Newer
Older
* Asterisk -- An open source telephony toolkit.
* Copyright (C) 1999 - 2005, Digium, Inc.
*
* Goertzel routines are borrowed from Steve Underwood's tremendous work on the
* DTMF detector.
*
* See http://www.asterisk.org for more information about
* the Asterisk project. Please do not directly contact
* any of the maintainers of this project for assistance;
* the project provides a web site, mailing lists and IRC
* channels for your use.
*
* This program is free software, distributed under the terms of
* the GNU General Public License Version 2. See the LICENSE file
* at the top of the source tree.
*/
* \brief Convenience Signal Processing routines
*/
/* Some routines from tone_detect.c by Steven Underwood as published under the zapata library */
/*
tone_detect.c - General telephony tone detection, and specific
detection of DTMF.
Copyright (C) 2001 Steve Underwood <steveu@coppice.org>
Despite my general liking of the GPL, I place this code in the
public domain for the benefit of all mankind - even the slimy
ones who might try to proprietize my work and use it to my
detriment.
*/
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include <math.h>
#include <errno.h>
#include <stdio.h>
#include "asterisk/frame.h"
#include "asterisk/channel.h"
#include "asterisk/logger.h"
#include "asterisk/dsp.h"
#include "asterisk/ulaw.h"
#include "asterisk/alaw.h"
/* Number of goertzels for progress detect */
#define GSAMP_SIZE_NA 183 /* North America - 350, 440, 480, 620, 950, 1400, 1800 Hz */
#define GSAMP_SIZE_CR 188 /* Costa Rica, Brazil - Only care about 425 Hz */
#define GSAMP_SIZE_UK 160 /* UK disconnect goertzel feed - shoud trigger 400hz */
#define PROG_MODE_NA 0
#define PROG_MODE_CR 1
#define PROG_MODE_UK 2
/* For US modes */
#define HZ_350 0
#define HZ_440 1
#define HZ_480 2
#define HZ_620 3
#define HZ_950 4
#define HZ_1400 5
#define HZ_1800 6
/* For UK mode */
#define HZ_400 0
static struct progalias {
char *name;
int mode;
} aliases[] = {
{ "us", PROG_MODE_NA },
{ "ca", PROG_MODE_NA },
{ "cr", PROG_MODE_CR },
{ "uk", PROG_MODE_UK },
};
static struct progress {
int size;
int freqs[7];
} modes[] = {
{ GSAMP_SIZE_NA, { 350, 440, 480, 620, 950, 1400, 1800 } }, /* North America */
{ GSAMP_SIZE_CR, { 425 } },
{ GSAMP_SIZE_UK, { 400 } },
#define DEFAULT_THRESHOLD 512
#define BUSY_PERCENT 10 /* The percentage difference between the two last silence periods */
#define BUSY_PAT_PERCENT 7 /* The percentage difference between measured and actual pattern */
Martin Pycko
committed
#define BUSY_THRESHOLD 100 /* Max number of ms difference between max and min times in busy */
#define BUSY_MIN 75 /* Busy must be at least 80 ms in half-cadence */
#define BUSY_MAX 3100 /* Busy can't be longer than 3100 ms in half-cadence */
Martin Pycko
committed
/* Remember last 15 units */
/* Define if you want the fax detector -- NOT RECOMMENDED IN -STABLE */
#define FAX_DETECT
#define TONE_THRESH 10.0 /* How much louder the tone should be than channel energy */
#define TONE_MIN_THRESH 1e8 /* How much tone there should be at least to attempt */
#define COUNT_THRESH 3 /* Need at least 50ms of stuff to count it */
#define UK_HANGUP_THRESH 60 /* This is the threshold for the UK */
#define MAX_DTMF_DIGITS 128
/* Basic DTMF specs:
*
* Minimum tone on = 40ms
* Minimum tone off = 50ms
* Maximum digit rate = 10 per second
* Normal twist <= 8dB accepted
* Reverse twist <= 4dB accepted
* S/N >= 15dB will detect OK
* Attenuation <= 26dB will detect OK
* Frequency tolerance +- 1.5% will detect, +-3.5% will reject
*/
#define DTMF_THRESHOLD 8.0e7
#define FAX_THRESHOLD 8.0e7
#define FAX_2ND_HARMONIC 2.0 /* 4dB */
#define DTMF_NORMAL_TWIST 6.3 /* 8dB */
#ifdef RADIO_RELAX
#define DTMF_REVERSE_TWIST ((digitmode & DSP_DIGITMODE_RELAXDTMF) ? 6.5 : 2.5) /* 4dB normal */
#else
#define DTMF_REVERSE_TWIST ((digitmode & DSP_DIGITMODE_RELAXDTMF) ? 4.0 : 2.5) /* 4dB normal */
#endif
#define DTMF_RELATIVE_PEAK_ROW 6.3 /* 8dB */
#define DTMF_RELATIVE_PEAK_COL 6.3 /* 8dB */
#define DTMF_2ND_HARMONIC_ROW ((digitmode & DSP_DIGITMODE_RELAXDTMF) ? 1.7 : 2.5) /* 4dB normal */
#define DTMF_2ND_HARMONIC_COL 63.1 /* 18dB */
#define DTMF_TO_TOTAL_ENERGY 42.0
#ifdef OLD_DSP_ROUTINES
#define MF_THRESHOLD 8.0e7
#define MF_NORMAL_TWIST 5.3 /* 8dB */
#define MF_REVERSE_TWIST 4.0 /* was 2.5 */
#define MF_RELATIVE_PEAK 5.3 /* 8dB */
#define MF_2ND_HARMONIC 1.7 /* was 2.5 */
#else
#define BELL_MF_THRESHOLD 1.6e9
#define BELL_MF_TWIST 4.0 /* 6dB */
#define BELL_MF_RELATIVE_PEAK 12.6 /* 11dB */
#endif
Russell Bryant
committed
#if !defined(BUSYDETECT_MARTIN) && !defined(BUSYDETECT) && !defined(BUSYDETECT_TONEONLY) && !defined(BUSYDETECT_COMPARE_TONE_AND_SILENCE)
#define BUSYDETECT_MARTIN
#endif
typedef struct {
float v2;
float v3;
float fac;
#ifndef OLD_DSP_ROUTINES
int samples;
#endif
goertzel_state_t row_out[4];
goertzel_state_t col_out[4];
#ifdef FAX_DETECT
goertzel_state_t fax_tone;
#ifdef OLD_DSP_ROUTINES
goertzel_state_t row_out2nd[4];
goertzel_state_t col_out2nd[4];
#ifdef FAX_DETECT
goertzel_state_t fax_tone2nd;
int hit1;
int hit2;
int hit3;
int hit4;
#else
#endif
int mhit;
float energy;
int current_sample;
char digits[MAX_DTMF_DIGITS + 1];
int current_digits;
int detected_digits;
int lost_digits;
int digit_hits[16];
#ifdef FAX_DETECT
} dtmf_detect_state_t;
typedef struct
{
goertzel_state_t tone_out[6];
int mhit;
#ifdef OLD_DSP_ROUTINES
int hit1;
int hit2;
int hit3;
int hit4;
goertzel_state_t tone_out2nd[6];
float energy;
#else
#endif
int current_sample;
char digits[MAX_DTMF_DIGITS + 1];
int current_digits;
int detected_digits;
int lost_digits;
#ifdef FAX_DETECT
} mf_detect_state_t;
static float dtmf_row[] =
{
697.0, 770.0, 852.0, 941.0
1209.0, 1336.0, 1477.0, 1633.0
};
static float mf_tones[] =
{
700.0, 900.0, 1100.0, 1300.0, 1500.0, 1700.0
};
#ifdef FAX_DETECT
static char dtmf_positions[] = "123A" "456B" "789C" "*0#D";
#ifdef OLD_DSP_ROUTINES
static char mf_hit[6][6] = {
/* 700 + */ { 0, '1', '2', '4', '7', 'C' },
/* 900 + */ { '1', 0, '3', '5', '8', 'A' },
/* 1100 + */ { '2', '3', 0, '6', '9', '*' },
/* 1300 + */ { '4', '5', '6', 0, '0', 'B' },
/* 1500 + */ { '7', '8', '9', '0', 0, '#' },
/* 1700 + */ { 'C', 'A', '*', 'B', '#', 0 },
};
#else
static char bell_mf_positions[] = "1247C-358A--69*---0B----#";
#endif
static inline void goertzel_sample(goertzel_state_t *s, short sample)
{
float v1;
float fsamp = sample;
v1 = s->v2;
s->v2 = s->v3;
s->v3 = s->fac * s->v2 - v1 + fsamp;
}
static inline void goertzel_update(goertzel_state_t *s, short *samps, int count)
{
int i;
for (i=0;i<count;i++)
goertzel_sample(s, samps[i]);
}
static inline float goertzel_result(goertzel_state_t *s)
{
return s->v3 * s->v3 + s->v2 * s->v2 - s->v2 * s->v3 * s->fac;
}
static inline void goertzel_init(goertzel_state_t *s, float freq, int samples)
{
s->v2 = s->v3 = 0.0;
s->fac = 2.0 * cos(2.0 * M_PI * (freq / 8000.0));
#ifndef OLD_DSP_ROUTINES
s->samples = samples;
#endif
}
static inline void goertzel_reset(goertzel_state_t *s)
{
s->v2 = s->v3 = 0.0;
}
struct ast_dsp {
struct ast_frame f;
int threshold;
int totalsilence;
int totalnoise;
int features;
int busymaybe;
int busycount;
int busy_tonelength;
int busy_quietlength;
int historicnoise[DSP_HISTORY];
int historicsilence[DSP_HISTORY];
goertzel_state_t freqs[7];
int tstate;
int tcount;
int digitmode;
int thinkdigit;
float genergy;
union {
dtmf_detect_state_t dtmf;
mf_detect_state_t mf;
} td;
};
static void ast_dtmf_detect_init (dtmf_detect_state_t *s)
{
#ifdef OLD_DSP_ROUTINES
s->hit3 =
s->hit4 =
#else
s->hits[0] = s->hits[1] = s->hits[2] = 0;
#endif
for (i = 0; i < 4; i++) {
goertzel_init (&s->row_out[i], dtmf_row[i], 102);
goertzel_init (&s->col_out[i], dtmf_col[i], 102);
#ifdef OLD_DSP_ROUTINES
goertzel_init (&s->row_out2nd[i], dtmf_row[i] * 2.0, 102);
goertzel_init (&s->col_out2nd[i], dtmf_col[i] * 2.0, 102);
#endif
#ifdef FAX_DETECT
goertzel_init (&s->fax_tone, fax_freq, 102);
#ifdef OLD_DSP_ROUTINES
goertzel_init (&s->fax_tone2nd, fax_freq * 2.0, 102);
#endif
#endif /* FAX_DETECT */
s->current_sample = 0;
s->detected_digits = 0;
s->current_digits = 0;
memset(&s->digits, 0, sizeof(s->digits));
s->lost_digits = 0;
s->digits[0] = '\0';
}
static void ast_mf_detect_init (mf_detect_state_t *s)
{
#ifdef OLD_DSP_ROUTINES
s->hit1 =
s->hit2 = 0;
#else
s->hits[0] = s->hits[1] = s->hits[2] = s->hits[3] = s->hits[4] = 0;
#endif
for (i = 0; i < 6; i++) {
goertzel_init (&s->tone_out[i], mf_tones[i], 160);
#ifdef OLD_DSP_ROUTINES
goertzel_init (&s->tone_out2nd[i], mf_tones[i] * 2.0, 160);
#endif
s->current_digits = 0;
memset(&s->digits, 0, sizeof(s->digits));
s->current_sample = 0;
s->detected_digits = 0;
s->lost_digits = 0;
s->digits[0] = '\0';
s->mhit = 0;
static int dtmf_detect (dtmf_detect_state_t *s, int16_t amp[], int samples,
int digitmode, int *writeback, int faxdetect)
float row_energy[4];
float col_energy[4];
#ifdef FAX_DETECT
#ifdef OLD_DSP_ROUTINES
#endif
#endif /* FAX_DETECT */
float famp;
float v1;
int i;
int j;
int sample;
int best_row;
int best_col;
int hit;
int limit;
hit = 0;
for (sample = 0; sample < samples; sample = limit) {
/* 102 is optimised to meet the DTMF specs. */
if ((samples - sample) >= (102 - s->current_sample))
limit = sample + (102 - s->current_sample);
else
limit = samples;
_dtmf_goertzel_update (s->row_out, amp + sample, limit - sample);
_dtmf_goertzel_update (s->col_out, amp + sample, limit - sample);
#ifdef OLD_DSP_ROUTINES
_dtmf_goertzel_update (s->row_out2nd, amp + sample, limit2 - sample);
_dtmf_goertzel_update (s->col_out2nd, amp + sample, limit2 - sample);
#endif
/* XXX Need to fax detect for 3dnow too XXX */
#warning "Fax Support Broken"
#else
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
/* The following unrolled loop takes only 35% (rough estimate) of the
time of a rolled loop on the machine on which it was developed */
for (j=sample;j<limit;j++) {
famp = amp[j];
s->energy += famp*famp;
/* With GCC 2.95, the following unrolled code seems to take about 35%
(rough estimate) as long as a neat little 0-3 loop */
v1 = s->row_out[0].v2;
s->row_out[0].v2 = s->row_out[0].v3;
s->row_out[0].v3 = s->row_out[0].fac*s->row_out[0].v2 - v1 + famp;
v1 = s->col_out[0].v2;
s->col_out[0].v2 = s->col_out[0].v3;
s->col_out[0].v3 = s->col_out[0].fac*s->col_out[0].v2 - v1 + famp;
v1 = s->row_out[1].v2;
s->row_out[1].v2 = s->row_out[1].v3;
s->row_out[1].v3 = s->row_out[1].fac*s->row_out[1].v2 - v1 + famp;
v1 = s->col_out[1].v2;
s->col_out[1].v2 = s->col_out[1].v3;
s->col_out[1].v3 = s->col_out[1].fac*s->col_out[1].v2 - v1 + famp;
v1 = s->row_out[2].v2;
s->row_out[2].v2 = s->row_out[2].v3;
s->row_out[2].v3 = s->row_out[2].fac*s->row_out[2].v2 - v1 + famp;
v1 = s->col_out[2].v2;
s->col_out[2].v2 = s->col_out[2].v3;
s->col_out[2].v3 = s->col_out[2].fac*s->col_out[2].v2 - v1 + famp;
v1 = s->row_out[3].v2;
s->row_out[3].v2 = s->row_out[3].v3;
s->row_out[3].v3 = s->row_out[3].fac*s->row_out[3].v2 - v1 + famp;
v1 = s->col_out[3].v2;
s->col_out[3].v2 = s->col_out[3].v3;
s->col_out[3].v3 = s->col_out[3].fac*s->col_out[3].v2 - v1 + famp;
#ifdef FAX_DETECT
/* Update fax tone */
v1 = s->fax_tone.v2;
s->fax_tone.v2 = s->fax_tone.v3;
s->fax_tone.v3 = s->fax_tone.fac*s->fax_tone.v2 - v1 + famp;
#endif /* FAX_DETECT */
#ifdef OLD_DSP_ROUTINES
v1 = s->col_out2nd[0].v2;
s->col_out2nd[0].v2 = s->col_out2nd[0].v3;
s->col_out2nd[0].v3 = s->col_out2nd[0].fac*s->col_out2nd[0].v2 - v1 + famp;
v1 = s->row_out2nd[0].v2;
s->row_out2nd[0].v2 = s->row_out2nd[0].v3;
s->row_out2nd[0].v3 = s->row_out2nd[0].fac*s->row_out2nd[0].v2 - v1 + famp;
v1 = s->col_out2nd[1].v2;
s->col_out2nd[1].v2 = s->col_out2nd[1].v3;
s->col_out2nd[1].v3 = s->col_out2nd[1].fac*s->col_out2nd[1].v2 - v1 + famp;
v1 = s->row_out2nd[1].v2;
s->row_out2nd[1].v2 = s->row_out2nd[1].v3;
s->row_out2nd[1].v3 = s->row_out2nd[1].fac*s->row_out2nd[1].v2 - v1 + famp;
v1 = s->col_out2nd[2].v2;
s->col_out2nd[2].v2 = s->col_out2nd[2].v3;
s->col_out2nd[2].v3 = s->col_out2nd[2].fac*s->col_out2nd[2].v2 - v1 + famp;
v1 = s->row_out2nd[2].v2;
s->row_out2nd[2].v2 = s->row_out2nd[2].v3;
s->row_out2nd[2].v3 = s->row_out2nd[2].fac*s->row_out2nd[2].v2 - v1 + famp;
v1 = s->col_out2nd[3].v2;
s->col_out2nd[3].v2 = s->col_out2nd[3].v3;
s->col_out2nd[3].v3 = s->col_out2nd[3].fac*s->col_out2nd[3].v2 - v1 + famp;
v1 = s->row_out2nd[3].v2;
s->row_out2nd[3].v2 = s->row_out2nd[3].v3;
s->row_out2nd[3].v3 = s->row_out2nd[3].fac*s->row_out2nd[3].v2 - v1 + famp;
#ifdef FAX_DETECT
/* Update fax tone */
v1 = s->fax_tone.v2;
s->fax_tone2nd.v2 = s->fax_tone2nd.v3;
s->fax_tone2nd.v3 = s->fax_tone2nd.fac*s->fax_tone2nd.v2 - v1 + famp;
#endif /* FAX_DETECT */
#endif
s->current_sample += (limit - sample);
if (s->current_sample < 102) {
if (hit && !((digitmode & DSP_DIGITMODE_NOQUELCH))) {
/* If we had a hit last time, go ahead and clear this out since likely it
will be another hit */
for (i=sample;i<limit;i++)
amp[i] = 0;
*writeback = 1;
}
#ifdef FAX_DETECT
/* Detect the fax energy, too */
fax_energy = goertzel_result(&s->fax_tone);
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
/* We are at the end of a DTMF detection block */
/* Find the peak row and the peak column */
row_energy[0] = goertzel_result (&s->row_out[0]);
col_energy[0] = goertzel_result (&s->col_out[0]);
for (best_row = best_col = 0, i = 1; i < 4; i++) {
row_energy[i] = goertzel_result (&s->row_out[i]);
if (row_energy[i] > row_energy[best_row])
best_row = i;
col_energy[i] = goertzel_result (&s->col_out[i]);
if (col_energy[i] > col_energy[best_col])
best_col = i;
}
hit = 0;
/* Basic signal level test and the twist test */
if (row_energy[best_row] >= DTMF_THRESHOLD &&
col_energy[best_col] >= DTMF_THRESHOLD &&
col_energy[best_col] < row_energy[best_row]*DTMF_REVERSE_TWIST &&
col_energy[best_col]*DTMF_NORMAL_TWIST > row_energy[best_row]) {
/* Relative peak test */
for (i = 0; i < 4; i++) {
if ((i != best_col &&
col_energy[i]*DTMF_RELATIVE_PEAK_COL > col_energy[best_col]) ||
(i != best_row
&& row_energy[i]*DTMF_RELATIVE_PEAK_ROW > row_energy[best_row])) {
break;
}
}
#ifdef OLD_DSP_ROUTINES
/* ... and second harmonic test */
if (i >= 4 &&
(row_energy[best_row] + col_energy[best_col]) > 42.0*s->energy &&
goertzel_result(&s->col_out2nd[best_col])*DTMF_2ND_HARMONIC_COL < col_energy[best_col]
&& goertzel_result(&s->row_out2nd[best_row])*DTMF_2ND_HARMONIC_ROW < row_energy[best_row]) {
#else
/* ... and fraction of total energy test */
if (i >= 4 &&
(row_energy[best_row] + col_energy[best_col]) > DTMF_TO_TOTAL_ENERGY*s->energy) {
#endif
hit = dtmf_positions[(best_row << 2) + best_col];
if (!(digitmode & DSP_DIGITMODE_NOQUELCH)) {
/* Zero out frame data if this is part DTMF */
for (i=sample;i<limit;i++)
amp[i] = 0;
*writeback = 1;
}
/* Look for two successive similar results */
/* The logic in the next test is:
We need two successive identical clean detects, with
something different preceeding it. This can work with
back to back differing digits. More importantly, it
can work with nasty phones that give a very wobbly start
to a digit */
#ifdef OLD_DSP_ROUTINES
if (hit == s->hit3 && s->hit3 != s->hit2) {
s->mhit = hit;
s->digit_hits[(best_row << 2) + best_col]++;
s->detected_digits++;
if (s->current_digits < MAX_DTMF_DIGITS) {
s->digits[s->current_digits++] = hit;
s->digits[s->current_digits] = '\0';
} else {
s->lost_digits++;
}
}
#else
if (hit == s->hits[2] && hit != s->hits[1] && hit != s->hits[0]) {
s->mhit = hit;
s->digit_hits[(best_row << 2) + best_col]++;
s->detected_digits++;
if (s->current_digits < MAX_DTMF_DIGITS) {
s->digits[s->current_digits++] = hit;
s->digits[s->current_digits] = '\0';
} else {
s->lost_digits++;
}
}
#endif
#ifdef FAX_DETECT
if (!hit && (fax_energy >= FAX_THRESHOLD) &&
(fax_energy >= DTMF_TO_TOTAL_ENERGY*s->energy) &&
(faxdetect)) {
#if 0
printf("Fax energy/Second Harmonic: %f\n", fax_energy);
#endif
/* XXX Probably need better checking than just this the energy XXX */
hit = 'f';
s->fax_hits++;
} else {
hit = 'f';
s->mhit = 'f';
s->detected_digits++;
if (s->current_digits < MAX_DTMF_DIGITS) {
s->digits[s->current_digits++] = hit;
s->digits[s->current_digits] = '\0';
} else {
s->lost_digits++;
}
#endif /* FAX_DETECT */
#ifdef OLD_DSP_ROUTINES
s->hit1 = s->hit2;
s->hit2 = s->hit3;
s->hit3 = hit;
#else
s->hits[0] = s->hits[1];
s->hits[1] = s->hits[2];
s->hits[2] = hit;
#endif
/* Reinitialise the detector for the next block */
for (i = 0; i < 4; i++) {
goertzel_reset(&s->row_out[i]);
goertzel_reset(&s->col_out[i]);
#ifdef OLD_DSP_ROUTINES
goertzel_reset(&s->row_out2nd[i]);
goertzel_reset(&s->col_out2nd[i]);
#endif
#ifdef FAX_DETECT
goertzel_reset (&s->fax_tone);
#ifdef OLD_DSP_ROUTINES
goertzel_reset (&s->fax_tone2nd);
#endif
s->current_sample = 0;
}
if ((!s->mhit) || (s->mhit != hit)) {
s->mhit = 0;
return(0);
}
return (hit);
#ifdef OLD_DSP_ROUTINES
#else
#define MF_GSIZE 120
#endif
static int mf_detect (mf_detect_state_t *s, int16_t amp[],
int samples, int digitmode, int *writeback)
#ifdef OLD_DSP_ROUTINES
float tone_energy[6];
int best1;
int best2;
float max;
int sofarsogood;
#else
float energy[6];
int best;
int second_best;
#endif
float famp;
float v1;
int i;
int j;
int sample;
int hit;
int limit;
hit = 0;
for (sample = 0; sample < samples; sample = limit) {
/* 80 is optimised to meet the MF specs. */
if ((samples - sample) >= (MF_GSIZE - s->current_sample))
limit = sample + (MF_GSIZE - s->current_sample);
else
limit = samples;
_dtmf_goertzel_update (s->row_out, amp + sample, limit - sample);
_dtmf_goertzel_update (s->col_out, amp + sample, limit - sample);
#ifdef OLD_DSP_ROUTINES
_dtmf_goertzel_update (s->row_out2nd, amp + sample, limit2 - sample);
_dtmf_goertzel_update (s->col_out2nd, amp + sample, limit2 - sample);
#endif
/* XXX Need to fax detect for 3dnow too XXX */
#warning "Fax Support Broken"
#else
/* The following unrolled loop takes only 35% (rough estimate) of the
time of a rolled loop on the machine on which it was developed */
for (j = sample; j < limit; j++) {
famp = amp[j];
#ifdef OLD_DSP_ROUTINES
#endif
/* With GCC 2.95, the following unrolled code seems to take about 35%
(rough estimate) as long as a neat little 0-3 loop */
v1 = s->tone_out[0].v2;
s->tone_out[0].v2 = s->tone_out[0].v3;
s->tone_out[0].v3 = s->tone_out[0].fac*s->tone_out[0].v2 - v1 + famp;
v1 = s->tone_out[1].v2;
s->tone_out[1].v2 = s->tone_out[1].v3;
s->tone_out[1].v3 = s->tone_out[1].fac*s->tone_out[1].v2 - v1 + famp;
v1 = s->tone_out[2].v2;
s->tone_out[2].v2 = s->tone_out[2].v3;
s->tone_out[2].v3 = s->tone_out[2].fac*s->tone_out[2].v2 - v1 + famp;
v1 = s->tone_out[3].v2;
s->tone_out[3].v2 = s->tone_out[3].v3;
s->tone_out[3].v3 = s->tone_out[3].fac*s->tone_out[3].v2 - v1 + famp;
v1 = s->tone_out[4].v2;
s->tone_out[4].v2 = s->tone_out[4].v3;
s->tone_out[4].v3 = s->tone_out[4].fac*s->tone_out[4].v2 - v1 + famp;
v1 = s->tone_out[5].v2;
s->tone_out[5].v2 = s->tone_out[5].v3;
s->tone_out[5].v3 = s->tone_out[5].fac*s->tone_out[5].v2 - v1 + famp;
#ifdef OLD_DSP_ROUTINES
v1 = s->tone_out2nd[0].v2;
s->tone_out2nd[0].v2 = s->tone_out2nd[0].v3;
s->tone_out2nd[0].v3 = s->tone_out2nd[0].fac*s->tone_out2nd[0].v2 - v1 + famp;
v1 = s->tone_out2nd[1].v2;
s->tone_out2nd[1].v2 = s->tone_out2nd[1].v3;
s->tone_out2nd[1].v3 = s->tone_out2nd[1].fac*s->tone_out2nd[1].v2 - v1 + famp;
v1 = s->tone_out2nd[2].v2;
s->tone_out2nd[2].v2 = s->tone_out2nd[2].v3;
s->tone_out2nd[2].v3 = s->tone_out2nd[2].fac*s->tone_out2nd[2].v2 - v1 + famp;
v1 = s->tone_out2nd[3].v2;
s->tone_out2nd[3].v2 = s->tone_out2nd[3].v3;
s->tone_out2nd[3].v3 = s->tone_out2nd[3].fac*s->tone_out2nd[3].v2 - v1 + famp;
v1 = s->tone_out2nd[4].v2;
s->tone_out2nd[4].v2 = s->tone_out2nd[4].v3;
s->tone_out2nd[4].v3 = s->tone_out2nd[4].fac*s->tone_out2nd[2].v2 - v1 + famp;
v1 = s->tone_out2nd[3].v2;
s->tone_out2nd[5].v2 = s->tone_out2nd[6].v3;
s->tone_out2nd[5].v3 = s->tone_out2nd[6].fac*s->tone_out2nd[3].v2 - v1 + famp;
#endif
s->current_sample += (limit - sample);
if (s->current_sample < MF_GSIZE) {
if (hit && !((digitmode & DSP_DIGITMODE_NOQUELCH))) {
/* If we had a hit last time, go ahead and clear this out since likely it
will be another hit */
for (i=sample;i<limit;i++)
amp[i] = 0;
*writeback = 1;
}
#ifdef OLD_DSP_ROUTINES
/* We're at the end of an MF detection block. Go ahead and calculate
all the energies. */
for (i=0;i<6;i++) {
tone_energy[i] = goertzel_result(&s->tone_out[i]);
}
/* Find highest */
best1 = 0;
max = tone_energy[0];
for (i=1;i<6;i++) {
if (tone_energy[i] > max) {
max = tone_energy[i];
best1 = i;
}
}
/* Find 2nd highest */
if (best1) {
best2 = 0;
} else {
best2 = 1;
}
for (i=0;i<6;i++) {
if (i == best1) continue;
if (tone_energy[i] > max) {
max = tone_energy[i];
best2 = i;
}
}
hit = 0;
if (best1 != best2)
sofarsogood=1;
else
sofarsogood=0;
/* Check for relative energies */
for (i=0;i<6;i++) {
if (i == best1)
continue;
if (i == best2)
continue;
if (tone_energy[best1] < tone_energy[i] * MF_RELATIVE_PEAK) {
sofarsogood = 0;
break;
}
if (tone_energy[best2] < tone_energy[i] * MF_RELATIVE_PEAK) {
sofarsogood = 0;
break;
}
}
if (sofarsogood) {
/* Check for 2nd harmonic */
if (goertzel_result(&s->tone_out2nd[best1]) * MF_2ND_HARMONIC > tone_energy[best1])
sofarsogood = 0;
else if (goertzel_result(&s->tone_out2nd[best2]) * MF_2ND_HARMONIC > tone_energy[best2])
sofarsogood = 0;
}
if (sofarsogood) {
hit = mf_hit[best1][best2];
if (!(digitmode & DSP_DIGITMODE_NOQUELCH)) {
/* Zero out frame data if this is part DTMF */
for (i=sample;i<limit;i++)
amp[i] = 0;
*writeback = 1;
}
/* Look for two consecutive clean hits */
if ((hit == s->hit3) && (s->hit3 != s->hit2)) {
s->mhit = hit;
s->detected_digits++;
if (s->current_digits < MAX_DTMF_DIGITS - 2) {
s->digits[s->current_digits++] = hit;
s->digits[s->current_digits] = '\0';
} else {
s->lost_digits++;
}
}
}
s->hit1 = s->hit2;
s->hit2 = s->hit3;
s->hit3 = hit;
/* Reinitialise the detector for the next block */
for (i = 0; i < 6; i++) {
goertzel_reset(&s->tone_out[i]);
goertzel_reset(&s->tone_out2nd[i]);
}
s->current_sample = 0;
}
#else
/* We're at the end of an MF detection block. */
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
/* Find the two highest energies. The spec says to look for
two tones and two tones only. Taking this literally -ie
only two tones pass the minimum threshold - doesn't work
well. The sinc function mess, due to rectangular windowing
ensure that! Find the two highest energies and ensure they
are considerably stronger than any of the others. */
energy[0] = goertzel_result(&s->tone_out[0]);
energy[1] = goertzel_result(&s->tone_out[1]);
if (energy[0] > energy[1]) {
best = 0;
second_best = 1;
} else {
best = 1;
second_best = 0;
}
/*endif*/
for (i=2;i<6;i++) {
energy[i] = goertzel_result(&s->tone_out[i]);
if (energy[i] >= energy[best]) {
second_best = best;
best = i;
} else if (energy[i] >= energy[second_best]) {
second_best = i;
}
}
/* Basic signal level and twist tests */
hit = 0;
if (energy[best] >= BELL_MF_THRESHOLD && energy[second_best] >= BELL_MF_THRESHOLD
&& energy[best] < energy[second_best]*BELL_MF_TWIST
&& energy[best]*BELL_MF_TWIST > energy[second_best]) {
/* Relative peak test */
hit = -1;
for (i=0;i<6;i++) {
if (i != best && i != second_best) {
if (energy[i]*BELL_MF_RELATIVE_PEAK >= energy[second_best]) {
/* The best two are not clearly the best */
hit = 0;
break;
}
}
}
}
if (hit) {
/* Get the values into ascending order */
if (second_best < best) {
i = best;
best = second_best;
second_best = i;
}
best = best*5 + second_best - 1;
hit = bell_mf_positions[best];
/* Look for two successive similar results */
/* The logic in the next test is:
For KP we need 4 successive identical clean detects, with
two blocks of something different preceeding it. For anything
else we need two successive identical clean detects, with
two blocks of something different preceeding it. */
if (hit == s->hits[4] && hit == s->hits[3] &&
((hit != '*' && hit != s->hits[2] && hit != s->hits[1])||
(hit == '*' && hit == s->hits[2] && hit != s->hits[1] &&
hit != s->hits[0]))) {
s->detected_digits++;
if (s->current_digits < MAX_DTMF_DIGITS) {
s->digits[s->current_digits++] = hit;
s->digits[s->current_digits] = '\0';
} else {
s->lost_digits++;
}
}
} else {
hit = 0;
}
s->hits[0] = s->hits[1];
s->hits[1] = s->hits[2];
s->hits[2] = s->hits[3];
s->hits[3] = s->hits[4];
s->hits[4] = hit;
/* Reinitialise the detector for the next block */
for (i = 0; i < 6; i++)
goertzel_reset(&s->tone_out[i]);
s->current_sample = 0;
}
#endif
if ((!s->mhit) || (s->mhit != hit)) {
}
static int __ast_dsp_digitdetect(struct ast_dsp *dsp, short *s, int len, int *writeback)
{
int res;
if (dsp->digitmode & DSP_DIGITMODE_MF)
res = mf_detect(&dsp->td.mf, s, len, dsp->digitmode & DSP_DIGITMODE_RELAXDTMF, writeback);
else
res = dtmf_detect(&dsp->td.dtmf, s, len, dsp->digitmode & DSP_DIGITMODE_RELAXDTMF, writeback, dsp->features & DSP_FEATURE_FAX_DETECT);
return res;
}
int ast_dsp_digitdetect(struct ast_dsp *dsp, struct ast_frame *inf)
{
short *s;
int len;
int ign=0;
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
if (inf->frametype != AST_FRAME_VOICE) {
ast_log(LOG_WARNING, "Can't check call progress of non-voice frames\n");
return 0;
}
if (inf->subclass != AST_FORMAT_SLINEAR) {
ast_log(LOG_WARNING, "Can only check call progress in signed-linear frames\n");
return 0;
}
s = inf->data;
len = inf->datalen / 2;
return __ast_dsp_digitdetect(dsp, s, len, &ign);
}
static inline int pair_there(float p1, float p2, float i1, float i2, float e)
{
/* See if p1 and p2 are there, relative to i1 and i2 and total energy */
/* Make sure absolute levels are high enough */
if ((p1 < TONE_MIN_THRESH) || (p2 < TONE_MIN_THRESH))
return 0;
/* Amplify ignored stuff */
i2 *= TONE_THRESH;
i1 *= TONE_THRESH;
e *= TONE_THRESH;
/* Check first tone */
if ((p1 < i1) || (p1 < i2) || (p1 < e))
return 0;
/* And second */
if ((p2 < i1) || (p2 < i2) || (p2 < e))
return 0;
/* Guess it's there... */
return 1;
}
int ast_dsp_getdigits (struct ast_dsp *dsp, char *buf, int max)
if (max > dsp->td.mf.current_digits)
max = dsp->td.mf.current_digits;
if (max > 0) {
memcpy(buf, dsp->td.mf.digits, max);
memmove(dsp->td.mf.digits, dsp->td.mf.digits + max, dsp->td.mf.current_digits - max);
dsp->td.mf.current_digits -= max;
}
buf[max] = '\0';
return max;
if (max > dsp->td.dtmf.current_digits)
max = dsp->td.dtmf.current_digits;
if (max > 0) {
memcpy (buf, dsp->td.dtmf.digits, max);
memmove (dsp->td.dtmf.digits, dsp->td.dtmf.digits + max, dsp->td.dtmf.current_digits - max);
dsp->td.dtmf.current_digits -= max;
}
buf[max] = '\0';
return max;
}
}
static int __ast_dsp_call_progress(struct ast_dsp *dsp, short *s, int len)
{
int x;
int newstate = DSP_TONE_STATE_SILENCE;
int thresh = (dsp->progmode == PROG_MODE_UK) ? UK_HANGUP_THRESH : COUNT_THRESH;
while(len) {
/* Take the lesser of the number of samples we need and what we have */
pass = len;
if (pass > dsp->gsamp_size - dsp->gsamps)
pass = dsp->gsamp_size - dsp->gsamps;
for (y=0;y<dsp->freqcount;y++)
goertzel_sample(&dsp->freqs[y], s[x]);
dsp->genergy += s[x] * s[x];
}
s += pass;
dsp->gsamps += pass;
len -= pass;
if (dsp->gsamps == dsp->gsamp_size) {
float hz[7];
for (y=0;y<7;y++)
hz[y] = goertzel_result(&dsp->freqs[y]);
printf("\n350: 425: 440: 480: 620: 950: 1400: 1800: Energy: \n");
printf("%.2e %.2e %.2e %.2e %.2e %.2e %.2e %.2e %.2e\n",
hz[HZ_350], hz[HZ_425], hz[HZ_440], hz[HZ_480], hz[HZ_620], hz[HZ_950], hz[HZ_1400], hz[HZ_1800], dsp->genergy);
switch(dsp->progmode) {
case PROG_MODE_NA:
if (pair_there(hz[HZ_480], hz[HZ_620], hz[HZ_350], hz[HZ_440], dsp->genergy)) {
newstate = DSP_TONE_STATE_BUSY;
} else if (pair_there(hz[HZ_440], hz[HZ_480], hz[HZ_350], hz[HZ_620], dsp->genergy)) {
newstate = DSP_TONE_STATE_RINGING;
} else if (pair_there(hz[HZ_350], hz[HZ_440], hz[HZ_480], hz[HZ_620], dsp->genergy)) {
newstate = DSP_TONE_STATE_DIALTONE;
} else if (hz[HZ_950] > TONE_MIN_THRESH * TONE_THRESH) {
newstate = DSP_TONE_STATE_SPECIAL1;
} else if (hz[HZ_1400] > TONE_MIN_THRESH * TONE_THRESH) {
if (dsp->tstate == DSP_TONE_STATE_SPECIAL1)
newstate = DSP_TONE_STATE_SPECIAL2;
} else if (hz[HZ_1800] > TONE_MIN_THRESH * TONE_THRESH) {
if (dsp->tstate == DSP_TONE_STATE_SPECIAL2)
newstate = DSP_TONE_STATE_SPECIAL3;
} else if (dsp->genergy > TONE_MIN_THRESH * TONE_THRESH) {
newstate = DSP_TONE_STATE_TALKING;
newstate = DSP_TONE_STATE_SILENCE;
break;
case PROG_MODE_CR:
if (hz[HZ_425] > TONE_MIN_THRESH * TONE_THRESH) {
newstate = DSP_TONE_STATE_RINGING;
} else if (dsp->genergy > TONE_MIN_THRESH * TONE_THRESH) {
newstate = DSP_TONE_STATE_TALKING;
newstate = DSP_TONE_STATE_SILENCE;
case PROG_MODE_UK:
if (hz[HZ_400] > TONE_MIN_THRESH * TONE_THRESH) {
newstate = DSP_TONE_STATE_HUNGUP;
}
break;
default:
ast_log(LOG_WARNING, "Can't process in unknown prog mode '%d'\n", dsp->progmode);
}
if (newstate == dsp->tstate) {
dsp->tcount++;
if (dsp->tcount == thresh) {
if ((dsp->features & DSP_PROGRESS_BUSY) &&
dsp->tstate == DSP_TONE_STATE_BUSY) {
res = AST_CONTROL_BUSY;
dsp->features &= ~DSP_FEATURE_CALL_PROGRESS;
} else if ((dsp->features & DSP_PROGRESS_TALK) &&
dsp->tstate == DSP_TONE_STATE_TALKING) {
res = AST_CONTROL_ANSWER;
dsp->features &= ~DSP_FEATURE_CALL_PROGRESS;
} else if ((dsp->features & DSP_PROGRESS_RINGING) &&
dsp->tstate == DSP_TONE_STATE_RINGING)
else if ((dsp->features & DSP_PROGRESS_CONGESTION) &&
dsp->tstate == DSP_TONE_STATE_SPECIAL3) {
res = AST_CONTROL_CONGESTION;
dsp->features &= ~DSP_FEATURE_CALL_PROGRESS;
} else if ((dsp->features & DSP_FEATURE_CALL_PROGRESS) &&
dsp->tstate == DSP_TONE_STATE_HUNGUP) {
res = AST_CONTROL_HANGUP;
dsp->features &= ~DSP_FEATURE_CALL_PROGRESS;
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
}
}
} else {
#if 0
printf("Newstate: %d\n", newstate);
#endif
dsp->tstate = newstate;
dsp->tcount = 1;
}
/* Reset goertzel */
for (x=0;x<7;x++)
dsp->freqs[x].v2 = dsp->freqs[x].v3 = 0.0;
dsp->gsamps = 0;
dsp->genergy = 0.0;
}
}
#if 0
if (res)
printf("Returning %d\n", res);
#endif
return res;
}
int ast_dsp_call_progress(struct ast_dsp *dsp, struct ast_frame *inf)
{
if (inf->frametype != AST_FRAME_VOICE) {
ast_log(LOG_WARNING, "Can't check call progress of non-voice frames\n");
return 0;
}
if (inf->subclass != AST_FORMAT_SLINEAR) {
ast_log(LOG_WARNING, "Can only check call progress in signed-linear frames\n");
return 0;
}
return __ast_dsp_call_progress(dsp, inf->data, inf->datalen / 2);
}
static int __ast_dsp_silence(struct ast_dsp *dsp, short *s, int len, int *totalsilence)
{
int accum;
int x;
int res = 0;
accum = 0;
for (x=0;x<len; x++)
accum += abs(s[x]);
Martin Pycko
committed
accum /= len;
dsp->totalsilence += len/8;
if (dsp->totalnoise) {
/* Move and save history */
Martin Pycko
committed
memmove(dsp->historicnoise + DSP_HISTORY - dsp->busycount, dsp->historicnoise + DSP_HISTORY - dsp->busycount +1, dsp->busycount*sizeof(dsp->historicnoise[0]));
dsp->historicnoise[DSP_HISTORY - 1] = dsp->totalnoise;
Martin Pycko
committed
/* we don't want to check for busydetect that frequently */
#if 0
Martin Pycko
committed
#endif
}
dsp->totalnoise = 0;
res = 1;
} else {
dsp->totalnoise += len/8;
if (dsp->totalsilence) {
Martin Pycko
committed
int silence1 = dsp->historicsilence[DSP_HISTORY - 1];
int silence2 = dsp->historicsilence[DSP_HISTORY - 2];
Martin Pycko
committed
memmove(dsp->historicsilence + DSP_HISTORY - dsp->busycount, dsp->historicsilence + DSP_HISTORY - dsp->busycount + 1, dsp->busycount*sizeof(dsp->historicsilence[0]));
dsp->historicsilence[DSP_HISTORY - 1] = dsp->totalsilence;
Martin Pycko
committed
/* check if the previous sample differs only by BUSY_PERCENT from the one before it */
if (silence1 < silence2) {
if (silence1 + silence1*BUSY_PERCENT/100 >= silence2)
Martin Pycko
committed
dsp->busymaybe = 1;
else
dsp->busymaybe = 0;
} else {
if (silence1 - silence1*BUSY_PERCENT/100 <= silence2)
Martin Pycko
committed
dsp->busymaybe = 1;
else
dsp->busymaybe = 0;
}
}
dsp->totalsilence = 0;
}
if (totalsilence)
*totalsilence = dsp->totalsilence;
return res;
}
Martin Pycko
committed
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
#ifdef BUSYDETECT_MARTIN
int ast_dsp_busydetect(struct ast_dsp *dsp)
{
int res = 0, x;
#ifndef BUSYDETECT_TONEONLY
int avgsilence = 0, hitsilence = 0;
#endif
int avgtone = 0, hittone = 0;
if (!dsp->busymaybe)
return res;
for (x=DSP_HISTORY - dsp->busycount;x<DSP_HISTORY;x++) {
#ifndef BUSYDETECT_TONEONLY
avgsilence += dsp->historicsilence[x];
#endif
avgtone += dsp->historicnoise[x];
}
#ifndef BUSYDETECT_TONEONLY
avgsilence /= dsp->busycount;
#endif
avgtone /= dsp->busycount;
for (x=DSP_HISTORY - dsp->busycount;x<DSP_HISTORY;x++) {
#ifndef BUSYDETECT_TONEONLY
if (avgsilence > dsp->historicsilence[x]) {
if (avgsilence - (avgsilence*BUSY_PERCENT/100) <= dsp->historicsilence[x])
Martin Pycko
committed
hitsilence++;
} else {
if (avgsilence + (avgsilence*BUSY_PERCENT/100) >= dsp->historicsilence[x])
Martin Pycko
committed
hitsilence++;
}
#endif
if (avgtone > dsp->historicnoise[x]) {
if (avgtone - (avgtone*BUSY_PERCENT/100) <= dsp->historicnoise[x])
Martin Pycko
committed
hittone++;
} else {
if (avgtone + (avgtone*BUSY_PERCENT/100) >= dsp->historicnoise[x])
Martin Pycko
committed
hittone++;
}
}
#ifndef BUSYDETECT_TONEONLY
if ((hittone >= dsp->busycount - 1) && (hitsilence >= dsp->busycount - 1) &&
(avgtone >= BUSY_MIN && avgtone <= BUSY_MAX) &&
(avgsilence >= BUSY_MIN && avgsilence <= BUSY_MAX)) {
Martin Pycko
committed
#else
if ((hittone >= dsp->busycount - 1) && (avgtone >= BUSY_MIN && avgtone <= BUSY_MAX)) {
#endif
#ifdef BUSYDETECT_COMPARE_TONE_AND_SILENCE
#ifdef BUSYDETECT_TONEONLY
#error You cant use BUSYDETECT_TONEONLY together with BUSYDETECT_COMPARE_TONE_AND_SILENCE
Martin Pycko
committed
#endif
if (avgtone > avgsilence) {
if (avgtone - avgtone*BUSY_PERCENT/100 <= avgsilence)
Martin Pycko
committed
res = 1;
} else {
if (avgtone + avgtone*BUSY_PERCENT/100 >= avgsilence)
Martin Pycko
committed
res = 1;
}
#else
res = 1;
#endif
}
/* If we know the expected busy tone length, check we are in the range */
if (res && (dsp->busy_tonelength > 0)) {
if (abs(avgtone - dsp->busy_tonelength) > (dsp->busy_tonelength*BUSY_PAT_PERCENT/100)) {
#if 0
ast_log(LOG_NOTICE, "busy detector: avgtone of %d not close enough to desired %d\n",
avgtone, dsp->busy_tonelength);
#endif
res = 0;
}
}
/* If we know the expected busy tone silent-period length, check we are in the range */
if (res && (dsp->busy_quietlength > 0)) {
if (abs(avgsilence - dsp->busy_quietlength) > (dsp->busy_quietlength*BUSY_PAT_PERCENT/100)) {
Martin Pycko
committed
#if 0
ast_log(LOG_NOTICE, "busy detector: avgsilence of %d not close enough to desired %d\n",
avgsilence, dsp->busy_quietlength);
#endif
res = 0;
}
}
#if 1
Martin Pycko
committed
if (res)
ast_log(LOG_DEBUG, "ast_dsp_busydetect detected busy, avgtone: %d, avgsilence %d\n", avgtone, avgsilence);
Martin Pycko
committed
#endif
return res;
}
#endif
Martin Pycko
committed
#ifdef BUSYDETECT
int ast_dsp_busydetect(struct ast_dsp *dsp)
{
int x;
int res = 0;
int max, min;
Martin Pycko
committed
#if 0
if (dsp->busy_hits > 5);
return 0;
#endif
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
if (dsp->busymaybe) {
#if 0
printf("Maybe busy!\n");
#endif
dsp->busymaybe = 0;
min = 9999;
max = 0;
for (x=DSP_HISTORY - dsp->busycount;x<DSP_HISTORY;x++) {
#if 0
printf("Silence: %d, Noise: %d\n", dsp->historicsilence[x], dsp->historicnoise[x]);
#endif
if (dsp->historicsilence[x] < min)
min = dsp->historicsilence[x];
if (dsp->historicnoise[x] < min)
min = dsp->historicnoise[x];
if (dsp->historicsilence[x] > max)
max = dsp->historicsilence[x];
if (dsp->historicnoise[x] > max)
max = dsp->historicnoise[x];
}
if ((max - min < BUSY_THRESHOLD) && (max < BUSY_MAX) && (min > BUSY_MIN)) {
#if 0
printf("Busy!\n");
#endif
res = 1;
}
#if 0
printf("Min: %d, max: %d\n", min, max);
#endif
}
return res;
}
Martin Pycko
committed
#endif
int ast_dsp_silence(struct ast_dsp *dsp, struct ast_frame *f, int *totalsilence)
{
short *s;
int len;
if (f->frametype != AST_FRAME_VOICE) {
ast_log(LOG_WARNING, "Can't calculate silence on a non-voice frame\n");
return 0;
}
if (f->subclass != AST_FORMAT_SLINEAR) {
ast_log(LOG_WARNING, "Can only calculate silence on signed-linear frames :(\n");
return 0;
}
s = f->data;
len = f->datalen/2;
return __ast_dsp_silence(dsp, s, len, totalsilence);
}
Mark Spencer
committed
struct ast_frame *ast_dsp_process(struct ast_channel *chan, struct ast_dsp *dsp, struct ast_frame *af)
{
int silence;
int res;
int digit;
int x;
short *shortdata;
unsigned char *odata;
int len;
int writeback = 0;
#define FIX_INF(inf) do { \
if (writeback) { \
switch(inf->subclass) { \
case AST_FORMAT_SLINEAR: \
break; \
case AST_FORMAT_ULAW: \
for (x=0;x<len;x++) \
odata[x] = AST_LIN2MU((unsigned short)shortdata[x]); \
break; \
case AST_FORMAT_ALAW: \
for (x=0;x<len;x++) \
odata[x] = AST_LIN2A((unsigned short)shortdata[x]); \
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
break; \
} \
} \
} while(0)
if (!af)
return NULL;
if (af->frametype != AST_FRAME_VOICE)
return af;
odata = af->data;
len = af->datalen;
/* Make sure we have short data */
switch(af->subclass) {
case AST_FORMAT_SLINEAR:
shortdata = af->data;
len = af->datalen / 2;
break;
case AST_FORMAT_ULAW:
shortdata = alloca(af->datalen * 2);
if (!shortdata) {
ast_log(LOG_WARNING, "Unable to allocate stack space for data: %s\n", strerror(errno));
return af;
}
for (x=0;x<len;x++)
shortdata[x] = AST_MULAW(odata[x]);
break;
case AST_FORMAT_ALAW:
shortdata = alloca(af->datalen * 2);
if (!shortdata) {
ast_log(LOG_WARNING, "Unable to allocate stack space for data: %s\n", strerror(errno));
return af;
}
for (x=0;x<len;x++)
shortdata[x] = AST_ALAW(odata[x]);
break;
default:
ast_log(LOG_WARNING, "Inband DTMF is not supported on codec %s. Use RFC2833\n", ast_getformatname(af->subclass));
return af;
}
silence = __ast_dsp_silence(dsp, shortdata, len, NULL);
if ((dsp->features & DSP_FEATURE_SILENCE_SUPPRESS) && silence) {
memset(&dsp->f, 0, sizeof(dsp->f));
dsp->f.frametype = AST_FRAME_NULL;
return &dsp->f;
}
if ((dsp->features & DSP_FEATURE_BUSY_DETECT) && ast_dsp_busydetect(dsp)) {
Martin Pycko
committed
chan->_softhangup |= AST_SOFTHANGUP_DEV;
memset(&dsp->f, 0, sizeof(dsp->f));
dsp->f.frametype = AST_FRAME_CONTROL;
dsp->f.subclass = AST_CONTROL_BUSY;
Martin Pycko
committed
ast_log(LOG_DEBUG, "Requesting Hangup because the busy tone was detected on channel %s\n", chan->name);
return &dsp->f;
}
if ((dsp->features & DSP_FEATURE_DTMF_DETECT)) {
digit = __ast_dsp_digitdetect(dsp, shortdata, len, &writeback);
#if 0
if (digit)
printf("Performing digit detection returned %d, digitmode is %d\n", digit, dsp->digitmode);
#endif
if (dsp->digitmode & (DSP_DIGITMODE_MUTECONF | DSP_DIGITMODE_MUTEMAX)) {
if (!dsp->thinkdigit) {
if (digit) {
/* Looks like we might have something.
* Request a conference mute for the moment */
memset(&dsp->f, 0, sizeof(dsp->f));
dsp->f.frametype = AST_FRAME_DTMF;
dsp->f.subclass = 'm';
dsp->thinkdigit = 'x';
FIX_INF(af);
if (chan)
Mark Spencer
committed
ast_queue_frame(chan, af);
ast_frfree(af);
return &dsp->f;
}
} else {
if (digit) {
/* Thought we saw one last time. Pretty sure we really have now */
if (dsp->thinkdigit) {
if ((dsp->thinkdigit != 'x') && (dsp->thinkdigit != digit)) {
/* If we found a digit, and we're changing digits, go
ahead and send this one, but DON'T stop confmute because
we're detecting something else, too... */
memset(&dsp->f, 0, sizeof(dsp->f));
dsp->f.frametype = AST_FRAME_DTMF;
dsp->f.subclass = dsp->thinkdigit;
FIX_INF(af);
if (chan)
Mark Spencer
committed
ast_queue_frame(chan, af);
ast_frfree(af);
}
return &dsp->f;
}
} else {
if (dsp->thinkdigit) {
memset(&dsp->f, 0, sizeof(dsp->f));
if (dsp->thinkdigit != 'x') {
/* If we found a digit, send it now */
dsp->f.frametype = AST_FRAME_DTMF;
dsp->f.subclass = dsp->thinkdigit;
dsp->thinkdigit = 0;
} else {
dsp->f.frametype = AST_FRAME_DTMF;
dsp->f.subclass = 'u';
dsp->thinkdigit = 0;
Mark Spencer
committed
ast_queue_frame(chan, af);
ast_frfree(af);
return &dsp->f;
}
}
}
} else if (!digit) {
/* Only check when there is *not* a hit... */
if (dsp->digitmode & DSP_DIGITMODE_MF) {
if (dsp->td.mf.current_digits) {
memset(&dsp->f, 0, sizeof(dsp->f));
dsp->f.frametype = AST_FRAME_DTMF;
dsp->f.subclass = dsp->td.mf.digits[0];
memmove(dsp->td.mf.digits, dsp->td.mf.digits + 1, dsp->td.mf.current_digits);
dsp->td.mf.current_digits--;
FIX_INF(af);
if (chan)
Mark Spencer
committed
ast_queue_frame(chan, af);
ast_frfree(af);
return &dsp->f;
}
} else {
if (dsp->td.dtmf.current_digits) {
memset(&dsp->f, 0, sizeof(dsp->f));
dsp->f.frametype = AST_FRAME_DTMF;
dsp->f.subclass = dsp->td.dtmf.digits[0];
memmove(dsp->td.dtmf.digits, dsp->td.dtmf.digits + 1, dsp->td.dtmf.current_digits);
dsp->td.dtmf.current_digits--;
FIX_INF(af);
if (chan)
Mark Spencer
committed
ast_queue_frame(chan, af);
ast_frfree(af);
return &dsp->f;
}
}
}
}
if ((dsp->features & DSP_FEATURE_CALL_PROGRESS)) {
res = __ast_dsp_call_progress(dsp, shortdata, len);
if (res) {
switch(res) {
case AST_CONTROL_ANSWER:
case AST_CONTROL_BUSY:
case AST_CONTROL_RINGING:
case AST_CONTROL_CONGESTION:
case AST_CONTROL_HANGUP:
memset(&dsp->f, 0, sizeof(dsp->f));
dsp->f.frametype = AST_FRAME_CONTROL;
dsp->f.src = "dsp_progress";
Mark Spencer
committed
ast_queue_frame(chan, &dsp->f);
break;
default:
ast_log(LOG_WARNING, "Don't know how to represent call progress message %d\n", res);
}
}
}
FIX_INF(af);
return af;
}
static void ast_dsp_prog_reset(struct ast_dsp *dsp)
{
int max = 0;
int x;
dsp->gsamp_size = modes[dsp->progmode].size;
dsp->gsamps = 0;
for (x=0;x<sizeof(modes[dsp->progmode].freqs) / sizeof(modes[dsp->progmode].freqs[0]);x++) {
if (modes[dsp->progmode].freqs[x]) {
goertzel_init(&dsp->freqs[x], (float)modes[dsp->progmode].freqs[x], dsp->gsamp_size);
}
}
dsp->freqcount = max;
}
struct ast_dsp *ast_dsp_new(void)
{
struct ast_dsp *dsp;
dsp = malloc(sizeof(struct ast_dsp));
if (dsp) {
memset(dsp, 0, sizeof(struct ast_dsp));
dsp->threshold = DEFAULT_THRESHOLD;
dsp->features = DSP_FEATURE_SILENCE_SUPPRESS;
Martin Pycko
committed
dsp->busycount = DSP_HISTORY;
/* Initialize DTMF detector */
ast_dtmf_detect_init(&dsp->td.dtmf);
/* Initialize initial DSP progress detect parameters */
ast_dsp_prog_reset(dsp);
}
return dsp;
}
void ast_dsp_set_features(struct ast_dsp *dsp, int features)
{
dsp->features = features;
}
void ast_dsp_free(struct ast_dsp *dsp)
{
free(dsp);
}
void ast_dsp_set_threshold(struct ast_dsp *dsp, int threshold)
{
dsp->threshold = threshold;
}
void ast_dsp_set_busy_count(struct ast_dsp *dsp, int cadences)
{
Martin Pycko
committed
if (cadences < 4)
cadences = 4;
if (cadences > DSP_HISTORY)
cadences = DSP_HISTORY;
dsp->busycount = cadences;
}
void ast_dsp_set_busy_pattern(struct ast_dsp *dsp, int tonelength, int quietlength)
{
dsp->busy_tonelength = tonelength;
dsp->busy_quietlength = quietlength;
ast_log(LOG_DEBUG, "dsp busy pattern set to %d,%d\n", tonelength, quietlength);
}
void ast_dsp_digitreset(struct ast_dsp *dsp)
{
int i;
dsp->thinkdigit = 0;
if (dsp->digitmode & DSP_DIGITMODE_MF) {
memset(dsp->td.mf.digits, 0, sizeof(dsp->td.mf.digits));
dsp->td.mf.current_digits = 0;
/* Reinitialise the detector for the next block */
for (i = 0; i < 6; i++) {
goertzel_reset(&dsp->td.mf.tone_out[i]);
#ifdef OLD_DSP_ROUTINES
goertzel_reset(&dsp->td.mf.tone_out2nd[i]);
#endif
#ifdef OLD_DSP_ROUTINES
dsp->td.mf.hit1 = dsp->td.mf.hit2 = dsp->td.mf.hit3 = dsp->td.mf.hit4 = dsp->td.mf.mhit = 0;
#else
dsp->td.mf.hits[4] = dsp->td.mf.hits[3] = dsp->td.mf.hits[2] = dsp->td.mf.hits[1] = dsp->td.mf.hits[0] = dsp->td.mf.mhit = 0;
#endif
dsp->td.mf.current_sample = 0;
} else {
memset(dsp->td.dtmf.digits, 0, sizeof(dsp->td.dtmf.digits));
dsp->td.dtmf.current_digits = 0;
/* Reinitialise the detector for the next block */
for (i = 0; i < 4; i++) {
goertzel_reset(&dsp->td.dtmf.row_out[i]);
goertzel_reset(&dsp->td.dtmf.col_out[i]);
#ifdef OLD_DSP_ROUTINES
goertzel_reset(&dsp->td.dtmf.row_out2nd[i]);
goertzel_reset(&dsp->td.dtmf.col_out2nd[i]);
#endif
#ifdef FAX_DETECT
goertzel_reset (&dsp->td.dtmf.fax_tone);
#endif
#ifdef OLD_DSP_ROUTINES
#ifdef FAX_DETECT
goertzel_reset (&dsp->td.dtmf.fax_tone2nd);
#endif
dsp->td.dtmf.hit1 = dsp->td.dtmf.hit2 = dsp->td.dtmf.hit3 = dsp->td.dtmf.hit4 = dsp->td.dtmf.mhit = 0;
#else
dsp->td.dtmf.hits[2] = dsp->td.dtmf.hits[1] = dsp->td.dtmf.hits[0] = dsp->td.dtmf.mhit = 0;
#endif
dsp->td.dtmf.energy = 0.0;
dsp->td.dtmf.current_sample = 0;
}
}
void ast_dsp_reset(struct ast_dsp *dsp)
{
int x;
dsp->totalsilence = 0;
dsp->gsamps = 0;
for (x=0;x<4;x++)
dsp->freqs[x].v2 = dsp->freqs[x].v3 = 0.0;
memset(dsp->historicsilence, 0, sizeof(dsp->historicsilence));
memset(dsp->historicnoise, 0, sizeof(dsp->historicnoise));
}
int ast_dsp_digitmode(struct ast_dsp *dsp, int digitmode)
{
int new;
int old;
old = dsp->digitmode & (DSP_DIGITMODE_DTMF | DSP_DIGITMODE_MF | DSP_DIGITMODE_MUTECONF | DSP_DIGITMODE_MUTEMAX);
new = digitmode & (DSP_DIGITMODE_DTMF | DSP_DIGITMODE_MF | DSP_DIGITMODE_MUTECONF | DSP_DIGITMODE_MUTEMAX);
if (old != new) {
/* Must initialize structures if switching from MF to DTMF or vice-versa */
if (new & DSP_DIGITMODE_MF)
ast_mf_detect_init(&dsp->td.mf);
else
ast_dtmf_detect_init(&dsp->td.dtmf);
}
dsp->digitmode = digitmode;
return 0;
}
Martin Pycko
committed
int ast_dsp_set_call_progress_zone(struct ast_dsp *dsp, char *zone)
{
int x;
for (x=0;x<sizeof(aliases) / sizeof(aliases[0]);x++) {
if (!strcasecmp(aliases[x].name, zone)) {
dsp->progmode = aliases[x].mode;
ast_dsp_prog_reset(dsp);
return 0;
}
}
return -1;
}