Skip to content
Snippets Groups Projects
codec_g726.c 21.6 KiB
Newer Older
  • Learn to ignore specific revisions
  • 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927
    /* codec_g726.c - translate between signed linear and ITU G.726-32kbps
     * 
     * Asterisk -- A telephony toolkit for Linux.
     *
     * Based on frompcm.c and topcm.c from the Emiliano MIPL browser/
     * interpreter.  See http://www.bsdtelephony.com.mx
     *
     * Copyright (c) 2004, Digium
     *
     * Mark Spencer <markster@digium.com>
     *
     * This program is free software, distributed under the terms of
     * the GNU General Public License
     */
    
    #include <asterisk/lock.h>
    #include <asterisk/logger.h>
    #include <asterisk/module.h>
    #include <asterisk/translate.h>
    #include <asterisk/channel.h>
    #include <fcntl.h>
    #include <netinet/in.h>
    #include <pthread.h>
    #include <stdio.h>
    #include <stdlib.h>
    #include <string.h>
    #include <unistd.h>
    
    #define BUFFER_SIZE   8096	/* size for the translation buffers */
    #define BUF_SHIFT	5
    
    static ast_mutex_t localuser_lock = AST_MUTEX_INITIALIZER;
    static int localusecnt = 0;
    
    static char *tdesc = "ITU G.726-32kbps G726 Transcoder";
    
    /* Sample frame data */
    
    #include "slin_g726_ex.h"
    #include "g726_slin_ex.h"
    
    /*
     * The following is the definition of the state structure
     * used by the G.721/G.723 encoder and decoder to preserve their internal
     * state between successive calls.  The meanings of the majority
     * of the state structure fields are explained in detail in the
     * CCITT Recommendation G.721.  The field names are essentially indentical
     * to variable names in the bit level description of the coding algorithm
     * included in this Recommendation.
     */
    struct g726_state {
    	long yl;	/* Locked or steady state step size multiplier. */
    	short yu;	/* Unlocked or non-steady state step size multiplier. */
    	short dms;	/* Short term energy estimate. */
    	short dml;	/* Long term energy estimate. */
    	short ap;	/* Linear weighting coefficient of 'yl' and 'yu'. */
    
    	short a[2];	/* Coefficients of pole portion of prediction filter. */
    	short b[6];	/* Coefficients of zero portion of prediction filter. */
    	short pk[2];	/*
    			 * Signs of previous two samples of a partially
    			 * reconstructed signal.
    			 */
    	short dq[6];	/*
    			 * Previous 6 samples of the quantized difference
    			 * signal represented in an internal floating point
    			 * format.
    			 */
    	short sr[2];	/*
    			 * Previous 2 samples of the quantized difference
    			 * signal represented in an internal floating point
    			 * format.
    			 */
    	char td;	/* delayed tone detect, new in 1988 version */
    };
    
    
    
    static short qtab_721[7] = {-124, 80, 178, 246, 300, 349, 400};
    /*
     * Maps G.721 code word to reconstructed scale factor normalized log
     * magnitude values.
     */
    static short	_dqlntab[16] = {-2048, 4, 135, 213, 273, 323, 373, 425,
    				425, 373, 323, 273, 213, 135, 4, -2048};
    
    /* Maps G.721 code word to log of scale factor multiplier. */
    static short	_witab[16] = {-12, 18, 41, 64, 112, 198, 355, 1122,
    				1122, 355, 198, 112, 64, 41, 18, -12};
    /*
     * Maps G.721 code words to a set of values whose long and short
     * term averages are computed and then compared to give an indication
     * how stationary (steady state) the signal is.
     */
    static short	_fitab[16] = {0, 0, 0, 0x200, 0x200, 0x200, 0x600, 0xE00,
    				0xE00, 0x600, 0x200, 0x200, 0x200, 0, 0, 0};
    
    static short power2[15] = {1, 2, 4, 8, 0x10, 0x20, 0x40, 0x80,
    			0x100, 0x200, 0x400, 0x800, 0x1000, 0x2000, 0x4000};
    
    /*
     * quan()
     *
     * quantizes the input val against the table of size short integers.
     * It returns i if table[i - 1] <= val < table[i].
     *
     * Using linear search for simple coding.
     */
    static int quan(int val, short *table, int size)
    {
    	int		i;
    
    	for (i = 0; i < size; i++)
    		if (val < *table++)
    			break;
    	return (i);
    }
    
    /*
     * fmult()
     *
     * returns the integer product of the 14-bit integer "an" and
     * "floating point" representation (4-bit exponent, 6-bit mantessa) "srn".
     */
    static int fmult(int an, int srn)
    {
    	short		anmag, anexp, anmant;
    	short		wanexp, wanmant;
    	short		retval;
    
    	anmag = (an > 0) ? an : ((-an) & 0x1FFF);
    	anexp = quan(anmag, power2, 15) - 6;
    	anmant = (anmag == 0) ? 32 :
    	    (anexp >= 0) ? anmag >> anexp : anmag << -anexp;
    	wanexp = anexp + ((srn >> 6) & 0xF) - 13;
    
    	wanmant = (anmant * (srn & 077) + 0x30) >> 4;
    	retval = (wanexp >= 0) ? ((wanmant << wanexp) & 0x7FFF) :
    	    (wanmant >> -wanexp);
    
    	return (((an ^ srn) < 0) ? -retval : retval);
    }
    
    /*
     * g72x_init_state()
     *
     * This routine initializes and/or resets the g726_state structure
     * pointed to by 'state_ptr'.
     * All the initial state values are specified in the CCITT G.721 document.
     */
    static void g726_init_state(struct g726_state *state_ptr)
    {
    	int		cnta;
    
    	state_ptr->yl = 34816;
    	state_ptr->yu = 544;
    	state_ptr->dms = 0;
    	state_ptr->dml = 0;
    	state_ptr->ap = 0;
    	for (cnta = 0; cnta < 2; cnta++) {
    		state_ptr->a[cnta] = 0;
    		state_ptr->pk[cnta] = 0;
    		state_ptr->sr[cnta] = 32;
    	}
    	for (cnta = 0; cnta < 6; cnta++) {
    		state_ptr->b[cnta] = 0;
    		state_ptr->dq[cnta] = 32;
    	}
    	state_ptr->td = 0;
    }
    
    /*
     * predictor_zero()
     *
     * computes the estimated signal from 6-zero predictor.
     *
     */
    static int predictor_zero(struct g726_state *state_ptr)
    {
    	int		i;
    	int		sezi;
    
    	sezi = fmult(state_ptr->b[0] >> 2, state_ptr->dq[0]);
    	for (i = 1; i < 6; i++)			/* ACCUM */
    		sezi += fmult(state_ptr->b[i] >> 2, state_ptr->dq[i]);
    	return (sezi);
    }
    /*
     * predictor_pole()
     *
     * computes the estimated signal from 2-pole predictor.
     *
     */
    static int predictor_pole(struct g726_state *state_ptr)
    {
    	return (fmult(state_ptr->a[1] >> 2, state_ptr->sr[1]) +
    	    fmult(state_ptr->a[0] >> 2, state_ptr->sr[0]));
    }
    
    /*
     * step_size()
     *
     * computes the quantization step size of the adaptive quantizer.
     *
     */
    static int step_size(struct g726_state *state_ptr)
    {
    	int		y;
    	int		dif;
    	int		al;
    
    	if (state_ptr->ap >= 256)
    		return (state_ptr->yu);
    	else {
    		y = state_ptr->yl >> 6;
    		dif = state_ptr->yu - y;
    		al = state_ptr->ap >> 2;
    		if (dif > 0)
    			y += (dif * al) >> 6;
    		else if (dif < 0)
    			y += (dif * al + 0x3F) >> 6;
    		return (y);
    	}
    }
    
    /*
     * quantize()
     *
     * Given a raw sample, 'd', of the difference signal and a
     * quantization step size scale factor, 'y', this routine returns the
     * ADPCM codeword to which that sample gets quantized.  The step
     * size scale factor division operation is done in the log base 2 domain
     * as a subtraction.
     */
    static int quantize(
    	int		d,	/* Raw difference signal sample */
    	int		y,	/* Step size multiplier */
    	short		*table,	/* quantization table */
    	int		size)	/* table size of short integers */
    {
    	short		dqm;	/* Magnitude of 'd' */
    	short		exp;	/* Integer part of base 2 log of 'd' */
    	short		mant;	/* Fractional part of base 2 log */
    	short		dl;	/* Log of magnitude of 'd' */
    	short		dln;	/* Step size scale factor normalized log */
    	int		i;
    
    	/*
    	 * LOG
    	 *
    	 * Compute base 2 log of 'd', and store in 'dl'.
    	 */
    	dqm = abs(d);
    	exp = quan(dqm >> 1, power2, 15);
    	mant = ((dqm << 7) >> exp) & 0x7F;	/* Fractional portion. */
    	dl = (exp << 7) + mant;
    
    	/*
    	 * SUBTB
    	 *
    	 * "Divide" by step size multiplier.
    	 */
    	dln = dl - (y >> 2);
    
    	/*
    	 * QUAN
    	 *
    	 * Obtain codword i for 'd'.
    	 */
    	i = quan(dln, table, size);
    	if (d < 0)			/* take 1's complement of i */
    		return ((size << 1) + 1 - i);
    	else if (i == 0)		/* take 1's complement of 0 */
    		return ((size << 1) + 1); /* new in 1988 */
    	else
    		return (i);
    }
    
    /*
     * reconstruct()
     *
     * Returns reconstructed difference signal 'dq' obtained from
     * codeword 'i' and quantization step size scale factor 'y'.
     * Multiplication is performed in log base 2 domain as addition.
     */
    static int reconstruct(
    	int		sign,	/* 0 for non-negative value */
    	int		dqln,	/* G.72x codeword */
    	int		y)	/* Step size multiplier */
    {
    	short		dql;	/* Log of 'dq' magnitude */
    	short		dex;	/* Integer part of log */
    	short		dqt;
    	short		dq;	/* Reconstructed difference signal sample */
    
    	dql = dqln + (y >> 2);	/* ADDA */
    
    	if (dql < 0) {
    		return ((sign) ? -0x8000 : 0);
    	} else {		/* ANTILOG */
    		dex = (dql >> 7) & 15;
    		dqt = 128 + (dql & 127);
    		dq = (dqt << 7) >> (14 - dex);
    		return ((sign) ? (dq - 0x8000) : dq);
    	}
    }
    
    /*
     * update()
     *
     * updates the state variables for each output code
     */
    static void update(
    	int		code_size,	/* distinguish 723_40 with others */
    	int		y,		/* quantizer step size */
    	int		wi,		/* scale factor multiplier */
    	int		fi,		/* for long/short term energies */
    	int		dq,		/* quantized prediction difference */
    	int		sr,		/* reconstructed signal */
    	int		dqsez,		/* difference from 2-pole predictor */
    	struct g726_state *state_ptr)	/* coder state pointer */
    {
    	int		cnt;
    	short		mag, exp;	/* Adaptive predictor, FLOAT A */
    	short		a2p=0;		/* LIMC */
    	short		a1ul;		/* UPA1 */
    	short		pks1;	/* UPA2 */
    	short		fa1;
    	char		tr;		/* tone/transition detector */
    	short		ylint, thr2, dqthr;
    	short  		ylfrac, thr1;
    	short		pk0;
    
    	pk0 = (dqsez < 0) ? 1 : 0;	/* needed in updating predictor poles */
    
    	mag = dq & 0x7FFF;		/* prediction difference magnitude */
    	/* TRANS */
    	ylint = state_ptr->yl >> 15;	/* exponent part of yl */
    	ylfrac = (state_ptr->yl >> 10) & 0x1F;	/* fractional part of yl */
    	thr1 = (32 + ylfrac) << ylint;		/* threshold */
    	thr2 = (ylint > 9) ? 31 << 10 : thr1;	/* limit thr2 to 31 << 10 */
    	dqthr = (thr2 + (thr2 >> 1)) >> 1;	/* dqthr = 0.75 * thr2 */
    	if (state_ptr->td == 0)		/* signal supposed voice */
    		tr = 0;
    	else if (mag <= dqthr)		/* supposed data, but small mag */
    		tr = 0;			/* treated as voice */
    	else				/* signal is data (modem) */
    		tr = 1;
    
    	/*
    	 * Quantizer scale factor adaptation.
    	 */
    
    	/* FUNCTW & FILTD & DELAY */
    	/* update non-steady state step size multiplier */
    	state_ptr->yu = y + ((wi - y) >> 5);
    
    	/* LIMB */
    	if (state_ptr->yu < 544)	/* 544 <= yu <= 5120 */
    		state_ptr->yu = 544;
    	else if (state_ptr->yu > 5120)
    		state_ptr->yu = 5120;
    
    	/* FILTE & DELAY */
    	/* update steady state step size multiplier */
    	state_ptr->yl += state_ptr->yu + ((-state_ptr->yl) >> 6);
    
    	/*
    	 * Adaptive predictor coefficients.
    	 */
    	if (tr == 1) {			/* reset a's and b's for modem signal */
    		state_ptr->a[0] = 0;
    		state_ptr->a[1] = 0;
    		state_ptr->b[0] = 0;
    		state_ptr->b[1] = 0;
    		state_ptr->b[2] = 0;
    		state_ptr->b[3] = 0;
    		state_ptr->b[4] = 0;
    		state_ptr->b[5] = 0;
    	} else {			/* update a's and b's */
    		pks1 = pk0 ^ state_ptr->pk[0];		/* UPA2 */
    
    		/* update predictor pole a[1] */
    		a2p = state_ptr->a[1] - (state_ptr->a[1] >> 7);
    		if (dqsez != 0) {
    			fa1 = (pks1) ? state_ptr->a[0] : -state_ptr->a[0];
    			if (fa1 < -8191)	/* a2p = function of fa1 */
    				a2p -= 0x100;
    			else if (fa1 > 8191)
    				a2p += 0xFF;
    			else
    				a2p += fa1 >> 5;
    
    			if (pk0 ^ state_ptr->pk[1])
    				/* LIMC */
    				if (a2p <= -12160)
    					a2p = -12288;
    				else if (a2p >= 12416)
    					a2p = 12288;
    				else
    					a2p -= 0x80;
    			else if (a2p <= -12416)
    				a2p = -12288;
    			else if (a2p >= 12160)
    				a2p = 12288;
    			else
    				a2p += 0x80;
    		}
    
    		/* TRIGB & DELAY */
    		state_ptr->a[1] = a2p;
    
    		/* UPA1 */
    		/* update predictor pole a[0] */
    		state_ptr->a[0] -= state_ptr->a[0] >> 8;
    		if (dqsez != 0) {
    			if (pks1 == 0)
    				state_ptr->a[0] += 192;
    			else
    				state_ptr->a[0] -= 192;
    		}
    		/* LIMD */
    		a1ul = 15360 - a2p;
    		if (state_ptr->a[0] < -a1ul)
    			state_ptr->a[0] = -a1ul;
    		else if (state_ptr->a[0] > a1ul)
    			state_ptr->a[0] = a1ul;
    
    		/* UPB : update predictor zeros b[6] */
    		for (cnt = 0; cnt < 6; cnt++) {
    			if (code_size == 5)		/* for 40Kbps G.723 */
    				state_ptr->b[cnt] -= state_ptr->b[cnt] >> 9;
    			else			/* for G.721 and 24Kbps G.723 */
    				state_ptr->b[cnt] -= state_ptr->b[cnt] >> 8;
    			if (dq & 0x7FFF) {			/* XOR */
    				if ((dq ^ state_ptr->dq[cnt]) >= 0)
    					state_ptr->b[cnt] += 128;
    				else
    					state_ptr->b[cnt] -= 128;
    			}
    		}
    	}
    
    	for (cnt = 5; cnt > 0; cnt--)
    		state_ptr->dq[cnt] = state_ptr->dq[cnt-1];
    	/* FLOAT A : convert dq[0] to 4-bit exp, 6-bit mantissa f.p. */
    	if (mag == 0) {
    		state_ptr->dq[0] = (dq >= 0) ? 0x20 : 0xFC20;
    	} else {
    		exp = quan(mag, power2, 15);
    		state_ptr->dq[0] = (dq >= 0) ?
    		    (exp << 6) + ((mag << 6) >> exp) :
    		    (exp << 6) + ((mag << 6) >> exp) - 0x400;
    	}
    
    	state_ptr->sr[1] = state_ptr->sr[0];
    	/* FLOAT B : convert sr to 4-bit exp., 6-bit mantissa f.p. */
    	if (sr == 0) {
    		state_ptr->sr[0] = 0x20;
    	} else if (sr > 0) {
    		exp = quan(sr, power2, 15);
    		state_ptr->sr[0] = (exp << 6) + ((sr << 6) >> exp);
    	} else if (sr > -32768) {
    		mag = -sr;
    		exp = quan(mag, power2, 15);
    		state_ptr->sr[0] =  (exp << 6) + ((mag << 6) >> exp) - 0x400;
    	} else
    		state_ptr->sr[0] = 0xFC20;
    
    	/* DELAY A */
    	state_ptr->pk[1] = state_ptr->pk[0];
    	state_ptr->pk[0] = pk0;
    
    	/* TONE */
    	if (tr == 1)		/* this sample has been treated as data */
    		state_ptr->td = 0;	/* next one will be treated as voice */
    	else if (a2p < -11776)	/* small sample-to-sample correlation */
    		state_ptr->td = 1;	/* signal may be data */
    	else				/* signal is voice */
    		state_ptr->td = 0;
    
    	/*
    	 * Adaptation speed control.
    	 */
    	state_ptr->dms += (fi - state_ptr->dms) >> 5;		/* FILTA */
    	state_ptr->dml += (((fi << 2) - state_ptr->dml) >> 7);	/* FILTB */
    
    	if (tr == 1)
    		state_ptr->ap = 256;
    	else if (y < 1536)					/* SUBTC */
    		state_ptr->ap += (0x200 - state_ptr->ap) >> 4;
    	else if (state_ptr->td == 1)
    		state_ptr->ap += (0x200 - state_ptr->ap) >> 4;
    	else if (abs((state_ptr->dms << 2) - state_ptr->dml) >=
    	    (state_ptr->dml >> 3))
    		state_ptr->ap += (0x200 - state_ptr->ap) >> 4;
    	else
    		state_ptr->ap += (-state_ptr->ap) >> 4;
    }
    
    /*
     * g726_decode()
     *
     * Description:
     *
     * Decodes a 4-bit code of G.726-32 encoded data of i and
     * returns the resulting linear PCM, A-law or u-law value.
     * return -1 for unknown out_coding value.
     */
    static int g726_decode(int	i, struct g726_state *state_ptr)
    {
    	short		sezi, sei, sez, se;	/* ACCUM */
    	short		y;			/* MIX */
    	short		sr;			/* ADDB */
    	short		dq;
    	short		dqsez;
    
    	i &= 0x0f;			/* mask to get proper bits */
    	sezi = predictor_zero(state_ptr);
    	sez = sezi >> 1;
    	sei = sezi + predictor_pole(state_ptr);
    	se = sei >> 1;			/* se = estimated signal */
    
    	y = step_size(state_ptr);	/* dynamic quantizer step size */
    
    	dq = reconstruct(i & 0x08, _dqlntab[i], y); /* quantized diff. */
    
    	sr = (dq < 0) ? (se - (dq & 0x3FFF)) : se + dq;	/* reconst. signal */
    
    	dqsez = sr - se + sez;			/* pole prediction diff. */
    
    	update(4, y, _witab[i] << 5, _fitab[i], dq, sr, dqsez, state_ptr);
    
    	return (sr << 2);	/* sr was 14-bit dynamic range */
    }
    /*
     * g726_encode()
     *
     * Encodes the input vale of linear PCM, A-law or u-law data sl and returns
     * the resulting code. -1 is returned for unknown input coding value.
     */
    static int g726_encode(int sl, struct g726_state *state_ptr)
    {
    	short		sezi, se, sez;		/* ACCUM */
    	short		d;			/* SUBTA */
    	short		sr;			/* ADDB */
    	short		y;			/* MIX */
    	short		dqsez;			/* ADDC */
    	short		dq, i;
    
    	sl >>= 2;			/* 14-bit dynamic range */
    
    	sezi = predictor_zero(state_ptr);
    	sez = sezi >> 1;
    	se = (sezi + predictor_pole(state_ptr)) >> 1;	/* estimated signal */
    
    	d = sl - se;				/* estimation difference */
    
    	/* quantize the prediction difference */
    	y = step_size(state_ptr);		/* quantizer step size */
    	i = quantize(d, y, qtab_721, 7);	/* i = G726 code */
    
    	dq = reconstruct(i & 8, _dqlntab[i], y);	/* quantized est diff */
    
    	sr = (dq < 0) ? se - (dq & 0x3FFF) : se + dq;	/* reconst. signal */
    
    	dqsez = sr + sez - se;			/* pole prediction diff. */
    
    	update(4, y, _witab[i] << 5, _fitab[i], dq, sr, dqsez, state_ptr);
    
    	return (i);
    }
    
    /*
     * Private workspace for translating signed linear signals to G726.
     */
    
    struct g726_encoder_pvt
    {
      struct ast_frame f;
      char offset[AST_FRIENDLY_OFFSET];   /* Space to build offset */
      unsigned char outbuf[BUFFER_SIZE];  /* Encoded G726, two nibbles to a word */
      unsigned char next_flag;
      struct g726_state g726;
      int tail;
    };
    
    /*
     * Private workspace for translating G726 signals to signed linear.
     */
    
    struct g726_decoder_pvt
    {
      struct ast_frame f;
      char offset[AST_FRIENDLY_OFFSET];	/* Space to build offset */
      short outbuf[BUFFER_SIZE];	/* Decoded signed linear values */
      struct g726_state g726;
      int tail;
    };
    
    /*
     * G726ToLin_New
     *  Create a new instance of g726_decoder_pvt.
     *
     * Results:
     *  Returns a pointer to the new instance.
     *
     * Side effects:
     *  None.
     */
    
    static struct ast_translator_pvt *
    g726tolin_new (void)
    {
      struct g726_decoder_pvt *tmp;
      tmp = malloc (sizeof (struct g726_decoder_pvt));
      if (tmp)
        {
    	  memset(tmp, 0, sizeof(*tmp));
          tmp->tail = 0;
          localusecnt++;
    	  g726_init_state(&tmp->g726);
          ast_update_use_count ();
        }
      return (struct ast_translator_pvt *) tmp;
    }
    
    /*
     * LinToG726_New
     *  Create a new instance of g726_encoder_pvt.
     *
     * Results:
     *  Returns a pointer to the new instance.
     *
     * Side effects:
     *  None.
     */
    
    static struct ast_translator_pvt *
    lintog726_new (void)
    {
      struct g726_encoder_pvt *tmp;
      tmp = malloc (sizeof (struct g726_encoder_pvt));
      if (tmp)
        {
    	  memset(tmp, 0, sizeof(*tmp));
          localusecnt++;
          tmp->tail = 0;
    	  g726_init_state(&tmp->g726);
          ast_update_use_count ();
        }
      return (struct ast_translator_pvt *) tmp;
    }
    
    /*
     * G726ToLin_FrameIn
     *  Fill an input buffer with packed 4-bit G726 values if there is room
     *  left.
     *
     * Results:
     *  Foo
     *
     * Side effects:
     *  tmp->tail is the number of packed values in the buffer.
     */
    
    static int
    g726tolin_framein (struct ast_translator_pvt *pvt, struct ast_frame *f)
    {
      struct g726_decoder_pvt *tmp = (struct g726_decoder_pvt *) pvt;
      unsigned char *b;
      int x;
    
      b = f->data;
      for (x=0;x<f->datalen;x++) {
      	if (tmp->tail >= BUFFER_SIZE) {
    		ast_log(LOG_WARNING, "Out of buffer space!\n");
    		return -1;
    	}
    	tmp->outbuf[tmp->tail++] = g726_decode((b[x] >> 4) & 0xf, &tmp->g726);
      	if (tmp->tail >= BUFFER_SIZE) {
    		ast_log(LOG_WARNING, "Out of buffer space!\n");
    		return -1;
    	}
    	tmp->outbuf[tmp->tail++] = g726_decode(b[x] & 0x0f, &tmp->g726);
      }
    
      return 0;
    }
    
    /*
     * G726ToLin_FrameOut
     *  Convert 4-bit G726 encoded signals to 16-bit signed linear.
     *
     * Results:
     *  Converted signals are placed in tmp->f.data, tmp->f.datalen
     *  and tmp->f.samples are calculated.
     *
     * Side effects:
     *  None.
     */
    
    static struct ast_frame *
    g726tolin_frameout (struct ast_translator_pvt *pvt)
    {
      struct g726_decoder_pvt *tmp = (struct g726_decoder_pvt *) pvt;
    
      if (!tmp->tail)
        return NULL;
    
      tmp->f.frametype = AST_FRAME_VOICE;
      tmp->f.subclass = AST_FORMAT_SLINEAR;
      tmp->f.datalen = tmp->tail * 2;
      tmp->f.samples = tmp->tail;
      tmp->f.mallocd = 0;
      tmp->f.offset = AST_FRIENDLY_OFFSET;
      tmp->f.src = __PRETTY_FUNCTION__;
      tmp->f.data = tmp->outbuf;
      tmp->tail = 0;
      return &tmp->f;
    }
    
    /*
     * LinToG726_FrameIn
     *  Fill an input buffer with 16-bit signed linear PCM values.
     *
     * Results:
     *  None.
     *
     * Side effects:
     *  tmp->tail is number of signal values in the input buffer.
     */
    
    static int
    lintog726_framein (struct ast_translator_pvt *pvt, struct ast_frame *f)
    {
      struct g726_encoder_pvt *tmp = (struct g726_encoder_pvt *) pvt;
      short *s = f->data;
      int samples = f->datalen / 2;
      int x;
      for (x=0;x<samples;x++) {
      	if (tmp->next_flag & 0x80) {
    		if (tmp->tail >= BUFFER_SIZE) {
    			ast_log(LOG_WARNING, "Out of buffer space\n");
    			return -1;
    		}
    		tmp->outbuf[tmp->tail++] = ((tmp->next_flag & 0xf)<< 4) | g726_encode(s[x], &tmp->g726);
    		tmp->next_flag = 0;
    	} else {
    		tmp->next_flag = 0x80 | g726_encode(s[x], &tmp->g726);
    	}
      }
      return 0;
    }
    
    /*
     * LinToG726_FrameOut
     *  Convert a buffer of raw 16-bit signed linear PCM to a buffer
     *  of 4-bit G726 packed two to a byte (Big Endian).
     *
     * Results:
     *  Foo
     *
     * Side effects:
     *  Leftover inbuf data gets packed, tail gets updated.
     */
    
    static struct ast_frame *
    lintog726_frameout (struct ast_translator_pvt *pvt)
    {
      struct g726_encoder_pvt *tmp = (struct g726_encoder_pvt *) pvt;
      
      if (!tmp->tail)
      	return NULL;
      tmp->f.frametype = AST_FRAME_VOICE;
      tmp->f.subclass = AST_FORMAT_G726;
      tmp->f.samples = tmp->tail * 2;
      tmp->f.mallocd = 0;
      tmp->f.offset = AST_FRIENDLY_OFFSET;
      tmp->f.src = __PRETTY_FUNCTION__;
      tmp->f.data = tmp->outbuf;
      tmp->f.datalen = tmp->tail;
    
      tmp->tail = 0;
      return &tmp->f;
    }
    
    
    /*
     * G726ToLin_Sample
     */
    
    static struct ast_frame *
    g726tolin_sample (void)
    {
      static struct ast_frame f;
      f.frametype = AST_FRAME_VOICE;
      f.subclass = AST_FORMAT_G726;
      f.datalen = sizeof (g726_slin_ex);
      f.samples = sizeof(g726_slin_ex) * 2;
      f.mallocd = 0;
      f.offset = 0;
      f.src = __PRETTY_FUNCTION__;
      f.data = g726_slin_ex;
      return &f;
    }
    
    /*
     * LinToG726_Sample
     */
    
    static struct ast_frame *
    lintog726_sample (void)
    {
      static struct ast_frame f;
      f.frametype = AST_FRAME_VOICE;
      f.subclass = AST_FORMAT_SLINEAR;
      f.datalen = sizeof (slin_g726_ex);
      /* Assume 8000 Hz */
      f.samples = sizeof (slin_g726_ex) / 2;
      f.mallocd = 0;
      f.offset = 0;
      f.src = __PRETTY_FUNCTION__;
      f.data = slin_g726_ex;
      return &f;
    }
    
    /*
     * G726_Destroy
     *  Destroys a private workspace.
     *
     * Results:
     *  It's gone!
     *
     * Side effects:
     *  None.
     */
    
    static void
    g726_destroy (struct ast_translator_pvt *pvt)
    {
      free (pvt);
      localusecnt--;
      ast_update_use_count ();
    }
    
    /*
     * The complete translator for G726ToLin.
     */
    
    static struct ast_translator g726tolin = {
      "g726tolin",
      AST_FORMAT_G726,
      AST_FORMAT_SLINEAR,
      g726tolin_new,
      g726tolin_framein,
      g726tolin_frameout,
      g726_destroy,
      /* NULL */
      g726tolin_sample
    };
    
    /*
     * The complete translator for LinToG726.
     */
    
    static struct ast_translator lintog726 = {
      "lintog726",
      AST_FORMAT_SLINEAR,
      AST_FORMAT_G726,
      lintog726_new,
      lintog726_framein,
      lintog726_frameout,
      g726_destroy,
      /* NULL */
      lintog726_sample
    };
    
    int
    unload_module (void)
    {
      int res;
      ast_mutex_lock (&localuser_lock);
      res = ast_unregister_translator (&lintog726);
      if (!res)
        res = ast_unregister_translator (&g726tolin);
      if (localusecnt)
        res = -1;
      ast_mutex_unlock (&localuser_lock);
      return res;
    }
    
    int
    load_module (void)
    {
      int res;
      res = ast_register_translator (&g726tolin);
      if (!res)
        res = ast_register_translator (&lintog726);
      else
        ast_unregister_translator (&g726tolin);
      return res;
    }
    
    /*
     * Return a description of this module.
     */
    
    char *
    description (void)
    {
      return tdesc;
    }
    
    int
    usecount (void)
    {
      int res;
      STANDARD_USECOUNT (res);
      return res;
    }
    
    char *
    key ()
    {
      return ASTERISK_GPL_KEY;
    }