample_rate);
goertzel_init(&s->col_out[i], dtmf_col[i], sample_rate);
Alec L Davis
committed
s->lasthit = 0;
s->current_hit = 0;
s->energy = 0.0;
Alec L Davis
committed
static void ast_mf_detect_init(mf_detect_state_t *s, unsigned int sample_rate)
Alec L Davis
committed
Alec L Davis
committed
for (i = 0; i < 6; i++) {
goertzel_init(&s->tone_out[i], mf_tones[i], sample_rate);
Alec L Davis
committed
s->hits[0] = s->hits[1] = s->hits[2] = s->hits[3] = s->hits[4] = 0;
s->current_hit = 0;
}
static void ast_digit_detect_init(digit_detect_state_t *s, int mf, unsigned int sample_rate)
{
s->current_digits = 0;
s->detected_digits = 0;
s->lost_digits = 0;
s->digits[0] = '\0';
Tilghman Lesher
committed
if (mf) {
ast_mf_detect_init(&s->td.mf, sample_rate);
Tilghman Lesher
committed
} else {
ast_dtmf_detect_init(&s->td.dtmf, sample_rate);
Tilghman Lesher
committed
}
static int tone_detect(struct ast_dsp *dsp, tone_detect_state_t *s, int16_t *amp, int samples)
{
float tone_energy;
int i;
int hit = 0;
int limit;
int res = 0;
int16_t *ptr;
Alec L Davis
committed
short samp;
if (s->squelch && s->mute_samples > 0) {
mute.end = (s->mute_samples < samples) ? s->mute_samples : samples;
s->mute_samples -= mute.end;
}
for (start = 0; start < samples; start = end) {
Tilghman Lesher
committed
if (limit > s->samples_pending) {
Tilghman Lesher
committed
}
for (i = limit, ptr = amp ; i > 0; i--, ptr++) {
Alec L Davis
committed
samp = *ptr;
Alec L Davis
committed
/* signed 32 bit int should be enough to square any possible signed 16 bit value */
Alec L Davis
committed
s->energy += (int32_t) samp * (int32_t) samp;
Alec L Davis
committed
goertzel_sample(&s->tone, samp);
}
s->samples_pending -= limit;
if (s->samples_pending) {
/* Finished incomplete (last) block */
break;
}
tone_energy = goertzel_result(&s->tone);
/* Scale to make comparable */
tone_energy *= 2.0;
s->energy *= s->block_size;
ast_debug(10, "%d Hz tone %2d Ew=%.4E, Et=%.4E, s/n=%10.2f\n", s->freq, s->hit_count, tone_energy, s->energy, tone_energy / (s->energy - tone_energy));
if (TONE_THRESHOLD <= tone_energy
&& tone_energy > s->energy * s->threshold) {
ast_debug(10, "%d Hz tone Hit! %2d Ew=%.4E, Et=%.4E, s/n=%10.2f\n", s->freq, s->hit_count, tone_energy, s->energy, tone_energy / (s->energy - tone_energy));
Tilghman Lesher
committed
if (s->hit_count) {
Tilghman Lesher
committed
}
if (hit == s->last_hit) {
if (!hit) {
/* Two successive misses. Tone ended */
s->hit_count = 0;
} else if (!s->hit_count) {
s->hit_count++;
}
}
if (s->hit_count == s->hits_required) {
ast_debug(1, "%d Hz tone detected\n", s->freq);
res = 1;
}
s->last_hit = hit;
/* If we had a hit in this block, include it into mute fragment */
if (s->squelch && hit) {
if (mute.end < start - s->block_size) {
/* There is a gap between fragments */
mute_fragment(dsp, &mute);
mute.start = (start > s->block_size) ? (start - s->block_size) : 0;
}
mute.end = end + s->block_size;
}
/* Reinitialise the detector for the next block */
/* Reset for the next block */
goertzel_reset(&s->tone);
/* Advance to the next block */
s->energy = 0.0;
s->samples_pending = s->block_size;
amp += limit;
}
if (s->squelch && mute.end) {
if (mute.end > samples) {
s->mute_samples = mute.end - samples;
mute.end = samples;
}
mute_fragment(dsp, &mute);
}
return res;
}
static void store_digit(digit_detect_state_t *s, char digit)
{
s->detected_digits++;
if (s->current_digits < MAX_DTMF_DIGITS) {
Tilghman Lesher
committed
s->digitlen[s->current_digits] = 0;
s->digits[s->current_digits++] = digit;
s->digits[s->current_digits] = '\0';
} else {
ast_log(LOG_WARNING, "Digit lost due to full buffer\n");
s->lost_digits++;
}
static int dtmf_detect(struct ast_dsp *dsp, digit_detect_state_t *s, int16_t amp[], int samples, int squelch, int relax)
float row_energy[4];
float col_energy[4];
int i;
int j;
int sample;
Alec L Davis
committed
short samp;
int best_row;
int best_col;
int hit;
int limit;
fragment_t mute = {0, 0};
if (squelch && s->td.dtmf.mute_samples > 0) {
mute.end = (s->td.dtmf.mute_samples < samples) ? s->td.dtmf.mute_samples : samples;
s->td.dtmf.mute_samples -= mute.end;
}
Tilghman Lesher
committed
for (sample = 0; sample < samples; sample = limit) {
/* DTMF_GSIZE is optimised to meet the DTMF specs. */
Tilghman Lesher
committed
if ((samples - sample) >= (DTMF_GSIZE - s->td.dtmf.current_sample)) {
limit = sample + (DTMF_GSIZE - s->td.dtmf.current_sample);
Tilghman Lesher
committed
} else {
Tilghman Lesher
committed
}
/* The following unrolled loop takes only 35% (rough estimate) of the
time of a rolled loop on the machine on which it was developed */
for (j = sample; j < limit; j++) {
Alec L Davis
committed
samp = amp[j];
s->td.dtmf.energy += (int32_t) samp * (int32_t) samp;
/* With GCC 2.95, the following unrolled code seems to take about 35%
(rough estimate) as long as a neat little 0-3 loop */
Alec L Davis
committed
goertzel_sample(s->td.dtmf.row_out, samp);
goertzel_sample(s->td.dtmf.col_out, samp);
goertzel_sample(s->td.dtmf.row_out + 1, samp);
goertzel_sample(s->td.dtmf.col_out + 1, samp);
goertzel_sample(s->td.dtmf.row_out + 2, samp);
goertzel_sample(s->td.dtmf.col_out + 2, samp);
goertzel_sample(s->td.dtmf.row_out + 3, samp);
goertzel_sample(s->td.dtmf.col_out + 3, samp);
s->td.dtmf.current_sample += (limit - sample);
/* We are at the end of a DTMF detection block */
/* Find the peak row and the peak column */
row_energy[0] = goertzel_result(&s->td.dtmf.row_out[0]);
col_energy[0] = goertzel_result(&s->td.dtmf.col_out[0]);
for (best_row = best_col = 0, i = 1; i < 4; i++) {
row_energy[i] = goertzel_result(&s->td.dtmf.row_out[i]);
Tilghman Lesher
committed
if (row_energy[i] > row_energy[best_row]) {
Tilghman Lesher
committed
}
col_energy[i] = goertzel_result(&s->td.dtmf.col_out[i]);
Tilghman Lesher
committed
if (col_energy[i] > col_energy[best_col]) {
Tilghman Lesher
committed
}
ast_debug(10, "DTMF best '%c' Erow=%.4E Ecol=%.4E Erc=%.4E Et=%.4E\n",
dtmf_positions[(best_row << 2) + best_col],
row_energy[best_row], col_energy[best_col],
row_energy[best_row] + col_energy[best_col], s->td.dtmf.energy);
hit = 0;
/* Basic signal level test and the twist test */
col_energy[best_col] >= DTMF_THRESHOLD &&
col_energy[best_col] < row_energy[best_row] * (relax ? relax_dtmf_reverse_twist : dtmf_reverse_twist) &&
row_energy[best_row] < col_energy[best_col] * (relax ? relax_dtmf_normal_twist : dtmf_normal_twist)) {
/* Relative peak test */
for (i = 0; i < 4; i++) {
Tilghman Lesher
committed
col_energy[i] * DTMF_RELATIVE_PEAK_COL > col_energy[best_col]) ||
Tilghman Lesher
committed
&& row_energy[i] * DTMF_RELATIVE_PEAK_ROW > row_energy[best_row])) {
break;
}
}
/* ... and fraction of total energy test */
if (i >= 4 &&
Tilghman Lesher
committed
(row_energy[best_row] + col_energy[best_col]) > DTMF_TO_TOTAL_ENERGY * s->td.dtmf.energy) {
hit = dtmf_positions[(best_row << 2) + best_col];
ast_debug(10, "DTMF hit '%c'\n", hit);
Alec L Davis
committed
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
/*
* Adapted from ETSI ES 201 235-3 V1.3.1 (2006-03)
* (40ms reference is tunable with hits_to_begin and misses_to_end)
* each hit/miss is 12.75ms with DTMF_GSIZE at 102
*
* Character recognition: When not DRC *(1) and then
* Shall exist VSC > 40 ms (hits_to_begin)
* May exist 20 ms <= VSC <= 40 ms
* Shall not exist VSC < 20 ms
*
* Character recognition: When DRC and then
* Shall cease Not VSC > 40 ms (misses_to_end)
* May cease 20 ms >= Not VSC >= 40 ms
* Shall not cease Not VSC < 20 ms
*
* *(1) or optionally a different digit recognition condition
*
* Legend: VSC The continuous existence of a valid signal condition.
* Not VSC The continuous non-existence of valid signal condition.
* DRC The existence of digit recognition condition.
* Not DRC The non-existence of digit recognition condition.
*/
/*
* Example: hits_to_begin=2 misses_to_end=3
* -------A last_hit=A hits=0&1
* ------AA hits=2 current_hit=A misses=0 BEGIN A
* -----AA- misses=1 last_hit=' ' hits=0
* ----AA-- misses=2
* ---AA--- misses=3 current_hit=' ' END A
* --AA---B last_hit=B hits=0&1
* -AA---BC last_hit=C hits=0&1
* AA---BCC hits=2 current_hit=C misses=0 BEGIN C
* A---BCC- misses=1 last_hit=' ' hits=0
* ---BCC-C misses=0 last_hit=C hits=0&1
* --BCC-CC misses=0
*
* Example: hits_to_begin=3 misses_to_end=2
* -------A last_hit=A hits=0&1
* ------AA hits=2
* -----AAA hits=3 current_hit=A misses=0 BEGIN A
* ----AAAB misses=1 last_hit=B hits=0&1
* ---AAABB misses=2 current_hit=' ' hits=2 END A
* --AAABBB hits=3 current_hit=B misses=0 BEGIN B
* -AAABBBB misses=0
*
* Example: hits_to_begin=2 misses_to_end=2
* -------A last_hit=A hits=0&1
* ------AA hits=2 current_hit=A misses=0 BEGIN A
* -----AAB misses=1 hits=0&1
* ----AABB misses=2 current_hit=' ' hits=2 current_hit=B misses=0 BEGIN B
* ---AABBB misses=0
*/
if (s->td.dtmf.current_hit) {
/* We are in the middle of a digit already */
if (hit != s->td.dtmf.current_hit) {
s->td.dtmf.misses++;
if (s->td.dtmf.misses == dtmf_misses_to_end) {
Alec L Davis
committed
/* There were enough misses to consider digit ended */
s->td.dtmf.current_hit = 0;
Jonathan Rose
committed
}
Alec L Davis
committed
} else {
s->td.dtmf.misses = 0;
/* Current hit was same as last, so increment digit duration (of last digit) */
s->digitlen[s->current_digits - 1] += DTMF_GSIZE;
Alec L Davis
committed
}
/* Look for a start of a new digit no matter if we are already in the middle of some
digit or not. This is because hits_to_begin may be smaller than misses_to_end
and we may find begin of new digit before we consider last one ended. */
if (hit != s->td.dtmf.lasthit) {
Jonathan Rose
committed
s->td.dtmf.lasthit = hit;
Alec L Davis
committed
s->td.dtmf.hits = 0;
}
if (hit && hit != s->td.dtmf.current_hit) {
s->td.dtmf.hits++;
if (s->td.dtmf.hits == dtmf_hits_to_begin) {
Alec L Davis
committed
store_digit(s, hit);
s->digitlen[s->current_digits - 1] = dtmf_hits_to_begin * DTMF_GSIZE;
Alec L Davis
committed
s->td.dtmf.current_hit = hit;
s->td.dtmf.misses = 0;
}
/* If we had a hit in this block, include it into mute fragment */
if (squelch && hit) {
if (mute.end < sample - DTMF_GSIZE) {
/* There is a gap between fragments */
mute_fragment(dsp, &mute);
mute.start = (sample > DTMF_GSIZE) ? (sample - DTMF_GSIZE) : 0;
}
mute.end = limit + DTMF_GSIZE;
}
/* Reinitialise the detector for the next block */
Tilghman Lesher
committed
for (i = 0; i < 4; i++) {
goertzel_reset(&s->td.dtmf.row_out[i]);
goertzel_reset(&s->td.dtmf.col_out[i]);
s->td.dtmf.energy = 0.0;
s->td.dtmf.current_sample = 0;
if (squelch && mute.end) {
if (mute.end > samples) {
s->td.dtmf.mute_samples = mute.end - samples;
mute.end = samples;
}
mute_fragment(dsp, &mute);
}
return (s->td.dtmf.current_hit); /* return the debounced hit */
static int mf_detect(struct ast_dsp *dsp, digit_detect_state_t *s, int16_t amp[],
int samples, int squelch, int relax)
float energy[6];
int best;
int second_best;
int i;
int j;
int sample;
Alec L Davis
committed
short samp;
fragment_t mute = {0, 0};
if (squelch && s->td.mf.mute_samples > 0) {
mute.end = (s->td.mf.mute_samples < samples) ? s->td.mf.mute_samples : samples;
s->td.mf.mute_samples -= mute.end;
}
for (sample = 0; sample < samples; sample = limit) {
/* 80 is optimised to meet the MF specs. */
/* XXX So then why is MF_GSIZE defined as 120? */
Tilghman Lesher
committed
if ((samples - sample) >= (MF_GSIZE - s->td.mf.current_sample)) {
limit = sample + (MF_GSIZE - s->td.mf.current_sample);
Tilghman Lesher
committed
} else {
Tilghman Lesher
committed
}
/* The following unrolled loop takes only 35% (rough estimate) of the
time of a rolled loop on the machine on which it was developed */
for (j = sample; j < limit; j++) {
/* With GCC 2.95, the following unrolled code seems to take about 35%
(rough estimate) as long as a neat little 0-3 loop */
Alec L Davis
committed
samp = amp[j];
goertzel_sample(s->td.mf.tone_out, samp);
goertzel_sample(s->td.mf.tone_out + 1, samp);
goertzel_sample(s->td.mf.tone_out + 2, samp);
goertzel_sample(s->td.mf.tone_out + 3, samp);
goertzel_sample(s->td.mf.tone_out + 4, samp);
goertzel_sample(s->td.mf.tone_out + 5, samp);
s->td.mf.current_sample += (limit - sample);
if (s->td.mf.current_sample < MF_GSIZE) {
/* We're at the end of an MF detection block. */
/* Find the two highest energies. The spec says to look for
two tones and two tones only. Taking this literally -ie
only two tones pass the minimum threshold - doesn't work
well. The sinc function mess, due to rectangular windowing
ensure that! Find the two highest energies and ensure they
are considerably stronger than any of the others. */
energy[0] = goertzel_result(&s->td.mf.tone_out[0]);
energy[1] = goertzel_result(&s->td.mf.tone_out[1]);
if (energy[0] > energy[1]) {
best = 0;
second_best = 1;
} else {
best = 1;
second_best = 0;
}
/*endif*/
Tilghman Lesher
committed
for (i = 2; i < 6; i++) {
energy[i] = goertzel_result(&s->td.mf.tone_out[i]);
if (energy[i] >= energy[best]) {
second_best = best;
best = i;
} else if (energy[i] >= energy[second_best]) {
second_best = i;
}
}
/* Basic signal level and twist tests */
hit = 0;
if (energy[best] >= BELL_MF_THRESHOLD && energy[second_best] >= BELL_MF_THRESHOLD
&& energy[best] < energy[second_best]*BELL_MF_TWIST
&& energy[best] * BELL_MF_TWIST > energy[second_best]) {
/* Relative peak test */
hit = -1;
Tilghman Lesher
committed
for (i = 0; i < 6; i++) {
if (i != best && i != second_best) {
if (energy[i]*BELL_MF_RELATIVE_PEAK >= energy[second_best]) {
/* The best two are not clearly the best */
hit = 0;
break;
}
}
}
}
if (hit) {
/* Get the values into ascending order */
if (second_best < best) {
i = best;
best = second_best;
second_best = i;
}
Tilghman Lesher
committed
best = best * 5 + second_best - 1;
hit = bell_mf_positions[best];
/* Look for two successive similar results */
/* The logic in the next test is:
For KP we need 4 successive identical clean detects, with
two blocks of something different preceeding it. For anything
else we need two successive identical clean detects, with
two blocks of something different preceeding it. */
if (hit == s->td.mf.hits[4] && hit == s->td.mf.hits[3] &&
((hit != '*' && hit != s->td.mf.hits[2] && hit != s->td.mf.hits[1])||
(hit == '*' && hit == s->td.mf.hits[2] && hit != s->td.mf.hits[1] &&
hit != s->td.mf.hits[0]))) {
store_digit(s, hit);
if (hit != s->td.mf.hits[4] && hit != s->td.mf.hits[3]) {
/* Two successive block without a hit terminate current digit */
s->td.mf.current_hit = 0;
}
s->td.mf.hits[0] = s->td.mf.hits[1];
s->td.mf.hits[1] = s->td.mf.hits[2];
s->td.mf.hits[2] = s->td.mf.hits[3];
s->td.mf.hits[3] = s->td.mf.hits[4];
s->td.mf.hits[4] = hit;
/* If we had a hit in this block, include it into mute fragment */
if (squelch && hit) {
if (mute.end < sample - MF_GSIZE) {
/* There is a gap between fragments */
mute_fragment(dsp, &mute);
mute.start = (sample > MF_GSIZE) ? (sample - MF_GSIZE) : 0;
}
mute.end = limit + MF_GSIZE;
/* Reinitialise the detector for the next block */
for (i = 0; i < 6; i++) {
goertzel_reset(&s->td.mf.tone_out[i]);
s->td.mf.current_sample = 0;
if (squelch && mute.end) {
if (mute.end > samples) {
s->td.mf.mute_samples = mute.end - samples;
mute.end = samples;
return (s->td.mf.current_hit); /* return the debounced hit */
}
static inline int pair_there(float p1, float p2, float i1, float i2, float e)
{
/* See if p1 and p2 are there, relative to i1 and i2 and total energy */
/* Make sure absolute levels are high enough */
Tilghman Lesher
committed
if ((p1 < TONE_MIN_THRESH) || (p2 < TONE_MIN_THRESH)) {
Tilghman Lesher
committed
}
/* Amplify ignored stuff */
i2 *= TONE_THRESH;
i1 *= TONE_THRESH;
e *= TONE_THRESH;
/* Check first tone */
Tilghman Lesher
committed
if ((p1 < i1) || (p1 < i2) || (p1 < e)) {
Tilghman Lesher
committed
}
Tilghman Lesher
committed
if ((p2 < i1) || (p2 < i2) || (p2 < e)) {
Tilghman Lesher
committed
}
/* Guess it's there... */
return 1;
}
static int __ast_dsp_call_progress(struct ast_dsp *dsp, short *s, int len)
{
Alec L Davis
committed
short samp;
int newstate = DSP_TONE_STATE_SILENCE;
int freqcount = dsp->freqcount > FREQ_ARRAY_SIZE ? FREQ_ARRAY_SIZE : dsp->freqcount;
Joshua Colp
committed
while (len) {
/* Take the lesser of the number of samples we need and what we have */
pass = len;
Tilghman Lesher
committed
if (pass > dsp->gsamp_size - dsp->gsamps) {
Tilghman Lesher
committed
}
for (x = 0; x < pass; x++) {
Alec L Davis
committed
samp = s[x];
dsp->genergy += (int32_t) samp * (int32_t) samp;
Alec L Davis
committed
goertzel_sample(&dsp->freqs[y], samp);
Tilghman Lesher
committed
}
}
s += pass;
dsp->gsamps += pass;
len -= pass;
float hz[FREQ_ARRAY_SIZE];
for (y = 0; y < FREQ_ARRAY_SIZE; y++) {
hz[y] = goertzel_result(&dsp->freqs[y]);
Tilghman Lesher
committed
}
Joshua Colp
committed
switch (dsp->progmode) {
case PROG_MODE_NA:
if (pair_there(hz[HZ_480], hz[HZ_620], hz[HZ_350], hz[HZ_440], dsp->genergy)) {
newstate = DSP_TONE_STATE_BUSY;
} else if (pair_there(hz[HZ_440], hz[HZ_480], hz[HZ_350], hz[HZ_620], dsp->genergy)) {
newstate = DSP_TONE_STATE_RINGING;
} else if (pair_there(hz[HZ_350], hz[HZ_440], hz[HZ_480], hz[HZ_620], dsp->genergy)) {
newstate = DSP_TONE_STATE_DIALTONE;
} else if (hz[HZ_950] > TONE_MIN_THRESH * TONE_THRESH) {
newstate = DSP_TONE_STATE_SPECIAL1;
} else if (hz[HZ_1400] > TONE_MIN_THRESH * TONE_THRESH) {
/* End of SPECIAL1 or middle of SPECIAL2 */
if (dsp->tstate == DSP_TONE_STATE_SPECIAL1 || dsp->tstate == DSP_TONE_STATE_SPECIAL2) {
newstate = DSP_TONE_STATE_SPECIAL2;
} else if (hz[HZ_1800] > TONE_MIN_THRESH * TONE_THRESH) {
/* End of SPECIAL2 or middle of SPECIAL3 */
if (dsp->tstate == DSP_TONE_STATE_SPECIAL2 || dsp->tstate == DSP_TONE_STATE_SPECIAL3) {
newstate = DSP_TONE_STATE_SPECIAL3;
Tilghman Lesher
committed
}
} else if (dsp->genergy > TONE_MIN_THRESH * TONE_THRESH) {
newstate = DSP_TONE_STATE_TALKING;
Tilghman Lesher
committed
} else {
newstate = DSP_TONE_STATE_SILENCE;
Tilghman Lesher
committed
}
break;
case PROG_MODE_CR:
if (hz[HZ_425] > TONE_MIN_THRESH * TONE_THRESH) {
newstate = DSP_TONE_STATE_RINGING;
} else if (dsp->genergy > TONE_MIN_THRESH * TONE_THRESH) {
newstate = DSP_TONE_STATE_TALKING;
Tilghman Lesher
committed
} else {
newstate = DSP_TONE_STATE_SILENCE;
Tilghman Lesher
committed
}
case PROG_MODE_UK:
Tilghman Lesher
committed
if (hz[HZ_400UK] > TONE_MIN_THRESH * TONE_THRESH) {
newstate = DSP_TONE_STATE_HUNGUP;
Tilghman Lesher
committed
} else if (pair_there(hz[HZ_350UK], hz[HZ_440UK], hz[HZ_400UK], hz[HZ_400UK], dsp->genergy)) {
newstate = DSP_TONE_STATE_DIALTONE;
}
break;
ast_log(LOG_WARNING, "Can't process in unknown prog mode '%u'\n", dsp->progmode);
if (newstate == dsp->tstate) {
dsp->tcount++;
Tilghman Lesher
committed
if (dsp->ringtimeout) {
dsp->ringtimeout++;
Tilghman Lesher
committed
}
switch (dsp->tstate) {
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
case DSP_TONE_STATE_RINGING:
if ((dsp->features & DSP_PROGRESS_RINGING) &&
(dsp->tcount == THRESH_RING)) {
res = AST_CONTROL_RINGING;
dsp->ringtimeout = 1;
}
break;
case DSP_TONE_STATE_BUSY:
if ((dsp->features & DSP_PROGRESS_BUSY) &&
(dsp->tcount == THRESH_BUSY)) {
res = AST_CONTROL_BUSY;
dsp->features &= ~DSP_FEATURE_CALL_PROGRESS;
}
break;
case DSP_TONE_STATE_TALKING:
if ((dsp->features & DSP_PROGRESS_TALK) &&
(dsp->tcount == THRESH_TALK)) {
res = AST_CONTROL_ANSWER;
dsp->features &= ~DSP_FEATURE_CALL_PROGRESS;
}
break;
case DSP_TONE_STATE_SPECIAL3:
if ((dsp->features & DSP_PROGRESS_CONGESTION) &&
(dsp->tcount == THRESH_CONGESTION)) {
res = AST_CONTROL_CONGESTION;
dsp->features &= ~DSP_FEATURE_CALL_PROGRESS;
}
break;
case DSP_TONE_STATE_HUNGUP:
if ((dsp->features & DSP_FEATURE_CALL_PROGRESS) &&
(dsp->tcount == THRESH_HANGUP)) {
res = AST_CONTROL_HANGUP;
dsp->features &= ~DSP_FEATURE_CALL_PROGRESS;
}
break;
if (dsp->ringtimeout == THRESH_RING2ANSWER) {
Russell Bryant
committed
ast_debug(1, "Consider call as answered because of timeout after last ring\n");
res = AST_CONTROL_ANSWER;
dsp->features &= ~DSP_FEATURE_CALL_PROGRESS;
Russell Bryant
committed
ast_debug(5, "Stop state %d with duration %d\n", dsp->tstate, dsp->tcount);
ast_debug(5, "Start state %d\n", newstate);
dsp->tstate = newstate;
dsp->tcount = 1;
}
Tilghman Lesher
committed
for (x = 0; x < 7; x++) {
Tilghman Lesher
committed
}
dsp->gsamps = 0;
dsp->genergy = 0.0;
}
}
Russell Bryant
committed
return res;
}
int ast_dsp_call_progress(struct ast_dsp *dsp, struct ast_frame *inf)
{
if (inf->frametype != AST_FRAME_VOICE) {
ast_log(LOG_WARNING, "Can't check call progress of non-voice frames\n");
return 0;
}
if (!ast_format_cache_is_slinear(inf->subclass.format)) {
ast_log(LOG_WARNING, "Can only check call progress in signed-linear frames\n");
return 0;
}
Michiel van Baak
committed
return __ast_dsp_call_progress(dsp, inf->data.ptr, inf->datalen / 2);
static int __ast_dsp_silence_noise(struct ast_dsp *dsp, short *s, int len, int *totalsilence, int *totalnoise, int *frames_energy)
Tilghman Lesher
committed
if (!len) {
Tilghman Lesher
committed
}
Tilghman Lesher
committed
for (x = 0; x < len; x++) {
Tilghman Lesher
committed
}
Martin Pycko
committed
accum /= len;
dsp->totalsilence += len / (dsp->sample_rate / 1000);
if (dsp->totalnoise) {
/* Move and save history */
Tilghman Lesher
committed
memmove(dsp->historicnoise + DSP_HISTORY - dsp->busycount, dsp->historicnoise + DSP_HISTORY - dsp->busycount + 1, dsp->busycount * sizeof(dsp->historicnoise[0]));
dsp->historicnoise[DSP_HISTORY - 1] = dsp->totalnoise;
Martin Pycko
committed
/* we don't want to check for busydetect that frequently */
#if 0
Martin Pycko
committed
#endif
}
dsp->totalnoise = 0;
res = 1;
} else {
dsp->totalnoise += len / (dsp->sample_rate / 1000);
Martin Pycko
committed
int silence1 = dsp->historicsilence[DSP_HISTORY - 1];
int silence2 = dsp->historicsilence[DSP_HISTORY - 2];
Tilghman Lesher
committed
memmove(dsp->historicsilence + DSP_HISTORY - dsp->busycount, dsp->historicsilence + DSP_HISTORY - dsp->busycount + 1, dsp->busycount * sizeof(dsp->historicsilence[0]));
dsp->historicsilence[DSP_HISTORY - 1] = dsp->totalsilence;
Martin Pycko
committed
/* check if the previous sample differs only by BUSY_PERCENT from the one before it */
if (silence1 < silence2) {
Tilghman Lesher
committed
if (silence1 + silence1 * BUSY_PERCENT / 100 >= silence2) {
Martin Pycko
committed
dsp->busymaybe = 1;
Tilghman Lesher
committed
} else {
Martin Pycko
committed
dsp->busymaybe = 0;
Tilghman Lesher
committed
}
Martin Pycko
committed
} else {
Tilghman Lesher
committed
if (silence1 - silence1 * BUSY_PERCENT / 100 <= silence2) {
Martin Pycko
committed
dsp->busymaybe = 1;
Tilghman Lesher
committed
} else {
Martin Pycko
committed
dsp->busymaybe = 0;
Tilghman Lesher
committed
}
Martin Pycko
committed
}
Tilghman Lesher
committed
if (totalsilence) {
Tilghman Lesher
committed
}
if (totalnoise) {
*totalnoise = dsp->totalnoise;
Tilghman Lesher
committed
}
if (frames_energy) {
*frames_energy = accum;
}
Martin Pycko
committed
int ast_dsp_busydetect(struct ast_dsp *dsp)
{
int res = 0, x;
#ifndef BUSYDETECT_TONEONLY
int avgsilence = 0, hitsilence = 0;
#endif
int avgtone = 0, hittone = 0;
/* if we have a 4 length pattern, the way busymaybe is set doesn't help us. */
if (dsp->busy_cadence.length != 4) {
if (!dsp->busymaybe) {
return res;
}
Tilghman Lesher
committed
}
Tilghman Lesher
committed
for (x = DSP_HISTORY - dsp->busycount; x < DSP_HISTORY; x++) {
Martin Pycko
committed
#ifndef BUSYDETECT_TONEONLY
avgsilence += dsp->historicsilence[x];
#endif
avgtone += dsp->historicnoise[x];
}
#ifndef BUSYDETECT_TONEONLY
avgsilence /= dsp->busycount;
#endif
avgtone /= dsp->busycount;
Tilghman Lesher
committed
for (x = DSP_HISTORY - dsp->busycount; x < DSP_HISTORY; x++) {
Martin Pycko
committed
#ifndef BUSYDETECT_TONEONLY
if (avgsilence > dsp->historicsilence[x]) {
Tilghman Lesher
committed
if (avgsilence - (avgsilence * BUSY_PERCENT / 100) <= dsp->historicsilence[x]) {
Martin Pycko
committed
hitsilence++;
Tilghman Lesher
committed
}
Martin Pycko
committed
} else {
Tilghman Lesher
committed
if (avgsilence + (avgsilence * BUSY_PERCENT / 100) >= dsp->historicsilence[x]) {
Martin Pycko
committed
hitsilence++;
Tilghman Lesher
committed
}
Martin Pycko
committed
}
#endif
if (avgtone > dsp->historicnoise[x]) {
Tilghman Lesher
committed
if (avgtone - (avgtone * BUSY_PERCENT / 100) <= dsp->historicnoise[x]) {
Martin Pycko
committed
hittone++;
Tilghman Lesher
committed
}
Martin Pycko
committed
} else {
Tilghman Lesher
committed
if (avgtone + (avgtone * BUSY_PERCENT / 100) >= dsp->historicnoise[x]) {
Martin Pycko
committed
hittone++;
Tilghman Lesher
committed
}
Martin Pycko
committed
}
}
#ifndef BUSYDETECT_TONEONLY
if ((hittone >= dsp->busycount - 1) && (hitsilence >= dsp->busycount - 1) &&
(avgtone >= BUSY_MIN && avgtone <= BUSY_MAX) &&
(avgsilence >= BUSY_MIN && avgsilence <= BUSY_MAX)) {
Martin Pycko
committed
#else
if ((hittone >= dsp->busycount - 1) && (avgtone >= BUSY_MIN && avgtone <= BUSY_MAX)) {
#endif
#ifdef BUSYDETECT_COMPARE_TONE_AND_SILENCE
if (avgtone > avgsilence) {
Tilghman Lesher
committed
if (avgtone - avgtone*BUSY_PERCENT/100 <= avgsilence) {
Martin Pycko
committed
res = 1;
Tilghman Lesher
committed
}
Martin Pycko
committed
} else {
Tilghman Lesher
committed
if (avgtone + avgtone*BUSY_PERCENT/100 >= avgsilence) {
Martin Pycko
committed
res = 1;
Tilghman Lesher
committed
}
Martin Pycko
committed
}
#else
res = 1;
#endif
}
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
/* If we have a 4-length pattern, we can go ahead and just check it in a different way. */
if (dsp->busy_cadence.length == 4) {
int x;
int errors = 0;
int errors_max = ((4 * dsp->busycount) / 100.0) * BUSY_PAT_PERCENT;
for (x = DSP_HISTORY - (dsp->busycount); x < DSP_HISTORY; x += 2) {
int temp_error;
temp_error = abs(dsp->historicnoise[x] - dsp->busy_cadence.pattern[0]);
if ((temp_error * 100) / dsp->busy_cadence.pattern[0] > BUSY_PERCENT) {
errors++;
}
temp_error = abs(dsp->historicnoise[x + 1] - dsp->busy_cadence.pattern[2]);
if ((temp_error * 100) / dsp->busy_cadence.pattern[2] > BUSY_PERCENT) {
errors++;
}
temp_error = abs(dsp->historicsilence[x] - dsp->busy_cadence.pattern[1]);
if ((temp_error * 100) / dsp->busy_cadence.pattern[1] > BUSY_PERCENT) {
errors++;
}
temp_error = abs(dsp->historicsilence[x + 1] - dsp->busy_cadence.pattern[3]);
if ((temp_error * 100) / dsp->busy_cadence.pattern[3] > BUSY_PERCENT) {
errors++;
}
}
ast_debug(5, "errors = %d max = %d\n", errors, errors_max);
if (errors <= errors_max) {
return 1;
}
}
/* If we know the expected busy tone length, check we are in the range */
if (res && (dsp->busy_cadence.pattern[0] > 0)) {
if (abs(avgtone - dsp->busy_cadence.pattern[0]) > MAX(dsp->busy_cadence.pattern[0]*BUSY_PAT_PERCENT/100, 20)) {
#ifdef BUSYDETECT_DEBUG
ast_debug(5, "busy detector: avgtone of %d not close enough to desired %d\n",
avgtone, dsp->busy_cadence.pattern[0]);
#endif
res = 0;
}
}
/* If we know the expected busy tone silent-period length, check we are in the range */
if (res && (dsp->busy_cadence.pattern[1] > 0)) {
if (abs(avgsilence - dsp->busy_cadence.pattern[1]) > MAX(dsp->busy_cadence.pattern[1]*BUSY_PAT_PERCENT/100, 20)) {
#ifdef BUSYDETECT_DEBUG
ast_debug(5, "busy detector: avgsilence of %d not close enough to desired %d\n",
avgsilence, dsp->busy_cadence.pattern[1]);
#endif
res = 0;
}
}
#if !defined(BUSYDETECT_TONEONLY) && defined(BUSYDETECT_DEBUG)
if (res) {
ast_debug(5, "ast_dsp_busydetect detected busy, avgtone: %d, avgsilence %d\n", avgtone, avgsilence);
} else {
ast_debug(5, "busy detector: FAILED with avgtone: %d, avgsilence %d\n", avgtone, avgsilence);
Martin Pycko
committed
#endif
return res;
}
static int ast_dsp_silence_noise_with_energy(struct ast_dsp *dsp, struct ast_frame *f, int *total, int *frames_energy, int noise)
int x;
unsigned char *odata;
if (!f) {
return 0;
}
if (f->frametype != AST_FRAME_VOICE) {
ast_log(LOG_WARNING, "Can't calculate silence on a non-voice frame\n");
return 0;
}
if (ast_format_cache_is_slinear(f->subclass.format)) {
s = f->data.ptr;
len = f->datalen/2;
} else {
if (ast_format_cmp(f->subclass.format, ast_format_ulaw)) {
s = ast_alloca(len * 2);
for (x = 0; x < len; x++) {
s[x] = AST_MULAW(odata[x]);
}
} else if (ast_format_cmp(f->subclass.format, ast_format_alaw)) {
s = ast_alloca(len * 2);
for (x = 0; x < len; x++) {
s[x] = AST_ALAW(odata[x]);
}
} else {
ast_log(LOG_WARNING, "Can only calculate silence on signed-linear, alaw or ulaw frames :(\n");
if (noise) {
return __ast_dsp_silence_noise(dsp, s, len, NULL, total, frames_energy);
} else {
return __ast_dsp_silence_noise(dsp, s, len, total, NULL, frames_energy);
}
int ast_dsp_silence_with_energy(struct ast_dsp *dsp, struct ast_frame *f, int *totalsilence, int *frames_energy)
{
return ast_dsp_silence_noise_with_energy(dsp, f, totalsilence, frames_energy, 0);
}
int ast_dsp_silence(struct ast_dsp *dsp, struct ast_frame *f, int *totalsilence)
{
return ast_dsp_silence_noise_with_energy(dsp, f, totalsilence, NULL, 0);
int ast_dsp_noise(struct ast_dsp *dsp, struct ast_frame *f, int *totalnoise)
{
return ast_dsp_silence_noise_with_energy(dsp, f, totalnoise, NULL, 1);
}
Mark Spencer
committed
struct ast_frame *ast_dsp_process(struct ast_channel *chan, struct ast_dsp *dsp, struct ast_frame *af)
short *shortdata;
Tilghman Lesher
committed
if (!af) {
Tilghman Lesher
committed
}
if (af->frametype != AST_FRAME_VOICE) {
Tilghman Lesher
committed
}
Michiel van Baak
committed
odata = af->data.ptr;
len = af->datalen;
/* Make sure we have short data */
if (ast_format_cache_is_slinear(af->subclass.format)) {
Michiel van Baak
committed
shortdata = af->data.ptr;
} else if (ast_format_cmp(af->subclass.format, ast_format_ulaw) == AST_FORMAT_CMP_EQUAL) {
shortdata = ast_alloca(af->datalen * 2);
for (x = 0; x < len; x++) {
shortdata[x] = AST_MULAW(odata[x]);
}
} else if (ast_format_cmp(af->subclass.format, ast_format_alaw) == AST_FORMAT_CMP_EQUAL) {
shortdata = ast_alloca(af->datalen * 2);
for (x = 0; x < len; x++) {
shortdata[x] = AST_ALAW(odata[x]);
}
/*Display warning only once. Otherwise you would get hundreds of warnings every second */
if (dsp->display_inband_dtmf_warning) {
ast_log(LOG_WARNING, "Inband DTMF is not supported on codec %s. Use RFC2833\n", ast_format_get_name(af->subclass.format));
Tilghman Lesher
committed
}
dsp->display_inband_dtmf_warning = 0;
return af;
/* Initially we do not want to mute anything */
dsp->mute_fragments = 0;
/* Need to run the silence detection stuff for silence suppression and busy detection */
if ((dsp->features & DSP_FEATURE_SILENCE_SUPPRESS) || (dsp->features & DSP_FEATURE_BUSY_DETECT)) {
res = __ast_dsp_silence_noise(dsp, shortdata, len, &silence, NULL, NULL);
}
if ((dsp->features & DSP_FEATURE_SILENCE_SUPPRESS) && silence) {
memset(&dsp->f, 0, sizeof(dsp->f));
dsp->f.frametype = AST_FRAME_NULL;
return ast_frisolate(&dsp->f);
}
if ((dsp->features & DSP_FEATURE_BUSY_DETECT) && ast_dsp_busydetect(dsp)) {
ast_channel_softhangup_internal_flag_add(chan, AST_SOFTHANGUP_DEV);
memset(&dsp->f, 0, sizeof(dsp->f));
dsp->f.frametype = AST_FRAME_CONTROL;
dsp->f.subclass.integer = AST_CONTROL_BUSY;
ast_debug(1, "Requesting Hangup because the busy tone was detected on channel %s\n", ast_channel_name(chan));
return ast_frisolate(&dsp->f);
if ((dsp->features & DSP_FEATURE_FAX_DETECT)) {
if ((dsp->faxmode & DSP_FAXMODE_DETECT_CNG) && tone_detect(dsp, &dsp->cng_tone_state, shortdata, len)) {
fax_digit = 'f';
}
if ((dsp->faxmode & DSP_FAXMODE_DETECT_CED) && tone_detect(dsp, &dsp->ced_tone_state, shortdata, len)) {
fax_digit = 'e';
}
}
Alec L Davis
committed
if (dsp->features & (DSP_FEATURE_DIGIT_DETECT | DSP_FEATURE_BUSY_DETECT)) {
digit = mf_detect(dsp, &dsp->digit_state, shortdata, len, (dsp->digitmode & DSP_DIGITMODE_NOQUELCH) == 0, (dsp->digitmode & DSP_DIGITMODE_RELAXDTMF));
digit = dtmf_detect(dsp, &dsp->digit_state, shortdata, len, (dsp->digitmode & DSP_DIGITMODE_NOQUELCH) == 0, (dsp->digitmode & DSP_DIGITMODE_RELAXDTMF));
Tilghman Lesher
committed
int event = 0, event_len = 0;
char event_digit = 0;
if (!dsp->dtmf_began) {
/* We have not reported DTMF_BEGIN for anything yet */
Alec L Davis
committed
if (dsp->features & DSP_FEATURE_DIGIT_DETECT) {
event = AST_FRAME_DTMF_BEGIN;
event_digit = dsp->digit_state.digits[0];
}
dsp->dtmf_began = 1;
} else if (dsp->digit_state.current_digits > 1 || digit != dsp->digit_state.digits[0]) {
/* Digit changed. This means digit we have reported with DTMF_BEGIN ended */
Alec L Davis
committed
if (dsp->features & DSP_FEATURE_DIGIT_DETECT) {
event = AST_FRAME_DTMF_END;
event_digit = dsp->digit_state.digits[0];
event_len = dsp->digit_state.digitlen[0] * 1000 / dsp->sample_rate;
Alec L Davis
committed
}
Tilghman Lesher
committed
memmove(&dsp->digit_state.digits[0], &dsp->digit_state.digits[1], dsp->digit_state.current_digits);
memmove(&dsp->digit_state.digitlen[0], &dsp->digit_state.digitlen[1], dsp->digit_state.current_digits * sizeof(dsp->digit_state.digitlen[0]));
dsp->digit_state.current_digits--;
dsp->dtmf_began = 0;
if (dsp->features & DSP_FEATURE_BUSY_DETECT) {
/* Reset Busy Detector as we have some confirmed activity */
memset(dsp->historicsilence, 0, sizeof(dsp->historicsilence));
memset(dsp->historicnoise, 0, sizeof(dsp->historicnoise));
Alec L Davis
committed
ast_debug(1, "DTMF Detected - Reset busydetector\n");
}
if (event) {
memset(&dsp->f, 0, sizeof(dsp->f));
dsp->f.frametype = event;
dsp->f.subclass.integer = event_digit;
Tilghman Lesher
committed
dsp->f.len = event_len;
if (fax_digit) {
/* Fax was detected - digit is either 'f' or 'e' */
memset(&dsp->f, 0, sizeof(dsp->f));
dsp->f.frametype = AST_FRAME_DTMF;
dsp->f.subclass.integer = fax_digit;
if ((dsp->features & DSP_FEATURE_CALL_PROGRESS)) {
res = __ast_dsp_call_progress(dsp, shortdata, len);
if (res) {
Joshua Colp
committed
switch (res) {
case AST_CONTROL_ANSWER:
case AST_CONTROL_BUSY:
case AST_CONTROL_RINGING:
case AST_CONTROL_CONGESTION:
case AST_CONTROL_HANGUP:
memset(&dsp->f, 0, sizeof(dsp->f));
dsp->f.frametype = AST_FRAME_CONTROL;
dsp->f.subclass.integer = res;
dsp->f.src = "dsp_progress";
Mark Spencer
committed
ast_queue_frame(chan, &dsp->f);
break;
default:
ast_log(LOG_WARNING, "Don't know how to represent call progress message %d\n", res);
}
}
Tilghman Lesher
committed
} else if ((dsp->features & DSP_FEATURE_WAITDIALTONE)) {
res = __ast_dsp_call_progress(dsp, shortdata, len);
done:
/* Mute fragment of the frame */
for (x = 0; x < dsp->mute_fragments; x++) {
memset(shortdata + dsp->mute_data[x].start, 0, sizeof(int16_t) * (dsp->mute_data[x].end - dsp->mute_data[x].start));
}
if (ast_format_cmp(af->subclass.format, ast_format_ulaw) == AST_FORMAT_CMP_EQUAL) {
Tilghman Lesher
committed
for (x = 0; x < len; x++) {
odata[x] = AST_LIN2MU((unsigned short) shortdata[x]);
Tilghman Lesher
committed
}
} else if (ast_format_cmp(af->subclass.format, ast_format_alaw) == AST_FORMAT_CMP_EQUAL) {
Tilghman Lesher
committed
for (x = 0; x < len; x++) {
odata[x] = AST_LIN2A((unsigned short) shortdata[x]);
Tilghman Lesher
committed
}
Tilghman Lesher
committed
if (chan) {
Tilghman Lesher
committed
}
static void ast_dsp_prog_reset(struct ast_dsp *dsp)
{
int max = 0;
int x;
dsp->gsamp_size = modes[dsp->progmode].size;
dsp->gsamps = 0;
for (x = 0; x < FREQ_ARRAY_SIZE; x++) {
Alec L Davis
committed
goertzel_init(&dsp->freqs[x], (float)modes[dsp->progmode].freqs[x], dsp->sample_rate);
dsp->ringtimeout = 0;
unsigned int ast_dsp_get_sample_rate(const struct ast_dsp *dsp)
{
return dsp->sample_rate;
}
static struct ast_dsp *__ast_dsp_new(unsigned int sample_rate)
if ((dsp = ast_calloc(1, sizeof(*dsp)))) {
dsp->threshold = DEFAULT_THRESHOLD;
dsp->features = DSP_FEATURE_SILENCE_SUPPRESS;
Martin Pycko
committed
dsp->busycount = DSP_HISTORY;
dsp->digitmode = DSP_DIGITMODE_DTMF;
dsp->faxmode = DSP_FAXMODE_DETECT_CNG;
dsp->sample_rate = sample_rate;
/* Initialize digit detector */
ast_digit_detect_init(&dsp->digit_state, dsp->digitmode & DSP_DIGITMODE_MF, dsp->sample_rate);
dsp->display_inband_dtmf_warning = 1;
/* Initialize initial DSP progress detect parameters */
ast_dsp_prog_reset(dsp);
/* Initialize fax detector */
ast_fax_detect_init(dsp);
struct ast_dsp *ast_dsp_new(void)
{
return __ast_dsp_new(DEFAULT_SAMPLE_RATE);
}
struct ast_dsp *ast_dsp_new_with_rate(unsigned int sample_rate)
{
return __ast_dsp_new(sample_rate);
}
void ast_dsp_set_features(struct ast_dsp *dsp, int features)
{
dsp->features = features;
if (!(features & DSP_FEATURE_DIGIT_DETECT)) {
dsp->display_inband_dtmf_warning = 0;
}
int ast_dsp_get_features(struct ast_dsp *dsp)
{
return (dsp->features);
}
Tilghman Lesher
committed
ast_free(dsp);
void ast_dsp_set_threshold(struct ast_dsp *dsp, int threshold)
{
dsp->threshold = threshold;
}
void ast_dsp_set_busy_count(struct ast_dsp *dsp, int cadences)
{
Tilghman Lesher
committed
if (cadences < 4) {
Martin Pycko
committed
cadences = 4;
Tilghman Lesher
committed
}
if (cadences > DSP_HISTORY) {
Tilghman Lesher
committed
}
void ast_dsp_set_busy_pattern(struct ast_dsp *dsp, const struct ast_dsp_busy_pattern *cadence)
dsp->busy_cadence = *cadence;
ast_debug(1, "dsp busy pattern set to %d,%d,%d,%d\n", cadence->pattern[0], cadence->pattern[1], (cadence->length == 4) ? cadence->pattern[2] : 0, (cadence->length == 4) ? cadence->pattern[3] : 0);
void ast_dsp_digitreset(struct ast_dsp *dsp)
{
int i;
mf_detect_state_t *s = &dsp->digit_state.td.mf;
/* Reinitialise the detector for the next block */
for (i = 0; i < 6; i++) {
goertzel_reset(&s->tone_out[i]);
Alec L Davis
committed
s->hits[4] = s->hits[3] = s->hits[2] = s->hits[1] = s->hits[0] = 0;
s->current_hit = 0;
dtmf_detect_state_t *s = &dsp->digit_state.td.dtmf;
/* Reinitialise the detector for the next block */
for (i = 0; i < 4; i++) {
goertzel_reset(&s->row_out[i]);
goertzel_reset(&s->col_out[i]);
Alec L Davis
committed
s->lasthit = 0;
s->current_hit = 0;
s->energy = 0.0;
s->current_sample = 0;
dsp->digit_state.digits[0] = '\0';
dsp->digit_state.current_digits = 0;
}
void ast_dsp_reset(struct ast_dsp *dsp)
{
int x;
Tilghman Lesher
committed
for (x = 0; x < 4; x++) {
Tilghman Lesher
committed
}
memset(dsp->historicsilence, 0, sizeof(dsp->historicsilence));
memset(dsp->historicnoise, 0, sizeof(dsp->historicnoise));
dsp->ringtimeout = 0;
Jason Parker
committed
int ast_dsp_set_digitmode(struct ast_dsp *dsp, int digitmode)
old = dsp->digitmode & (DSP_DIGITMODE_DTMF | DSP_DIGITMODE_MF | DSP_DIGITMODE_MUTECONF | DSP_DIGITMODE_MUTEMAX);
new = digitmode & (DSP_DIGITMODE_DTMF | DSP_DIGITMODE_MF | DSP_DIGITMODE_MUTECONF | DSP_DIGITMODE_MUTEMAX);
if (old != new) {
/* Must initialize structures if switching from MF to DTMF or vice-versa */
ast_digit_detect_init(&dsp->digit_state, new & DSP_DIGITMODE_MF, dsp->sample_rate);
}
dsp->digitmode = digitmode;
return 0;
}
Martin Pycko
committed
int ast_dsp_set_faxmode(struct ast_dsp *dsp, int faxmode)
{
if (dsp->faxmode != faxmode) {
ast_fax_detect_init(dsp);
}
return 0;
}
int ast_dsp_set_call_progress_zone(struct ast_dsp *dsp, char *zone)
{
int x;
for (x = 0; x < ARRAY_LEN(aliases); x++) {
if (!strcasecmp(aliases[x].name, zone)) {
dsp->progmode = aliases[x].mode;
ast_dsp_prog_reset(dsp);
return 0;
}
}
return -1;
}
int ast_dsp_was_muted(struct ast_dsp *dsp)
{
return (dsp->mute_fragments > 0);
}
{
return dsp->tstate;
}
{
return dsp->tcount;
}
static int _dsp_init(int reload)
{
struct ast_config *cfg;
struct ast_variable *v;
struct ast_flags config_flags = { reload ? CONFIG_FLAG_FILEUNCHANGED : 0 };
int cfg_threshold;
float cfg_twist;
if ((cfg = ast_config_load2(CONFIG_FILE_NAME, "dsp", config_flags)) == CONFIG_STATUS_FILEUNCHANGED) {
return 0;
}
thresholds[THRESHOLD_SILENCE] = DEFAULT_SILENCE_THRESHOLD;
dtmf_normal_twist = DEF_DTMF_NORMAL_TWIST;
dtmf_reverse_twist = DEF_DTMF_REVERSE_TWIST;
relax_dtmf_normal_twist = DEF_RELAX_DTMF_NORMAL_TWIST;
relax_dtmf_reverse_twist = DEF_RELAX_DTMF_REVERSE_TWIST;
dtmf_hits_to_begin = DEF_DTMF_HITS_TO_BEGIN;
dtmf_misses_to_end = DEF_DTMF_MISSES_TO_END;
if (cfg == CONFIG_STATUS_FILEMISSING || cfg == CONFIG_STATUS_FILEINVALID) {
Tilghman Lesher
committed
return 0;
}
for (v = ast_variable_browse(cfg, "default"); v; v = v->next) {
if (!strcasecmp(v->name, "silencethreshold")) {
if (sscanf(v->value, "%30d", &cfg_threshold) < 1) {
ast_log(LOG_WARNING, "Unable to convert '%s' to a numeric value.\n", v->value);
} else if (cfg_threshold < 0) {
ast_log(LOG_WARNING, "Invalid silence threshold '%d' specified, using default\n", cfg_threshold);
} else {
thresholds[THRESHOLD_SILENCE] = cfg_threshold;
}
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
} else if (!strcasecmp(v->name, "dtmf_normal_twist")) {
if (sscanf(v->value, "%30f", &cfg_twist) < 1) {
ast_log(LOG_WARNING, "Unable to convert '%s' to a numeric value.\n", v->value);
} else if ((cfg_twist < 2.0) || (cfg_twist > 100.0)) { /* < 3.0dB or > 20dB */
ast_log(LOG_WARNING, "Invalid dtmf_normal_twist value '%.2f' specified, using default of %.2f\n", cfg_twist, dtmf_normal_twist);
} else {
dtmf_normal_twist = cfg_twist;
}
} else if (!strcasecmp(v->name, "dtmf_reverse_twist")) {
if (sscanf(v->value, "%30f", &cfg_twist) < 1) {
ast_log(LOG_WARNING, "Unable to convert '%s' to a numeric value.\n", v->value);
} else if ((cfg_twist < 2.0) || (cfg_twist > 100.0)) { /* < 3.0dB or > 20dB */
ast_log(LOG_WARNING, "Invalid dtmf_reverse_twist value '%.2f' specified, using default of %.2f\n", cfg_twist, dtmf_reverse_twist);
} else {
dtmf_reverse_twist = cfg_twist;
}
} else if (!strcasecmp(v->name, "relax_dtmf_normal_twist")) {
if (sscanf(v->value, "%30f", &cfg_twist) < 1) {
ast_log(LOG_WARNING, "Unable to convert '%s' to a numeric value.\n", v->value);
} else if ((cfg_twist < 2.0) || (cfg_twist > 100.0)) { /* < 3.0dB or > 20dB */
ast_log(LOG_WARNING, "Invalid relax_dtmf_normal_twist value '%.2f' specified, using default of %.2f\n", cfg_twist, relax_dtmf_normal_twist);
} else {
relax_dtmf_normal_twist = cfg_twist;
}
} else if (!strcasecmp(v->name, "relax_dtmf_reverse_twist")) {
if (sscanf(v->value, "%30f", &cfg_twist) < 1) {
ast_log(LOG_WARNING, "Unable to convert '%s' to a numeric value.\n", v->value);
} else if ((cfg_twist < 2.0) || (cfg_twist > 100.0)) { /* < 3.0dB or > 20dB */
ast_log(LOG_WARNING, "Invalid relax_dtmf_reverse_twist value '%.2f' specified, using default of %.2f\n", cfg_twist, relax_dtmf_reverse_twist);
} else {
relax_dtmf_reverse_twist = cfg_twist;
}
} else if (!strcasecmp(v->name, "dtmf_hits_to_begin")) {
if (sscanf(v->value, "%30d", &cfg_threshold) < 1) {
ast_log(LOG_WARNING, "Unable to convert '%s' to a numeric value.\n", v->value);
} else if (cfg_threshold < 1) { /* must be 1 or greater */
ast_log(LOG_WARNING, "Invalid dtmf_hits_to_begin value '%d' specified, using default of %d\n", cfg_threshold, dtmf_hits_to_begin);
} else {
dtmf_hits_to_begin = cfg_threshold;
}
} else if (!strcasecmp(v->name, "dtmf_misses_to_end")) {
if (sscanf(v->value, "%30d", &cfg_threshold) < 1) {
ast_log(LOG_WARNING, "Unable to convert '%s' to a numeric value.\n", v->value);
} else if (cfg_threshold < 1) { /* must be 1 or greater */
ast_log(LOG_WARNING, "Invalid dtmf_misses_to_end value '%d' specified, using default of %d\n", cfg_threshold, dtmf_misses_to_end);
} else {
dtmf_misses_to_end = cfg_threshold;
}
Tilghman Lesher
committed
}
return 0;
}
int ast_dsp_get_threshold_from_settings(enum threshold which)
{
return thresholds[which];
}
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
#ifdef TEST_FRAMEWORK
static void test_tone_sample_gen(short *slin_buf, int samples, int rate, int freq, short amplitude)
{
int idx;
double sample_step = 2.0 * M_PI * freq / rate;/* radians per step */
for (idx = 0; idx < samples; ++idx) {
slin_buf[idx] = amplitude * sin(sample_step * idx);
}
}
#endif
#ifdef TEST_FRAMEWORK
static void test_tone_sample_gen_add(short *slin_buf, int samples, int rate, int freq, short amplitude)
{
int idx;
double sample_step = 2.0 * M_PI * freq / rate;/* radians per step */
for (idx = 0; idx < samples; ++idx) {
slin_buf[idx] += amplitude * sin(sample_step * idx);
}
}
#endif
#ifdef TEST_FRAMEWORK
static void test_dual_sample_gen(short *slin_buf, int samples, int rate, int f1, short a1, int f2, short a2)
{
test_tone_sample_gen(slin_buf, samples, rate, f1, a1);
test_tone_sample_gen_add(slin_buf, samples, rate, f2, a2);
}
#endif
#ifdef TEST_FRAMEWORK
#define TONE_AMPLITUDE_MAX 0x7fff /* Max signed linear amplitude */
#define TONE_AMPLITUDE_MIN 80 /* Min signed linear amplitude detectable */
static int test_tone_amplitude_sweep(struct ast_test *test, struct ast_dsp *dsp, tone_detect_state_t *tone_state)
{
short slin_buf[tone_state->block_size];
int result;
int idx;
struct {
short amp_val;
int detect;
} amp_tests[] = {
{ .amp_val = TONE_AMPLITUDE_MAX, .detect = 1, },
{ .amp_val = 10000, .detect = 1, },
{ .amp_val = 1000, .detect = 1, },
{ .amp_val = 100, .detect = 1, },
{ .amp_val = TONE_AMPLITUDE_MIN, .detect = 1, },
{ .amp_val = 75, .detect = 0, },
{ .amp_val = 10, .detect = 0, },
{ .amp_val = 1, .detect = 0, },
};
result = 0;
for (idx = 0; idx < ARRAY_LEN(amp_tests); ++idx) {
int detected;
int duration;
ast_debug(1, "Test %d Hz at amplitude %d\n",
tone_state->freq, amp_tests[idx].amp_val);
test_tone_sample_gen(slin_buf, tone_state->block_size, DEFAULT_SAMPLE_RATE,
tone_state->freq, amp_tests[idx].amp_val);
detected = 0;
for (duration = 0; !detected && duration < tone_state->hits_required + 3; ++duration) {
detected = tone_detect(dsp, tone_state, slin_buf, tone_state->block_size) ? 1 : 0;
}
if (amp_tests[idx].detect != detected) {
/*
* Both messages are needed. ast_debug for when figuring out
* what went wrong and the test update for normal output before
* you start debugging. The different logging methods are not
* synchronized.
*/
ast_debug(1,
"Test %d Hz at amplitude %d failed. Detected: %s\n",
tone_state->freq, amp_tests[idx].amp_val,
detected ? "yes" : "no");
ast_test_status_update(test,
"Test %d Hz at amplitude %d failed. Detected: %s\n",
tone_state->freq, amp_tests[idx].amp_val,
detected ? "yes" : "no");
result = -1;
}
tone_state->hit_count = 0;
}
return result;
}
#endif
#ifdef TEST_FRAMEWORK
static int test_dtmf_amplitude_sweep(struct ast_test *test, struct ast_dsp *dsp, int digit_index)
{
short slin_buf[DTMF_GSIZE];
int result;
int row;
int column;
int idx;
struct {
short amp_val;
int digit;
} amp_tests[] = {
/*
* XXX Since there is no current DTMF level detection issue. This test
* just checks the current detection levels.
*/
{ .amp_val = TONE_AMPLITUDE_MAX/2, .digit = dtmf_positions[digit_index], },
{ .amp_val = 10000, .digit = dtmf_positions[digit_index], },
{ .amp_val = 1000, .digit = dtmf_positions[digit_index], },
{ .amp_val = 500, .digit = dtmf_positions[digit_index], },
{ .amp_val = 250, .digit = dtmf_positions[digit_index], },
{ .amp_val = 200, .digit = dtmf_positions[digit_index], },
{ .amp_val = 180, .digit = dtmf_positions[digit_index], },
/* Various digits detect and not detect in this range */
{ .amp_val = 170, .digit = 0, },
{ .amp_val = 100, .digit = 0, },
/*
* Amplitudes below TONE_AMPLITUDE_MIN start having questionable detection
* over quantization and background noise.
*/
{ .amp_val = TONE_AMPLITUDE_MIN, .digit = 0, },
{ .amp_val = 75, .digit = 0, },
{ .amp_val = 10, .digit = 0, },
{ .amp_val = 1, .digit = 0, },
};
row = (digit_index >> 2) & 0x03;
column = digit_index & 0x03;
result = 0;
for (idx = 0; idx < ARRAY_LEN(amp_tests); ++idx) {
int digit;
int duration;
ast_debug(1, "Test '%c' at amplitude %d\n",
dtmf_positions[digit_index], amp_tests[idx].amp_val);
test_dual_sample_gen(slin_buf, ARRAY_LEN(slin_buf), DEFAULT_SAMPLE_RATE,
(int) dtmf_row[row], amp_tests[idx].amp_val,
(int) dtmf_col[column], amp_tests[idx].amp_val);
digit = 0;
for (duration = 0; !digit && duration < 3; ++duration) {
digit = dtmf_detect(dsp, &dsp->digit_state, slin_buf, ARRAY_LEN(slin_buf),
0, 0);
}
if (amp_tests[idx].digit != digit) {
/*
* Both messages are needed. ast_debug for when figuring out
* what went wrong and the test update for normal output before
* you start debugging. The different logging methods are not
* synchronized.
*/
ast_debug(1,
"Test '%c' at amplitude %d failed. Detected Digit: '%c'\n",
dtmf_positions[digit_index], amp_tests[idx].amp_val,
digit ?: ' ');
ast_test_status_update(test,
"Test '%c' at amplitude %d failed. Detected Digit: '%c'\n",
dtmf_positions[digit_index], amp_tests[idx].amp_val,
digit ?: ' ');
result = -1;
}
ast_dsp_digitreset(dsp);
}
return result;
}
#endif
#ifdef TEST_FRAMEWORK
static int test_dtmf_twist_sweep(struct ast_test *test, struct ast_dsp *dsp, int digit_index)
{
short slin_buf[DTMF_GSIZE];
int result;
int row;
int column;
int idx;
struct {
short amp_row;
short amp_col;
int digit;
} twist_tests[] = {
/*
* XXX Since there is no current DTMF twist detection issue. This test
* just checks the current detection levels.
*
* Normal twist has the column higher than the row amplitude.
* Reverse twist is the other way.
*/
{ .amp_row = 1000 + 1800, .amp_col = 1000 + 0, .digit = 0, },
{ .amp_row = 1000 + 1700, .amp_col = 1000 + 0, .digit = 0, },
/* Various digits detect and not detect in this range */
{ .amp_row = 1000 + 1400, .amp_col = 1000 + 0, .digit = dtmf_positions[digit_index], },
{ .amp_row = 1000 + 1300, .amp_col = 1000 + 0, .digit = dtmf_positions[digit_index], },
{ .amp_row = 1000 + 1200, .amp_col = 1000 + 0, .digit = dtmf_positions[digit_index], },
{ .amp_row = 1000 + 1100, .amp_col = 1000 + 0, .digit = dtmf_positions[digit_index], },
{ .amp_row = 1000 + 1000, .amp_col = 1000 + 0, .digit = dtmf_positions[digit_index], },
{ .amp_row = 1000 + 100, .amp_col = 1000 + 0, .digit = dtmf_positions[digit_index], },
{ .amp_row = 1000 + 0, .amp_col = 1000 + 100, .digit = dtmf_positions[digit_index], },
{ .amp_row = 1000 + 0, .amp_col = 1000 + 200, .digit = dtmf_positions[digit_index], },
{ .amp_row = 1000 + 0, .amp_col = 1000 + 300, .digit = dtmf_positions[digit_index], },
{ .amp_row = 1000 + 0, .amp_col = 1000 + 400, .digit = dtmf_positions[digit_index], },
{ .amp_row = 1000 + 0, .amp_col = 1000 + 500, .digit = dtmf_positions[digit_index], },
{ .amp_row = 1000 + 0, .amp_col = 1000 + 550, .digit = dtmf_positions[digit_index], },
/* Various digits detect and not detect in this range */
{ .amp_row = 1000 + 0, .amp_col = 1000 + 650, .digit = 0, },
{ .amp_row = 1000 + 0, .amp_col = 1000 + 700, .digit = 0, },
{ .amp_row = 1000 + 0, .amp_col = 1000 + 800, .digit = 0, },
};
float save_normal_twist;
float save_reverse_twist;
save_normal_twist = dtmf_normal_twist;
save_reverse_twist = dtmf_reverse_twist;
dtmf_normal_twist = DEF_DTMF_NORMAL_TWIST;
dtmf_reverse_twist = DEF_DTMF_REVERSE_TWIST;
row = (digit_index >> 2) & 0x03;
column = digit_index & 0x03;
result = 0;
for (idx = 0; idx < ARRAY_LEN(twist_tests); ++idx) {
int digit;
int duration;
ast_debug(1, "Test '%c' twist row %d col %d amplitudes\n",
dtmf_positions[digit_index],
twist_tests[idx].amp_row, twist_tests[idx].amp_col);
test_dual_sample_gen(slin_buf, ARRAY_LEN(slin_buf), DEFAULT_SAMPLE_RATE,
(int) dtmf_row[row], twist_tests[idx].amp_row,
(int) dtmf_col[column], twist_tests[idx].amp_col);
digit = 0;
for (duration = 0; !digit && duration < 3; ++duration) {
digit = dtmf_detect(dsp, &dsp->digit_state, slin_buf, ARRAY_LEN(slin_buf),
0, 0);
}
if (twist_tests[idx].digit != digit) {
/*
* Both messages are needed. ast_debug for when figuring out
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
* what went wrong and the test update for normal output before
* you start debugging. The different logging methods are not
* synchronized.
*/
ast_debug(1,
"Test '%c' twist row %d col %d amplitudes failed. Detected Digit: '%c'\n",
dtmf_positions[digit_index],
twist_tests[idx].amp_row, twist_tests[idx].amp_col,
digit ?: ' ');
ast_test_status_update(test,
"Test '%c' twist row %d col %d amplitudes failed. Detected Digit: '%c'\n",
dtmf_positions[digit_index],
twist_tests[idx].amp_row, twist_tests[idx].amp_col,
digit ?: ' ');
result = -1;
}
ast_dsp_digitreset(dsp);
}
dtmf_normal_twist = save_normal_twist;
dtmf_reverse_twist = save_reverse_twist;
return result;
}
#endif
#ifdef TEST_FRAMEWORK
static int test_tone_freq_sweep(struct ast_test *test, struct ast_dsp *dsp, tone_detect_state_t *tone_state, short amplitude)
{
short slin_buf[tone_state->block_size];
int result;
int freq;
int lower_freq;
int upper_freq;
/* Calculate detection frequency range */
lower_freq = tone_state->freq - 4;
upper_freq = tone_state->freq + 4;
result = 0;
/* Sweep frequencies loop. */
for (freq = 100; freq <= 3500; freq += 1) {
int detected;
int duration;
int expect_detection;
if (freq == tone_state->freq) {
/* This case is done by the amplitude sweep. */
continue;
}
expect_detection = (lower_freq <= freq && freq <= upper_freq) ? 1 : 0;
ast_debug(1, "Test %d Hz detection given %d Hz tone at amplitude %d. Range:%d-%d Expect detect: %s\n",
tone_state->freq, freq, amplitude, lower_freq, upper_freq,
expect_detection ? "yes" : "no");
test_tone_sample_gen(slin_buf, tone_state->block_size, DEFAULT_SAMPLE_RATE, freq,
amplitude);
detected = 0;
for (duration = 0; !detected && duration < tone_state->hits_required + 3; ++duration) {
detected = tone_detect(dsp, tone_state, slin_buf, tone_state->block_size) ? 1 : 0;
}
if (expect_detection != detected) {
/*
* Both messages are needed. ast_debug for when figuring out
* what went wrong and the test update for normal output before
* you start debugging. The different logging methods are not
* synchronized.
*/
ast_debug(1,
"Test %d Hz detection given %d Hz tone at amplitude %d failed. Range:%d-%d Detected: %s\n",
tone_state->freq, freq, amplitude, lower_freq, upper_freq,
detected ? "yes" : "no");
ast_test_status_update(test,
"Test %d Hz detection given %d Hz tone at amplitude %d failed. Range:%d-%d Detected: %s\n",
tone_state->freq, freq, amplitude, lower_freq, upper_freq,
detected ? "yes" : "no");
result = -1;
}
tone_state->hit_count = 0;
}
return result;
}
#endif
#ifdef TEST_FRAMEWORK
AST_TEST_DEFINE(test_dsp_fax_detect)
{
struct ast_dsp *dsp;
enum ast_test_result_state result;
switch (cmd) {
case TEST_INIT:
info->name = "fax";
info->category = "/main/dsp/";
info->summary = "DSP fax tone detect unit test";
info->description =
"Tests fax tone detection code.";
return AST_TEST_NOT_RUN;
case TEST_EXECUTE:
break;
}
dsp = ast_dsp_new();
if (!dsp) {
return AST_TEST_FAIL;
}
result = AST_TEST_PASS;
/* Test CNG tone amplitude detection */
if (test_tone_amplitude_sweep(test, dsp, &dsp->cng_tone_state)) {
result = AST_TEST_FAIL;
}
/* Test CED tone amplitude detection */
if (test_tone_amplitude_sweep(test, dsp, &dsp->ced_tone_state)) {
result = AST_TEST_FAIL;
}
/* Test CNG tone frequency detection */
if (test_tone_freq_sweep(test, dsp, &dsp->cng_tone_state, TONE_AMPLITUDE_MAX)) {
result = AST_TEST_FAIL;
}
if (test_tone_freq_sweep(test, dsp, &dsp->cng_tone_state, TONE_AMPLITUDE_MIN)) {
result = AST_TEST_FAIL;
}
/* Test CED tone frequency detection */
if (test_tone_freq_sweep(test, dsp, &dsp->ced_tone_state, TONE_AMPLITUDE_MAX)) {
result = AST_TEST_FAIL;
}
if (test_tone_freq_sweep(test, dsp, &dsp->ced_tone_state, TONE_AMPLITUDE_MIN)) {
result = AST_TEST_FAIL;
}
ast_dsp_free(dsp);
return result;
}
#endif
#ifdef TEST_FRAMEWORK
AST_TEST_DEFINE(test_dsp_dtmf_detect)
{
int idx;
struct ast_dsp *dsp;
enum ast_test_result_state result;
switch (cmd) {
case TEST_INIT:
info->name = "dtmf";
info->category = "/main/dsp/";
info->summary = "DSP DTMF detect unit test";
info->description =
"Tests DTMF detection code.";
return AST_TEST_NOT_RUN;
case TEST_EXECUTE:
break;
}
dsp = ast_dsp_new();
if (!dsp) {
return AST_TEST_FAIL;
}
result = AST_TEST_PASS;
for (idx = 0; dtmf_positions[idx]; ++idx) {
if (test_dtmf_amplitude_sweep(test, dsp, idx)) {
result = AST_TEST_FAIL;
}
}
for (idx = 0; dtmf_positions[idx]; ++idx) {
if (test_dtmf_twist_sweep(test, dsp, idx)) {
result = AST_TEST_FAIL;
}
}
ast_dsp_free(dsp);
return result;
}
#endif
#ifdef TEST_FRAMEWORK
static void test_dsp_shutdown(void)
{
AST_TEST_UNREGISTER(test_dsp_fax_detect);
AST_TEST_UNREGISTER(test_dsp_dtmf_detect);
}
#endif
int ast_dsp_init(void)
{
int res = _dsp_init(0);
#ifdef TEST_FRAMEWORK
if (!res) {
AST_TEST_REGISTER(test_dsp_fax_detect);
AST_TEST_REGISTER(test_dsp_dtmf_detect);
ast_register_cleanup(test_dsp_shutdown);
}
#endif
return res;
}
int ast_dsp_reload(void)
{
return _dsp_init(1);
}