Newer
Older
* Asterisk -- An open source telephony toolkit.
* Copyright (C) 1999 - 2005, Digium, Inc.
*
* Goertzel routines are borrowed from Steve Underwood's tremendous work on the
* DTMF detector.
*
* See http://www.asterisk.org for more information about
* the Asterisk project. Please do not directly contact
* any of the maintainers of this project for assistance;
* the project provides a web site, mailing lists and IRC
* channels for your use.
*
* This program is free software, distributed under the terms of
* the GNU General Public License Version 2. See the LICENSE file
* at the top of the source tree.
*/
* \brief Convenience Signal Processing routines
*
* \author Mark Spencer <markster@digium.com>
* \author Steve Underwood <steveu@coppice.org>
/*! \li \ref dsp.c uses the configuration file \ref dsp.conf
* \addtogroup configuration_file Configuration Files
*/
/*!
* \page dsp.conf dsp.conf
* \verbinclude dsp.conf.sample
*/
/* Some routines from tone_detect.c by Steven Underwood as published under the zapata library */
/*
tone_detect.c - General telephony tone detection, and specific
Copyright (C) 2001 Steve Underwood <steveu@coppice.org>
Despite my general liking of the GPL, I place this code in the
public domain for the benefit of all mankind - even the slimy
ones who might try to proprietize my work and use it to my
detriment.
/*** MODULEINFO
<support_level>core</support_level>
***/
Kevin P. Fleming
committed
#include "asterisk.h"
ASTERISK_REGISTER_FILE()
Kevin P. Fleming
committed
#include "asterisk/frame.h"
#include "asterisk/format_cache.h"
#include "asterisk/channel.h"
#include "asterisk/dsp.h"
#include "asterisk/ulaw.h"
#include "asterisk/alaw.h"
Russell Bryant
committed
#include "asterisk/utils.h"
#include "asterisk/options.h"
#include "asterisk/config.h"
Russell Bryant
committed
/*! Number of goertzels for progress detect */
enum gsamp_size {
GSAMP_SIZE_NA = 183, /*!< North America - 350, 440, 480, 620, 950, 1400, 1800 Hz */
GSAMP_SIZE_CR = 188, /*!< Costa Rica, Brazil - Only care about 425 Hz */
GSAMP_SIZE_UK = 160 /*!< UK disconnect goertzel feed - should trigger 400hz */
Russell Bryant
committed
};
Russell Bryant
committed
enum prog_mode {
PROG_MODE_NA = 0,
PROG_MODE_CR,
PROG_MODE_UK
};
Russell Bryant
committed
/*! For US modes { */
HZ_350 = 0,
HZ_440,
HZ_480,
HZ_620,
HZ_950,
HZ_1400,
HZ_1800, /*!< } */
/*! For CR/BR modes */
HZ_425 = 0,
/*! For UK mode */
Tilghman Lesher
committed
HZ_350UK = 0,
HZ_400UK,
HZ_440UK
Russell Bryant
committed
};
static struct progalias {
char *name;
Russell Bryant
committed
enum prog_mode mode;
} aliases[] = {
{ "us", PROG_MODE_NA },
{ "ca", PROG_MODE_NA },
{ "cr", PROG_MODE_CR },
{ "uk", PROG_MODE_UK },
Russell Bryant
committed
enum gsamp_size size;
Russell Bryant
committed
{ GSAMP_SIZE_NA, { 350, 440, 480, 620, 950, 1400, 1800 } }, /*!< North America */
{ GSAMP_SIZE_CR, { 425 } }, /*!< Costa Rica, Brazil */
{ GSAMP_SIZE_UK, { 350, 400, 440 } }, /*!< UK */
/*!\brief This value is the minimum threshold, calculated by averaging all
* of the samples within a frame, for which a frame is determined to either
* be silence (below the threshold) or noise (above the threshold). Please
* note that while the default threshold is an even exponent of 2, there is
* no requirement that it be so. The threshold will accept any value between
* 0 and 32767.
*/
#define DEFAULT_THRESHOLD 512
Russell Bryant
committed
enum busy_detect {
BUSY_PERCENT = 10, /*!< The percentage difference between the two last silence periods */
Russell Bryant
committed
BUSY_PAT_PERCENT = 7, /*!< The percentage difference between measured and actual pattern */
BUSY_THRESHOLD = 100, /*!< Max number of ms difference between max and min times in busy */
BUSY_MIN = 75, /*!< Busy must be at least 80 ms in half-cadence */
BUSY_MAX = 3100 /*!< Busy can't be longer than 3100 ms in half-cadence */
Russell Bryant
committed
};
Russell Bryant
committed
/*! Remember last 15 units */
Russell Bryant
committed
#define TONE_THRESH 10.0 /*!< How much louder the tone should be than channel energy */
#define TONE_MIN_THRESH 1e8 /*!< How much tone there should be at least to attempt */
Russell Bryant
committed
/*! All THRESH_XXX values are in GSAMP_SIZE chunks (us = 22ms) */
enum gsamp_thresh {
THRESH_RING = 8, /*!< Need at least 150ms ring to accept */
THRESH_TALK = 2, /*!< Talk detection does not work continuously */
THRESH_BUSY = 4, /*!< Need at least 80ms to accept */
THRESH_CONGESTION = 4, /*!< Need at least 80ms to accept */
THRESH_HANGUP = 60, /*!< Need at least 1300ms to accept hangup */
Russell Bryant
committed
THRESH_RING2ANSWER = 300 /*!< Timeout from start of ring to answer (about 6600 ms) */
};
#define MAX_DTMF_DIGITS 128
/* Basic DTMF (AT&T) specs:
*
* Minimum tone on = 40ms
* Minimum tone off = 50ms
* Maximum digit rate = 10 per second
* Normal twist <= 8dB accepted
* Reverse twist <= 4dB accepted
* S/N >= 15dB will detect OK
* Attenuation <= 26dB will detect OK
* Frequency tolerance +- 1.5% will detect, +-3.5% will reject
*/
#define DTMF_THRESHOLD 8.0e7
#define FAX_THRESHOLD 8.0e7
#define FAX_2ND_HARMONIC 2.0 /* 4dB */
#define DEF_DTMF_NORMAL_TWIST 6.31 /* 8.0dB */
#define DEF_RELAX_DTMF_NORMAL_TWIST 6.31 /* 8.0dB */
#ifdef RADIO_RELAX
#define DEF_DTMF_REVERSE_TWIST 2.51 /* 4.01dB */
#define DEF_RELAX_DTMF_REVERSE_TWIST 6.61 /* 8.2dB */
#else
#define DEF_DTMF_REVERSE_TWIST 2.51 /* 4.01dB */
#define DEF_RELAX_DTMF_REVERSE_TWIST 3.98 /* 6.0dB */
#endif
#define DTMF_RELATIVE_PEAK_ROW 6.3 /* 8dB */
#define DTMF_RELATIVE_PEAK_COL 6.3 /* 8dB */
#define DTMF_2ND_HARMONIC_ROW (relax ? 1.7 : 2.5) /* 4dB normal */
#define DTMF_2ND_HARMONIC_COL 63.1 /* 18dB */
#define DTMF_TO_TOTAL_ENERGY 42.0
#define BELL_MF_THRESHOLD 1.6e9
#define BELL_MF_TWIST 4.0 /* 6dB */
#define BELL_MF_RELATIVE_PEAK 12.6 /* 11dB */
#if defined(BUSYDETECT_TONEONLY) && defined(BUSYDETECT_COMPARE_TONE_AND_SILENCE)
#error You cant use BUSYDETECT_TONEONLY together with BUSYDETECT_COMPARE_TONE_AND_SILENCE
Russell Bryant
committed
#endif
/* The CNG signal consists of the transmission of 1100 Hz for 1/2 second,
* followed by a 3 second silent (2100 Hz OFF) period.
*/
#define FAX_TONE_CNG_FREQ 1100
#define FAX_TONE_CNG_DURATION 500
#define FAX_TONE_CNG_DB 16
/* This signal may be sent by the Terminating FAX machine anywhere between
* 1.8 to 2.5 seconds AFTER answering the call. The CED signal consists
* of a 2100 Hz tone that is from 2.6 to 4 seconds in duration.
*/
#define FAX_TONE_CED_FREQ 2100
#define FAX_TONE_CED_DURATION 2600
#define FAX_TONE_CED_DB 16
#define DEFAULT_SAMPLE_RATE 8000
/* MF goertzel size */
#define MF_GSIZE 120
/* DTMF goertzel size */
#define DTMF_GSIZE 102
/* How many successive hits needed to consider begin of a digit
* IE. Override with dtmf_hits_to_begin=4 in dsp.conf
*/
#define DEF_DTMF_HITS_TO_BEGIN 2
/* How many successive misses needed to consider end of a digit
* IE. Override with dtmf_misses_to_end=4 in dsp.conf
*/
#define DEF_DTMF_MISSES_TO_END 3
/*!
* \brief The default silence threshold we will use if an alternate
* configured value is not present or is invalid.
*/
static const int DEFAULT_SILENCE_THRESHOLD = 256;
#define CONFIG_FILE_NAME "dsp.conf"
int v2;
int v3;
int chunky;
int fac;
typedef struct {
int value;
int power;
} goertzel_result_t;
typedef struct
{
int freq;
int block_size;
int squelch; /* Remove (squelch) tone */
goertzel_state_t tone;
float energy; /* Accumulated energy of the current block */
int samples_pending; /* Samples remain to complete the current block */
int mute_samples; /* How many additional samples needs to be muted to suppress already detected tone */
int hits_required; /* How many successive blocks with tone we are looking for */
float threshold; /* Energy of the tone relative to energy from all other signals to consider a hit */
int hit_count; /* How many successive blocks we consider tone present */
int last_hit; /* Indicates if the last processed block was a hit */
} tone_detect_state_t;
goertzel_state_t row_out[4];
goertzel_state_t col_out[4];
int hits; /* How many successive hits we have seen already */
int misses; /* How many successive misses we have seen already */
float energy;
int current_sample;
} dtmf_detect_state_t;
typedef struct
{
goertzel_state_t tone_out[6];
int hits[5];
int current_sample;
typedef struct
{
char digits[MAX_DTMF_DIGITS + 1];
Tilghman Lesher
committed
int digitlen[MAX_DTMF_DIGITS + 1];
int detected_digits;
int lost_digits;
union {
dtmf_detect_state_t dtmf;
mf_detect_state_t mf;
} td;
} digit_detect_state_t;
static const float dtmf_row[] = {
697.0, 770.0, 852.0, 941.0
static const float dtmf_col[] = {
1209.0, 1336.0, 1477.0, 1633.0
static const float mf_tones[] = {
700.0, 900.0, 1100.0, 1300.0, 1500.0, 1700.0
};
static const char dtmf_positions[] = "123A" "456B" "789C" "*0#D";
static const char bell_mf_positions[] = "1247C-358A--69*---0B----#";
static int thresholds[THRESHOLD_MAX];
static float dtmf_normal_twist; /* AT&T = 8dB */
static float dtmf_reverse_twist; /* AT&T = 4dB */
static float relax_dtmf_normal_twist; /* AT&T = 8dB */
static float relax_dtmf_reverse_twist; /* AT&T = 6dB */
static int dtmf_hits_to_begin; /* How many successive hits needed to consider begin of a digit */
static int dtmf_misses_to_end; /* How many successive misses needed to consider end of a digit */
static inline void goertzel_sample(goertzel_state_t *s, short sample)
{
s->v3 = (s->fac * s->v2) >> 15;
s->v3 = s->v3 - v1 + (sample >> s->chunky);
if (abs(s->v3) > 32768) {
s->chunky++;
s->v3 = s->v3 >> 1;
s->v2 = s->v2 >> 1;
}
}
static inline float goertzel_result(goertzel_state_t *s)
{
goertzel_result_t r;
r.value = (s->v3 * s->v3) + (s->v2 * s->v2);
r.value -= ((s->v2 * s->v3) >> 15) * s->fac;
r.power = s->chunky * 2;
return (float)r.value * (float)(1 << r.power);
Alec L Davis
committed
static inline void goertzel_init(goertzel_state_t *s, float freq, unsigned int sample_rate)
s->v2 = s->v3 = s->chunky = 0.0;
s->fac = (int)(32768.0 * 2.0 * cos(2.0 * M_PI * freq / sample_rate));
}
static inline void goertzel_reset(goertzel_state_t *s)
{
s->v2 = s->v3 = s->chunky = 0.0;
typedef struct {
int start;
int end;
} fragment_t;
/* Note on tone suppression (squelching). Individual detectors (DTMF/MF/generic tone)
Alec L Davis
committed
* report fragments of the frame in which detected tone resides and which needs
* to be "muted" in order to suppress the tone. To mark fragment for muting,
* detectors call mute_fragment passing fragment_t there. Multiple fragments
* can be marked and ast_dsp_process later will mute all of them.
*
* Note: When tone starts in the middle of a Goertzel block, it won't be properly
* detected in that block, only in the next. If we only mute the next block
* where tone is actually detected, the user will still hear beginning
* of the tone in preceeding block. This is why we usually want to mute some amount
* of samples preceeding and following the block where tone was detected.
*/
struct ast_dsp {
struct ast_frame f;
int threshold;
int totalsilence;
int totalnoise;
int features;
int ringtimeout;
struct ast_dsp_busy_pattern busy_cadence;
int historicnoise[DSP_HISTORY];
int historicsilence[DSP_HISTORY];
goertzel_state_t freqs[FREQ_ARRAY_SIZE];
Russell Bryant
committed
enum gsamp_size gsamp_size;
enum prog_mode progmode;
int display_inband_dtmf_warning;
digit_detect_state_t digit_state;
tone_detect_state_t cng_tone_state;
tone_detect_state_t ced_tone_state;
static void mute_fragment(struct ast_dsp *dsp, fragment_t *fragment)
{
if (dsp->mute_fragments >= ARRAY_LEN(dsp->mute_data)) {
ast_log(LOG_ERROR, "Too many fragments to mute. Ignoring\n");
return;
}
dsp->mute_data[dsp->mute_fragments++] = *fragment;
}
static void ast_tone_detect_init(tone_detect_state_t *s, int freq, int duration, int amp, unsigned int sample_rate)
{
int duration_samples;
float x;
int periods_in_block;
s->freq = freq;
/* Desired tone duration in samples */
duration_samples = duration * sample_rate / 1000;
/* We want to allow 10% deviation of tone duration */
duration_samples = duration_samples * 9 / 10;
/* If we want to remove tone, it is important to have block size not
to exceed frame size. Otherwise by the moment tone is detected it is too late
to squelch it from previous frames. Block size is 20ms at the given sample rate.*/
s->block_size = (20 * sample_rate) / 1000;
periods_in_block = s->block_size * freq / sample_rate;
/* Make sure we will have at least 5 periods at target frequency for analisys.
This may make block larger than expected packet and will make squelching impossible
but at least we will be detecting the tone */
/* Now calculate final block size. It will contain integer number of periods */
s->block_size = periods_in_block * sample_rate / freq;
/* tone_detect is currently only used to detect fax tones and we
Alec L Davis
committed
do not need squelching the fax tones */
s->squelch = 0;
/* Account for the first and the last block to be incomplete
and thus no tone will be detected in them */
s->hits_required = (duration_samples - (s->block_size - 1)) / s->block_size;
Alec L Davis
committed
goertzel_init(&s->tone, freq, sample_rate);
s->samples_pending = s->block_size;
s->hit_count = 0;
s->last_hit = 0;
s->energy = 0.0;
/* We want tone energy to be amp decibels above the rest of the signal (the noise).
According to Parseval's theorem the energy computed in time domain equals to energy
computed in frequency domain. So subtracting energy in the frequency domain (Goertzel result)
from the energy in the time domain we will get energy of the remaining signal (without the tone
we are detecting). We will be checking that
10*log(Ew / (Et - Ew)) > amp
Calculate threshold so that we will be actually checking
Ew > Et * threshold
*/
x = pow(10.0, amp / 10.0);
s->threshold = x / (x + 1);
ast_debug(1, "Setup tone %d Hz, %d ms, block_size=%d, hits_required=%d\n", freq, duration, s->block_size, s->hits_required);
}
static void ast_fax_detect_init(struct ast_dsp *s)
{
ast_tone_detect_init(&s->cng_tone_state, FAX_TONE_CNG_FREQ, FAX_TONE_CNG_DURATION, FAX_TONE_CNG_DB, s->sample_rate);
ast_tone_detect_init(&s->ced_tone_state, FAX_TONE_CED_FREQ, FAX_TONE_CED_DURATION, FAX_TONE_CED_DB, s->sample_rate);
if (s->faxmode & DSP_FAXMODE_DETECT_SQUELCH) {
s->cng_tone_state.squelch = 1;
s->ced_tone_state.squelch = 1;
}
static void ast_dtmf_detect_init(dtmf_detect_state_t *s, unsigned int sample_rate)
for (i = 0; i < 4; i++) {
Alec L Davis
committed
goertzel_init(&s->row_out[i], dtmf_row[i], sample_rate);
goertzel_init(&s->col_out[i], dtmf_col[i], sample_rate);
Alec L Davis
committed
s->lasthit = 0;
s->current_hit = 0;
s->energy = 0.0;
Alec L Davis
committed
static void ast_mf_detect_init(mf_detect_state_t *s, unsigned int sample_rate)
Alec L Davis
committed
Alec L Davis
committed
for (i = 0; i < 6; i++) {
goertzel_init(&s->tone_out[i], mf_tones[i], sample_rate);
Alec L Davis
committed
s->hits[0] = s->hits[1] = s->hits[2] = s->hits[3] = s->hits[4] = 0;
s->current_hit = 0;
}
static void ast_digit_detect_init(digit_detect_state_t *s, int mf, unsigned int sample_rate)
{
s->current_digits = 0;
s->detected_digits = 0;
s->lost_digits = 0;
s->digits[0] = '\0';
Tilghman Lesher
committed
if (mf) {
ast_mf_detect_init(&s->td.mf, sample_rate);
Tilghman Lesher
committed
} else {
ast_dtmf_detect_init(&s->td.dtmf, sample_rate);
Tilghman Lesher
committed
}
static int tone_detect(struct ast_dsp *dsp, tone_detect_state_t *s, int16_t *amp, int samples)
{
float tone_energy;
int i;
int hit = 0;
int limit;
int res = 0;
int16_t *ptr;
Alec L Davis
committed
short samp;
if (s->squelch && s->mute_samples > 0) {
mute.end = (s->mute_samples < samples) ? s->mute_samples : samples;
s->mute_samples -= mute.end;
}
for (start = 0; start < samples; start = end) {
Tilghman Lesher
committed
if (limit > s->samples_pending) {
Tilghman Lesher
committed
}
for (i = limit, ptr = amp ; i > 0; i--, ptr++) {
Alec L Davis
committed
samp = *ptr;
Alec L Davis
committed
/* signed 32 bit int should be enough to square any possible signed 16 bit value */
Alec L Davis
committed
s->energy += (int32_t) samp * (int32_t) samp;
Alec L Davis
committed
goertzel_sample(&s->tone, samp);
}
s->samples_pending -= limit;
if (s->samples_pending) {
/* Finished incomplete (last) block */
break;
}
tone_energy = goertzel_result(&s->tone);
/* Scale to make comparable */
tone_energy *= 2.0;
s->energy *= s->block_size;
ast_debug(10, "tone %d, Ew=%.2E, Et=%.2E, s/n=%10.2f\n", s->freq, tone_energy, s->energy, tone_energy / (s->energy - tone_energy));
hit = 0;
if (tone_energy > s->energy * s->threshold) {
ast_debug(10, "Hit! count=%d\n", s->hit_count);
hit = 1;
}
Tilghman Lesher
committed
if (s->hit_count) {
Tilghman Lesher
committed
}
if (hit == s->last_hit) {
if (!hit) {
/* Two successive misses. Tone ended */
s->hit_count = 0;
} else if (!s->hit_count) {
s->hit_count++;
}
}
if (s->hit_count == s->hits_required) {
ast_debug(1, "%d Hz done detected\n", s->freq);
res = 1;
}
s->last_hit = hit;
/* If we had a hit in this block, include it into mute fragment */
if (s->squelch && hit) {
if (mute.end < start - s->block_size) {
/* There is a gap between fragments */
mute_fragment(dsp, &mute);
mute.start = (start > s->block_size) ? (start - s->block_size) : 0;
}
mute.end = end + s->block_size;
}
/* Reinitialise the detector for the next block */
/* Reset for the next block */
goertzel_reset(&s->tone);
/* Advance to the next block */
s->energy = 0.0;
s->samples_pending = s->block_size;
amp += limit;
}
if (s->squelch && mute.end) {
if (mute.end > samples) {
s->mute_samples = mute.end - samples;
mute.end = samples;
}
mute_fragment(dsp, &mute);
}
return res;
}
static void store_digit(digit_detect_state_t *s, char digit)
{
s->detected_digits++;
if (s->current_digits < MAX_DTMF_DIGITS) {
Tilghman Lesher
committed
s->digitlen[s->current_digits] = 0;
s->digits[s->current_digits++] = digit;
s->digits[s->current_digits] = '\0';
} else {
ast_log(LOG_WARNING, "Digit lost due to full buffer\n");
s->lost_digits++;
}
static int dtmf_detect(struct ast_dsp *dsp, digit_detect_state_t *s, int16_t amp[], int samples, int squelch, int relax)
float row_energy[4];
float col_energy[4];
int i;
int j;
int sample;
Alec L Davis
committed
short samp;
int best_row;
int best_col;
int hit;
int limit;
fragment_t mute = {0, 0};
if (squelch && s->td.dtmf.mute_samples > 0) {
mute.end = (s->td.dtmf.mute_samples < samples) ? s->td.dtmf.mute_samples : samples;
s->td.dtmf.mute_samples -= mute.end;
}
Tilghman Lesher
committed
for (sample = 0; sample < samples; sample = limit) {
/* DTMF_GSIZE is optimised to meet the DTMF specs. */
Tilghman Lesher
committed
if ((samples - sample) >= (DTMF_GSIZE - s->td.dtmf.current_sample)) {
limit = sample + (DTMF_GSIZE - s->td.dtmf.current_sample);
Tilghman Lesher
committed
} else {
Tilghman Lesher
committed
}
/* The following unrolled loop takes only 35% (rough estimate) of the
time of a rolled loop on the machine on which it was developed */
for (j = sample; j < limit; j++) {
Alec L Davis
committed
samp = amp[j];
s->td.dtmf.energy += (int32_t) samp * (int32_t) samp;
/* With GCC 2.95, the following unrolled code seems to take about 35%
(rough estimate) as long as a neat little 0-3 loop */
Alec L Davis
committed
goertzel_sample(s->td.dtmf.row_out, samp);
goertzel_sample(s->td.dtmf.col_out, samp);
goertzel_sample(s->td.dtmf.row_out + 1, samp);
goertzel_sample(s->td.dtmf.col_out + 1, samp);
goertzel_sample(s->td.dtmf.row_out + 2, samp);
goertzel_sample(s->td.dtmf.col_out + 2, samp);
goertzel_sample(s->td.dtmf.row_out + 3, samp);
goertzel_sample(s->td.dtmf.col_out + 3, samp);
s->td.dtmf.current_sample += (limit - sample);
/* We are at the end of a DTMF detection block */
/* Find the peak row and the peak column */
row_energy[0] = goertzel_result(&s->td.dtmf.row_out[0]);
col_energy[0] = goertzel_result(&s->td.dtmf.col_out[0]);
for (best_row = best_col = 0, i = 1; i < 4; i++) {
row_energy[i] = goertzel_result(&s->td.dtmf.row_out[i]);
Tilghman Lesher
committed
if (row_energy[i] > row_energy[best_row]) {
Tilghman Lesher
committed
}
col_energy[i] = goertzel_result(&s->td.dtmf.col_out[i]);
Tilghman Lesher
committed
if (col_energy[i] > col_energy[best_col]) {
Tilghman Lesher
committed
}
}
hit = 0;
/* Basic signal level test and the twist test */
col_energy[best_col] >= DTMF_THRESHOLD &&
col_energy[best_col] < row_energy[best_row] * (relax ? relax_dtmf_reverse_twist : dtmf_reverse_twist) &&
row_energy[best_row] < col_energy[best_col] * (relax ? relax_dtmf_normal_twist : dtmf_normal_twist)) {
/* Relative peak test */
for (i = 0; i < 4; i++) {
Tilghman Lesher
committed
col_energy[i] * DTMF_RELATIVE_PEAK_COL > col_energy[best_col]) ||
Tilghman Lesher
committed
&& row_energy[i] * DTMF_RELATIVE_PEAK_ROW > row_energy[best_row])) {
break;
}
}
/* ... and fraction of total energy test */
if (i >= 4 &&
Tilghman Lesher
committed
(row_energy[best_row] + col_energy[best_col]) > DTMF_TO_TOTAL_ENERGY * s->td.dtmf.energy) {
hit = dtmf_positions[(best_row << 2) + best_col];
}
Alec L Davis
committed
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
/*
* Adapted from ETSI ES 201 235-3 V1.3.1 (2006-03)
* (40ms reference is tunable with hits_to_begin and misses_to_end)
* each hit/miss is 12.75ms with DTMF_GSIZE at 102
*
* Character recognition: When not DRC *(1) and then
* Shall exist VSC > 40 ms (hits_to_begin)
* May exist 20 ms <= VSC <= 40 ms
* Shall not exist VSC < 20 ms
*
* Character recognition: When DRC and then
* Shall cease Not VSC > 40 ms (misses_to_end)
* May cease 20 ms >= Not VSC >= 40 ms
* Shall not cease Not VSC < 20 ms
*
* *(1) or optionally a different digit recognition condition
*
* Legend: VSC The continuous existence of a valid signal condition.
* Not VSC The continuous non-existence of valid signal condition.
* DRC The existence of digit recognition condition.
* Not DRC The non-existence of digit recognition condition.
*/
/*
* Example: hits_to_begin=2 misses_to_end=3
* -------A last_hit=A hits=0&1
* ------AA hits=2 current_hit=A misses=0 BEGIN A
* -----AA- misses=1 last_hit=' ' hits=0
* ----AA-- misses=2
* ---AA--- misses=3 current_hit=' ' END A
* --AA---B last_hit=B hits=0&1
* -AA---BC last_hit=C hits=0&1
* AA---BCC hits=2 current_hit=C misses=0 BEGIN C
* A---BCC- misses=1 last_hit=' ' hits=0
* ---BCC-C misses=0 last_hit=C hits=0&1
* --BCC-CC misses=0
*
* Example: hits_to_begin=3 misses_to_end=2
* -------A last_hit=A hits=0&1
* ------AA hits=2
* -----AAA hits=3 current_hit=A misses=0 BEGIN A
* ----AAAB misses=1 last_hit=B hits=0&1
* ---AAABB misses=2 current_hit=' ' hits=2 END A
* --AAABBB hits=3 current_hit=B misses=0 BEGIN B
* -AAABBBB misses=0
*
* Example: hits_to_begin=2 misses_to_end=2
* -------A last_hit=A hits=0&1
* ------AA hits=2 current_hit=A misses=0 BEGIN A
* -----AAB misses=1 hits=0&1
* ----AABB misses=2 current_hit=' ' hits=2 current_hit=B misses=0 BEGIN B
* ---AABBB misses=0
*/
if (s->td.dtmf.current_hit) {
/* We are in the middle of a digit already */
if (hit != s->td.dtmf.current_hit) {
s->td.dtmf.misses++;
if (s->td.dtmf.misses == dtmf_misses_to_end) {
Alec L Davis
committed
/* There were enough misses to consider digit ended */
s->td.dtmf.current_hit = 0;
Jonathan Rose
committed
}
Alec L Davis
committed
} else {
s->td.dtmf.misses = 0;
/* Current hit was same as last, so increment digit duration (of last digit) */
s->digitlen[s->current_digits - 1] += DTMF_GSIZE;
Alec L Davis
committed
}
/* Look for a start of a new digit no matter if we are already in the middle of some
digit or not. This is because hits_to_begin may be smaller than misses_to_end
and we may find begin of new digit before we consider last one ended. */
if (hit != s->td.dtmf.lasthit) {
Jonathan Rose
committed
s->td.dtmf.lasthit = hit;
Alec L Davis
committed
s->td.dtmf.hits = 0;
}
if (hit && hit != s->td.dtmf.current_hit) {
s->td.dtmf.hits++;
if (s->td.dtmf.hits == dtmf_hits_to_begin) {
Alec L Davis
committed
store_digit(s, hit);
s->digitlen[s->current_digits - 1] = dtmf_hits_to_begin * DTMF_GSIZE;
Alec L Davis
committed
s->td.dtmf.current_hit = hit;
s->td.dtmf.misses = 0;
}
/* If we had a hit in this block, include it into mute fragment */
if (squelch && hit) {
if (mute.end < sample - DTMF_GSIZE) {
/* There is a gap between fragments */
mute_fragment(dsp, &mute);
mute.start = (sample > DTMF_GSIZE) ? (sample - DTMF_GSIZE) : 0;
}
mute.end = limit + DTMF_GSIZE;
}
/* Reinitialise the detector for the next block */
Tilghman Lesher
committed
for (i = 0; i < 4; i++) {
goertzel_reset(&s->td.dtmf.row_out[i]);
goertzel_reset(&s->td.dtmf.col_out[i]);
s->td.dtmf.energy = 0.0;
s->td.dtmf.current_sample = 0;
if (squelch && mute.end) {
if (mute.end > samples) {
s->td.dtmf.mute_samples = mute.end - samples;
mute.end = samples;
}
mute_fragment(dsp, &mute);
}
return (s->td.dtmf.current_hit); /* return the debounced hit */
static int mf_detect(struct ast_dsp *dsp, digit_detect_state_t *s, int16_t amp[],
int samples, int squelch, int relax)
float energy[6];
int best;
int second_best;
int i;
int j;
int sample;
Alec L Davis
committed
short samp;
fragment_t mute = {0, 0};
if (squelch && s->td.mf.mute_samples > 0) {
mute.end = (s->td.mf.mute_samples < samples) ? s->td.mf.mute_samples : samples;
s->td.mf.mute_samples -= mute.end;
}
for (sample = 0; sample < samples; sample = limit) {
/* 80 is optimised to meet the MF specs. */
/* XXX So then why is MF_GSIZE defined as 120? */
Tilghman Lesher
committed
if ((samples - sample) >= (MF_GSIZE - s->td.mf.current_sample)) {
limit = sample + (MF_GSIZE - s->td.mf.current_sample);
Tilghman Lesher
committed
} else {
Tilghman Lesher
committed
}
/* The following unrolled loop takes only 35% (rough estimate) of the
time of a rolled loop on the machine on which it was developed */
for (j = sample; j < limit; j++) {
/* With GCC 2.95, the following unrolled code seems to take about 35%
(rough estimate) as long as a neat little 0-3 loop */
Alec L Davis
committed
samp = amp[j];
goertzel_sample(s->td.mf.tone_out, samp);
goertzel_sample(s->td.mf.tone_out + 1, samp);
goertzel_sample(s->td.mf.tone_out + 2, samp);
goertzel_sample(s->td.mf.tone_out + 3, samp);
goertzel_sample(s->td.mf.tone_out + 4, samp);
goertzel_sample(s->td.mf.tone_out + 5, samp);
s->td.mf.current_sample += (limit - sample);
if (s->td.mf.current_sample < MF_GSIZE) {
/* We're at the end of an MF detection block. */
/* Find the two highest energies. The spec says to look for
two tones and two tones only. Taking this literally -ie
only two tones pass the minimum threshold - doesn't work
well. The sinc function mess, due to rectangular windowing
ensure that! Find the two highest energies and ensure they
are considerably stronger than any of the others. */
energy[0] = goertzel_result(&s->td.mf.tone_out[0]);
energy[1] = goertzel_result(&s->td.mf.tone_out[1]);
if (energy[0] > energy[1]) {
best = 0;
second_best = 1;
} else {
best = 1;
second_best = 0;
}
/*endif*/
Tilghman Lesher
committed
for (i = 2; i < 6; i++) {
energy[i] = goertzel_result(&s->td.mf.tone_out[i]);
if (energy[i] >= energy[best]) {
second_best = best;
best = i;
} else if (energy[i] >= energy[second_best]) {
second_best = i;
}
}
/* Basic signal level and twist tests */
hit = 0;
if (energy[best] >= BELL_MF_THRESHOLD && energy[second_best] >= BELL_MF_THRESHOLD
&& energy[best] < energy[second_best]*BELL_MF_TWIST
&& energy[best] * BELL_MF_TWIST > energy[second_best]) {
/* Relative peak test */
hit = -1;
Tilghman Lesher
committed
for (i = 0; i < 6; i++) {
if (i != best && i != second_best) {
if (energy[i]*BELL_MF_RELATIVE_PEAK >= energy[second_best]) {
/* The best two are not clearly the best */
hit = 0;
break;
}
}
}
}
if (hit) {
/* Get the values into ascending order */
if (second_best < best) {
i = best;
best = second_best;
second_best = i;
}
Tilghman Lesher
committed
best = best * 5 + second_best - 1;
hit = bell_mf_positions[best];
/* Look for two successive similar results */
/* The logic in the next test is:
For KP we need 4 successive identical clean detects, with
two blocks of something different preceeding it. For anything
else we need two successive identical clean detects, with
two blocks of something different preceeding it. */
if (hit == s->td.mf.hits[4] && hit == s->td.mf.hits[3] &&
((hit != '*' && hit != s->td.mf.hits[2] && hit != s->td.mf.hits[1])||
(hit == '*' && hit == s->td.mf.hits[2] && hit != s->td.mf.hits[1] &&
hit != s->td.mf.hits[0]))) {
store_digit(s, hit);
if (hit != s->td.mf.hits[4] && hit != s->td.mf.hits[3]) {
/* Two successive block without a hit terminate current digit */
s->td.mf.current_hit = 0;
}
s->td.mf.hits[0] = s->td.mf.hits[1];
s->td.mf.hits[1] = s->td.mf.hits[2];
s->td.mf.hits[2] = s->td.mf.hits[3];
s->td.mf.hits[3] = s->td.mf.hits[4];
s->td.mf.hits[4] = hit;
/* If we had a hit in this block, include it into mute fragment */
if (squelch && hit) {
if (mute.end < sample - MF_GSIZE) {
/* There is a gap between fragments */
mute_fragment(dsp, &mute);
mute.start = (sample > MF_GSIZE) ? (sample - MF_GSIZE) : 0;
}
mute.end = limit + MF_GSIZE;
/* Reinitialise the detector for the next block */
for (i = 0; i < 6; i++) {
goertzel_reset(&s->td.mf.tone_out[i]);
s->td.mf.current_sample = 0;
if (squelch && mute.end) {
if (mute.end > samples) {