Skip to content
Snippets Groups Projects
aesopt.h 38.2 KiB
Newer Older
  • Learn to ignore specific revisions
  • Mark Spencer's avatar
    Mark Spencer committed
    /*
     ---------------------------------------------------------------------------
     Copyright (c) 2003, Dr Brian Gladman <brg@gladman.me.uk>, Worcester, UK.
     All rights reserved.
    
     LICENSE TERMS
    
     The free distribution and use of this software in both source and binary
     form is allowed (with or without changes) provided that:
    
       1. distributions of this source code include the above copyright
          notice, this list of conditions and the following disclaimer;
    
       2. distributions in binary form include the above copyright
          notice, this list of conditions and the following disclaimer
          in the documentation and/or other associated materials;
    
       3. the copyright holder's name is not used to endorse products
          built using this software without specific written permission.
    
     ALTERNATIVELY, provided that this notice is retained in full, this product
     may be distributed under the terms of the GNU General Public License (GPL),
     in which case the provisions of the GPL apply INSTEAD OF those given above.
    
     DISCLAIMER
    
     This software is provided 'as is' with no explicit or implied warranties
     in respect of its properties, including, but not limited to, correctness
     and/or fitness for purpose.
     ---------------------------------------------------------------------------
     Issue Date: 26/08/2003
    
     My thanks go to Dag Arne Osvik for devising the schemes used here for key
     length derivation from the form of the key schedule
    
     This file contains the compilation options for AES (Rijndael) and code
     that is common across encryption, key scheduling and table generation.
    
        OPERATION
    
        These source code files implement the AES algorithm Rijndael designed by
        Joan Daemen and Vincent Rijmen. This version is designed for the standard
        block size of 16 bytes and for key sizes of 128, 192 and 256 bits (16, 24
        and 32 bytes).
    
        This version is designed for flexibility and speed using operations on
        32-bit words rather than operations on bytes.  It can be compiled with
        either big or little endian internal byte order but is faster when the
        native byte order for the processor is used.
    
        THE CIPHER INTERFACE
    
        The cipher interface is implemented as an array of bytes in which lower
        AES bit sequence indexes map to higher numeric significance within bytes.
    
        aes_08t                 (an unsigned  8-bit type)
        aes_32t                 (an unsigned 32-bit type)
        struct aes_encrypt_ctx  (structure for the cipher encryption context)
        struct aes_decrypt_ctx  (structure for the cipher decryption context)
        aes_rval                the function return type
    
        C subroutine calls:
    
          aes_rval aes_encrypt_key128(const void *in_key, aes_encrypt_ctx cx[1]);
          aes_rval aes_encrypt_key192(const void *in_key, aes_encrypt_ctx cx[1]);
          aes_rval aes_encrypt_key256(const void *in_key, aes_encrypt_ctx cx[1]);
          aes_rval aes_encrypt(const void *in_blk,
                                     void *out_blk, const aes_encrypt_ctx cx[1]);
    
          aes_rval aes_decrypt_key128(const void *in_key, aes_decrypt_ctx cx[1]);
          aes_rval aes_decrypt_key192(const void *in_key, aes_decrypt_ctx cx[1]);
          aes_rval aes_decrypt_key256(const void *in_key, aes_decrypt_ctx cx[1]);
          aes_rval aes_decrypt(const void *in_blk,
                                     void *out_blk, const aes_decrypt_ctx cx[1]);
    
        IMPORTANT NOTE: If you are using this C interface with dynamic tables make sure that
        you call genTabs() before AES is used so that the tables are initialised.
    
        C++ aes class subroutines:
    
            Class AESencrypt  for encryption
    
            Construtors:
                AESencrypt(void)
                AESencrypt(const void *in_key) - 128 bit key
            Members:
                void key128(const void *in_key)
                void key192(const void *in_key)
                void key256(const void *in_key)
                void encrypt(const void *in_blk, void *out_blk) const
    
            Class AESdecrypt  for encryption
            Construtors:
                AESdecrypt(void)
                AESdecrypt(const void *in_key) - 128 bit key
            Members:
                void key128(const void *in_key)
                void key192(const void *in_key)
                void key256(const void *in_key)
                void decrypt(const void *in_blk, void *out_blk) const
    
        COMPILATION
    
        The files used to provide AES (Rijndael) are
    
        a. aes.h for the definitions needed for use in C.
        b. aescpp.h for the definitions needed for use in C++.
        c. aesopt.h for setting compilation options (also includes common code).
        d. aescrypt.c for encryption and decrytpion, or
        e. aeskey.c for key scheduling.
        f. aestab.c for table loading or generation.
        g. aescrypt.asm for encryption and decryption using assembler code.
        h. aescrypt.mmx.asm for encryption and decryption using MMX assembler.
    
        To compile AES (Rijndael) for use in C code use aes.h and set the
        defines here for the facilities you need (key lengths, encryption
        and/or decryption). Do not define AES_DLL or AES_CPP.  Set the options
        for optimisations and table sizes here.
    
        To compile AES (Rijndael) for use in in C++ code use aescpp.h but do
        not define AES_DLL
    
        To compile AES (Rijndael) in C as a Dynamic Link Library DLL) use
        aes.h and include the AES_DLL define.
    
        CONFIGURATION OPTIONS (here and in aes.h)
    
        a. set AES_DLL in aes.h if AES (Rijndael) is to be compiled as a DLL
        b. You may need to set PLATFORM_BYTE_ORDER to define the byte order.
        c. If you want the code to run in a specific internal byte order, then
           ALGORITHM_BYTE_ORDER must be set accordingly.
        d. set other configuration options decribed below.
    */
    
    #ifndef _AESOPT_H
    #define _AESOPT_H
    
    
    #include "asterisk/aes.h"
    #include "asterisk/endian.h"
    
    Mark Spencer's avatar
    Mark Spencer committed
    140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000
    
    /*  CONFIGURATION - USE OF DEFINES
    
        Later in this section there are a number of defines that control the
        operation of the code.  In each section, the purpose of each define is
        explained so that the relevant form can be included or excluded by
        setting either 1's or 0's respectively on the branches of the related
        #if clauses.
    */
    
    /*  BYTE ORDER IN 32-BIT WORDS
    
        To obtain the highest speed on processors with 32-bit words, this code
        needs to determine the byte order of the target machine. The following 
        block of code is an attempt to capture the most obvious ways in which 
        various environemnts define byte order. It may well fail, in which case 
        the definitions will need to be set by editing at the points marked 
        **** EDIT HERE IF NECESSARY **** below.  My thanks to Peter Gutmann for 
        some of these defines (from cryptlib).
    */
    
    #define BRG_LITTLE_ENDIAN   1234 /* byte 0 is least significant (i386) */
    #define BRG_BIG_ENDIAN      4321 /* byte 0 is most significant (mc68k) */
    
    #if defined( __alpha__ ) || defined( __alpha ) || defined( i386 )       ||   \
        defined( __i386__ )  || defined( _M_I86 )  || defined( _M_IX86 )    ||   \
        defined( __OS2__ )   || defined( sun386 )  || defined( __TURBOC__ ) ||   \
        defined( vax )       || defined( vms )     || defined( VMS )        ||   \
        defined( __VMS ) 
    
    #define PLATFORM_BYTE_ORDER BRG_LITTLE_ENDIAN
    
    #endif
    
    #if defined( AMIGA )    || defined( applec )  || defined( __AS400__ )  ||   \
        defined( _CRAY )    || defined( __hppa )  || defined( __hp9000 )   ||   \
        defined( ibm370 )   || defined( mc68000 ) || defined( m68k )       ||   \
        defined( __MRC__ )  || defined( __MVS__ ) || defined( __MWERKS__ ) ||   \
        defined( sparc )    || defined( __sparc)  || defined( SYMANTEC_C ) ||   \
        defined( __TANDEM ) || defined( THINK_C ) || defined( __VMCMS__ )
        
    #define PLATFORM_BYTE_ORDER BRG_BIG_ENDIAN
    
    #endif
    
    /*  if the platform is still not known, try to find its byte order  */
    /*  from commonly used definitions in the headers included earlier  */
    
    #if !defined(PLATFORM_BYTE_ORDER)
    
    #if defined(LITTLE_ENDIAN) || defined(BIG_ENDIAN)
    #  if    defined(LITTLE_ENDIAN) && !defined(BIG_ENDIAN)
    #    define PLATFORM_BYTE_ORDER BRG_LITTLE_ENDIAN
    #  elif !defined(LITTLE_ENDIAN) &&  defined(BIG_ENDIAN)
    #    define PLATFORM_BYTE_ORDER BRG_BIG_ENDIAN
    #  elif defined(BYTE_ORDER) && (BYTE_ORDER == LITTLE_ENDIAN)
    #    define PLATFORM_BYTE_ORDER BRG_LITTLE_ENDIAN
    #  elif defined(BYTE_ORDER) && (BYTE_ORDER == BIG_ENDIAN)
    #    define PLATFORM_BYTE_ORDER BRG_BIG_ENDIAN
    #  endif
    
    #elif defined(_LITTLE_ENDIAN) || defined(_BIG_ENDIAN)
    #  if    defined(_LITTLE_ENDIAN) && !defined(_BIG_ENDIAN)
    #    define PLATFORM_BYTE_ORDER BRG_LITTLE_ENDIAN
    #  elif !defined(_LITTLE_ENDIAN) &&  defined(_BIG_ENDIAN)
    #    define PLATFORM_BYTE_ORDER BRG_BIG_ENDIAN
    #  elif defined(_BYTE_ORDER) && (_BYTE_ORDER == _LITTLE_ENDIAN)
    #    define PLATFORM_BYTE_ORDER BRG_LITTLE_ENDIAN
    #  elif defined(_BYTE_ORDER) && (_BYTE_ORDER == _BIG_ENDIAN)
    #    define PLATFORM_BYTE_ORDER BRG_BIG_ENDIAN
    #  endif
    
    #elif defined(__LITTLE_ENDIAN__) || defined(__BIG_ENDIAN__)
    #  if    defined(__LITTLE_ENDIAN__) && !defined(__BIG_ENDIAN__)
    #    define PLATFORM_BYTE_ORDER BRG_LITTLE_ENDIAN
    #  elif !defined(__LITTLE_ENDIAN__) &&  defined(__BIG_ENDIAN__)
    #    define PLATFORM_BYTE_ORDER BRG_BIG_ENDIAN
    #  elif defined(__BYTE_ORDER__) && (__BYTE_ORDER__ == __LITTLE_ENDIAN__)
    #    define PLATFORM_BYTE_ORDER BRG_LITTLE_ENDIAN
    #  elif defined(__BYTE_ORDER__) && (__BYTE_ORDER__ == __BIG_ENDIAN__)
    #    define PLATFORM_BYTE_ORDER BRG_BIG_ENDIAN
    #  endif
    
    #elif 0     /* **** EDIT HERE IF NECESSARY **** */
    #define PLATFORM_BYTE_ORDER BRG_LITTLE_ENDIAN
    
    #elif 0     /* **** EDIT HERE IF NECESSARY **** */
    #define PLATFORM_BYTE_ORDER BRG_BIG_ENDIAN
    
    #else
    #error Please edit aesopt.h (line 235 or 238) to set the platform byte order
    #endif
    
    #endif
    
    /*  SOME LOCAL DEFINITIONS  */
    
    #define NO_TABLES              0
    #define ONE_TABLE              1
    #define FOUR_TABLES            4
    #define NONE                   0
    #define PARTIAL                1
    #define FULL                   2
    
    #if defined(bswap32)
    #define aes_sw32    bswap32
    #elif defined(bswap_32)
    #define aes_sw32    bswap_32
    #else 
    #define brot(x,n)   (((aes_32t)(x) <<  n) | ((aes_32t)(x) >> (32 - n)))
    #define aes_sw32(x) ((brot((x),8) & 0x00ff00ff) | (brot((x),24) & 0xff00ff00))
    #endif
    
    /*  1. FUNCTIONS REQUIRED
    
        This implementation provides subroutines for encryption, decryption
        and for setting the three key lengths (separately) for encryption
        and decryption. When the assembler code is not being used the following
        definition blocks allow the selection of the routines that are to be
        included in the compilation.
    */
    #ifdef AES_ENCRYPT
    #define ENCRYPTION
    #define ENCRYPTION_KEY_SCHEDULE
    #endif
    
    #ifdef AES_DECRYPT
    #define DECRYPTION
    #define DECRYPTION_KEY_SCHEDULE
    #endif
    
    /*  2. ASSEMBLER SUPPORT
    
        This define (which can be on the command line) enables the use of the
        assembler code routines for encryption and decryption with the C code
        only providing key scheduling
    */
    #if 0
    #define AES_ASM
    #endif
    
    /*  3. BYTE ORDER WITHIN 32 BIT WORDS
    
        The fundamental data processing units in Rijndael are 8-bit bytes. The
        input, output and key input are all enumerated arrays of bytes in which
        bytes are numbered starting at zero and increasing to one less than the
        number of bytes in the array in question. This enumeration is only used
        for naming bytes and does not imply any adjacency or order relationship
        from one byte to another. When these inputs and outputs are considered
        as bit sequences, bits 8*n to 8*n+7 of the bit sequence are mapped to
        byte[n] with bit 8n+i in the sequence mapped to bit 7-i within the byte.
        In this implementation bits are numbered from 0 to 7 starting at the
        numerically least significant end of each byte (bit n represents 2^n).
    
        However, Rijndael can be implemented more efficiently using 32-bit
        words by packing bytes into words so that bytes 4*n to 4*n+3 are placed
        into word[n]. While in principle these bytes can be assembled into words
        in any positions, this implementation only supports the two formats in
        which bytes in adjacent positions within words also have adjacent byte
        numbers. This order is called big-endian if the lowest numbered bytes
        in words have the highest numeric significance and little-endian if the
        opposite applies.
    
        This code can work in either order irrespective of the order used by the
        machine on which it runs. Normally the internal byte order will be set
        to the order of the processor on which the code is to be run but this
        define can be used to reverse this in special situations
    
        NOTE: Assembler code versions rely on PLATFORM_BYTE_ORDER being set
    */
    #if 1 || defined(AES_ASM)
    #define ALGORITHM_BYTE_ORDER PLATFORM_BYTE_ORDER
    #elif 0
    #define ALGORITHM_BYTE_ORDER BRG_LITTLE_ENDIAN
    #elif 0
    #define ALGORITHM_BYTE_ORDER BRG_BIG_ENDIAN
    #else
    #error The algorithm byte order is not defined
    #endif
    
    /*  4. FAST INPUT/OUTPUT OPERATIONS.
    
        On some machines it is possible to improve speed by transferring the
        bytes in the input and output arrays to and from the internal 32-bit
        variables by addressing these arrays as if they are arrays of 32-bit
        words.  On some machines this will always be possible but there may
        be a large performance penalty if the byte arrays are not aligned on
        the normal word boundaries. On other machines this technique will
        lead to memory access errors when such 32-bit word accesses are not
        properly aligned. The option SAFE_IO avoids such problems but will
        often be slower on those machines that support misaligned access
        (especially so if care is taken to align the input  and output byte
        arrays on 32-bit word boundaries). If SAFE_IO is not defined it is
        assumed that access to byte arrays as if they are arrays of 32-bit
        words will not cause problems when such accesses are misaligned.
    */
    #if 1 && !defined(_MSC_VER)
    #define SAFE_IO
    #endif
    
    /*  5. LOOP UNROLLING
    
        The code for encryption and decrytpion cycles through a number of rounds
        that can be implemented either in a loop or by expanding the code into a
        long sequence of instructions, the latter producing a larger program but
        one that will often be much faster. The latter is called loop unrolling.
        There are also potential speed advantages in expanding two iterations in
        a loop with half the number of iterations, which is called partial loop
        unrolling.  The following options allow partial or full loop unrolling
        to be set independently for encryption and decryption
    */
    #if 1
    #define ENC_UNROLL  FULL
    #elif 0
    #define ENC_UNROLL  PARTIAL
    #else
    #define ENC_UNROLL  NONE
    #endif
    
    #if 1
    #define DEC_UNROLL  FULL
    #elif 0
    #define DEC_UNROLL  PARTIAL
    #else
    #define DEC_UNROLL  NONE
    #endif
    
    /*  6. FAST FINITE FIELD OPERATIONS
    
        If this section is included, tables are used to provide faster finite
        field arithmetic (this has no effect if FIXED_TABLES is defined).
    */
    #if 1
    #define FF_TABLES
    #endif
    
    /*  7. INTERNAL STATE VARIABLE FORMAT
    
        The internal state of Rijndael is stored in a number of local 32-bit
        word varaibles which can be defined either as an array or as individual
        names variables. Include this section if you want to store these local
        varaibles in arrays. Otherwise individual local variables will be used.
    */
    #if 1
    #define ARRAYS
    #endif
    
    /* In this implementation the columns of the state array are each held in
       32-bit words. The state array can be held in various ways: in an array
       of words, in a number of individual word variables or in a number of
       processor registers. The following define maps a variable name x and
       a column number c to the way the state array variable is to be held.
       The first define below maps the state into an array x[c] whereas the
       second form maps the state into a number of individual variables x0,
       x1, etc.  Another form could map individual state colums to machine
       register names.
    */
    
    #if defined(ARRAYS)
    #define s(x,c) x[c]
    #else
    #define s(x,c) x##c
    #endif
    
    /*  8. FIXED OR DYNAMIC TABLES
    
        When this section is included the tables used by the code are compiled
        statically into the binary file.  Otherwise the subroutine gen_tabs()
        must be called to compute them before the code is first used.
    */
    #if 1
    #define FIXED_TABLES
    #endif
    
    /*  9. TABLE ALIGNMENT
    
        On some sytsems speed will be improved by aligning the AES large lookup
        tables on particular boundaries. This define should be set to a power of
        two giving the desired alignment. It can be left undefined if alignment 
        is not needed.  This option is specific to the Microsft VC++ compiler -
        it seems to sometimes cause trouble for the VC++ version 6 compiler.
    */
    
    #if 0 && defined(_MSC_VER) && (_MSC_VER >= 1300)
    #define TABLE_ALIGN 64
    #endif
    
    /*  10. INTERNAL TABLE CONFIGURATION
    
        This cipher proceeds by repeating in a number of cycles known as 'rounds'
        which are implemented by a round function which can optionally be speeded
        up using tables.  The basic tables are each 256 32-bit words, with either
        one or four tables being required for each round function depending on
        how much speed is required. The encryption and decryption round functions
        are different and the last encryption and decrytpion round functions are
        different again making four different round functions in all.
    
        This means that:
          1. Normal encryption and decryption rounds can each use either 0, 1
             or 4 tables and table spaces of 0, 1024 or 4096 bytes each.
          2. The last encryption and decryption rounds can also use either 0, 1
             or 4 tables and table spaces of 0, 1024 or 4096 bytes each.
    
        Include or exclude the appropriate definitions below to set the number
        of tables used by this implementation.
    */
    
    #if 1   /* set tables for the normal encryption round */
    #define ENC_ROUND   FOUR_TABLES
    #elif 0
    #define ENC_ROUND   ONE_TABLE
    #else
    #define ENC_ROUND   NO_TABLES
    #endif
    
    #if 1   /* set tables for the last encryption round */
    #define LAST_ENC_ROUND  FOUR_TABLES
    #elif 0
    #define LAST_ENC_ROUND  ONE_TABLE
    #else
    #define LAST_ENC_ROUND  NO_TABLES
    #endif
    
    #if 1   /* set tables for the normal decryption round */
    #define DEC_ROUND   FOUR_TABLES
    #elif 0
    #define DEC_ROUND   ONE_TABLE
    #else
    #define DEC_ROUND   NO_TABLES
    #endif
    
    #if 1   /* set tables for the last decryption round */
    #define LAST_DEC_ROUND  FOUR_TABLES
    #elif 0
    #define LAST_DEC_ROUND  ONE_TABLE
    #else
    #define LAST_DEC_ROUND  NO_TABLES
    #endif
    
    /*  The decryption key schedule can be speeded up with tables in the same
        way that the round functions can.  Include or exclude the following
        defines to set this requirement.
    */
    #if 1
    #define KEY_SCHED   FOUR_TABLES
    #elif 0
    #define KEY_SCHED   ONE_TABLE
    #else
    #define KEY_SCHED   NO_TABLES
    #endif
    
    /* END OF CONFIGURATION OPTIONS */
    
    #define RC_LENGTH   (5 * (AES_BLOCK_SIZE / 4 - 2))
    
    /* Disable or report errors on some combinations of options */
    
    #if ENC_ROUND == NO_TABLES && LAST_ENC_ROUND != NO_TABLES
    #undef  LAST_ENC_ROUND
    #define LAST_ENC_ROUND  NO_TABLES
    #elif ENC_ROUND == ONE_TABLE && LAST_ENC_ROUND == FOUR_TABLES
    #undef  LAST_ENC_ROUND
    #define LAST_ENC_ROUND  ONE_TABLE
    #endif
    
    #if ENC_ROUND == NO_TABLES && ENC_UNROLL != NONE
    #undef  ENC_UNROLL
    #define ENC_UNROLL  NONE
    #endif
    
    #if DEC_ROUND == NO_TABLES && LAST_DEC_ROUND != NO_TABLES
    #undef  LAST_DEC_ROUND
    #define LAST_DEC_ROUND  NO_TABLES
    #elif DEC_ROUND == ONE_TABLE && LAST_DEC_ROUND == FOUR_TABLES
    #undef  LAST_DEC_ROUND
    #define LAST_DEC_ROUND  ONE_TABLE
    #endif
    
    #if DEC_ROUND == NO_TABLES && DEC_UNROLL != NONE
    #undef  DEC_UNROLL
    #define DEC_UNROLL  NONE
    #endif
    
    /*  upr(x,n):  rotates bytes within words by n positions, moving bytes to
                   higher index positions with wrap around into low positions
        ups(x,n):  moves bytes by n positions to higher index positions in
                   words but without wrap around
        bval(x,n): extracts a byte from a word
    
        NOTE:      The definitions given here are intended only for use with
                   unsigned variables and with shift counts that are compile
                   time constants
    */
    
    #if (ALGORITHM_BYTE_ORDER == BRG_LITTLE_ENDIAN)
    #define upr(x,n)        (((aes_32t)(x) << (8 * (n))) | ((aes_32t)(x) >> (32 - 8 * (n))))
    #define ups(x,n)        ((aes_32t) (x) << (8 * (n)))
    #define bval(x,n)       ((aes_08t)((x) >> (8 * (n))))
    #define bytes2word(b0, b1, b2, b3)  \
            (((aes_32t)(b3) << 24) | ((aes_32t)(b2) << 16) | ((aes_32t)(b1) << 8) | (b0))
    #endif
    
    #if (ALGORITHM_BYTE_ORDER == BRG_BIG_ENDIAN)
    #define upr(x,n)        (((aes_32t)(x) >> (8 * (n))) | ((aes_32t)(x) << (32 - 8 * (n))))
    #define ups(x,n)        ((aes_32t) (x) >> (8 * (n))))
    #define bval(x,n)       ((aes_08t)((x) >> (24 - 8 * (n))))
    #define bytes2word(b0, b1, b2, b3)  \
            (((aes_32t)(b0) << 24) | ((aes_32t)(b1) << 16) | ((aes_32t)(b2) << 8) | (b3))
    #endif
    
    #if defined(SAFE_IO)
    
    #define word_in(x,c)    bytes2word(((aes_08t*)(x)+4*c)[0], ((aes_08t*)(x)+4*c)[1], \
                                       ((aes_08t*)(x)+4*c)[2], ((aes_08t*)(x)+4*c)[3])
    #define word_out(x,c,v) { ((aes_08t*)(x)+4*c)[0] = bval(v,0); ((aes_08t*)(x)+4*c)[1] = bval(v,1); \
                              ((aes_08t*)(x)+4*c)[2] = bval(v,2); ((aes_08t*)(x)+4*c)[3] = bval(v,3); }
    
    #elif (ALGORITHM_BYTE_ORDER == PLATFORM_BYTE_ORDER)
    
    #define word_in(x,c)    (*((aes_32t*)(x)+(c)))
    #define word_out(x,c,v) (*((aes_32t*)(x)+(c)) = (v))
    
    #else
    
    #define word_in(x,c)    aes_sw32(*((aes_32t*)(x)+(c)))
    #define word_out(x,c,v) (*((aes_32t*)(x)+(c)) = aes_sw32(v))
    
    #endif
    
    /* the finite field modular polynomial and elements */
    
    #define WPOLY   0x011b
    #define BPOLY     0x1b
    
    /* multiply four bytes in GF(2^8) by 'x' {02} in parallel */
    
    #define m1  0x80808080
    #define m2  0x7f7f7f7f
    #define gf_mulx(x)  ((((x) & m2) << 1) ^ ((((x) & m1) >> 7) * BPOLY))
    
    /* The following defines provide alternative definitions of gf_mulx that might
       give improved performance if a fast 32-bit multiply is not available. Note
       that a temporary variable u needs to be defined where gf_mulx is used.
    
    #define gf_mulx(x) (u = (x) & m1, u |= (u >> 1), ((x) & m2) << 1) ^ ((u >> 3) | (u >> 6))
    #define m4  (0x01010101 * BPOLY)
    #define gf_mulx(x) (u = (x) & m1, ((x) & m2) << 1) ^ ((u - (u >> 7)) & m4)
    */
    
    /* Work out which tables are needed for the different options   */
    
    #ifdef  AES_ASM
    #ifdef  ENC_ROUND
    #undef  ENC_ROUND
    #endif
    #define ENC_ROUND   FOUR_TABLES
    #ifdef  LAST_ENC_ROUND
    #undef  LAST_ENC_ROUND
    #endif
    #define LAST_ENC_ROUND  FOUR_TABLES
    #ifdef  DEC_ROUND
    #undef  DEC_ROUND
    #endif
    #define DEC_ROUND   FOUR_TABLES
    #ifdef  LAST_DEC_ROUND
    #undef  LAST_DEC_ROUND
    #endif
    #define LAST_DEC_ROUND  FOUR_TABLES
    #ifdef  KEY_SCHED
    #undef  KEY_SCHED
    #define KEY_SCHED   FOUR_TABLES
    #endif
    #endif
    
    #if defined(ENCRYPTION) || defined(AES_ASM)
    #if ENC_ROUND == ONE_TABLE
    #define FT1_SET
    #elif ENC_ROUND == FOUR_TABLES
    #define FT4_SET
    #else
    #define SBX_SET
    #endif
    #if LAST_ENC_ROUND == ONE_TABLE
    #define FL1_SET
    #elif LAST_ENC_ROUND == FOUR_TABLES
    #define FL4_SET
    #elif !defined(SBX_SET)
    #define SBX_SET
    #endif
    #endif
    
    #if defined(DECRYPTION) || defined(AES_ASM)
    #if DEC_ROUND == ONE_TABLE
    #define IT1_SET
    #elif DEC_ROUND == FOUR_TABLES
    #define IT4_SET
    #else
    #define ISB_SET
    #endif
    #if LAST_DEC_ROUND == ONE_TABLE
    #define IL1_SET
    #elif LAST_DEC_ROUND == FOUR_TABLES
    #define IL4_SET
    #elif !defined(ISB_SET)
    #define ISB_SET
    #endif
    #endif
    
    #if defined(ENCRYPTION_KEY_SCHEDULE) || defined(DECRYPTION_KEY_SCHEDULE)
    #if KEY_SCHED == ONE_TABLE
    #define LS1_SET
    #define IM1_SET
    #elif KEY_SCHED == FOUR_TABLES
    #define LS4_SET
    #define IM4_SET
    #elif !defined(SBX_SET)
    #define SBX_SET
    #endif
    #endif
    
    /* generic definitions of Rijndael macros that use tables    */
    
    #define no_table(x,box,vf,rf,c) bytes2word( \
        box[bval(vf(x,0,c),rf(0,c))], \
        box[bval(vf(x,1,c),rf(1,c))], \
        box[bval(vf(x,2,c),rf(2,c))], \
        box[bval(vf(x,3,c),rf(3,c))])
    
    #define one_table(x,op,tab,vf,rf,c) \
     (     tab[bval(vf(x,0,c),rf(0,c))] \
      ^ op(tab[bval(vf(x,1,c),rf(1,c))],1) \
      ^ op(tab[bval(vf(x,2,c),rf(2,c))],2) \
      ^ op(tab[bval(vf(x,3,c),rf(3,c))],3))
    
    #define four_tables(x,tab,vf,rf,c) \
     (  tab[0][bval(vf(x,0,c),rf(0,c))] \
      ^ tab[1][bval(vf(x,1,c),rf(1,c))] \
      ^ tab[2][bval(vf(x,2,c),rf(2,c))] \
      ^ tab[3][bval(vf(x,3,c),rf(3,c))])
    
    #define vf1(x,r,c)  (x)
    #define rf1(r,c)    (r)
    #define rf2(r,c)    ((8+r-c)&3)
    
    /* perform forward and inverse column mix operation on four bytes in long word x in */
    /* parallel. NOTE: x must be a simple variable, NOT an expression in these macros.  */
    
    #if defined(FM4_SET)    /* not currently used */
    #define fwd_mcol(x)     four_tables(x,t_use(f,m),vf1,rf1,0)
    #elif defined(FM1_SET)  /* not currently used */
    #define fwd_mcol(x)     one_table(x,upr,t_use(f,m),vf1,rf1,0)
    #else
    #define dec_fmvars      aes_32t g2
    #define fwd_mcol(x)     (g2 = gf_mulx(x), g2 ^ upr((x) ^ g2, 3) ^ upr((x), 2) ^ upr((x), 1))
    #endif
    
    #if defined(IM4_SET)
    #define inv_mcol(x)     four_tables(x,t_use(i,m),vf1,rf1,0)
    #elif defined(IM1_SET)
    #define inv_mcol(x)     one_table(x,upr,t_use(i,m),vf1,rf1,0)
    #else
    #define dec_imvars      aes_32t g2, g4, g9
    #define inv_mcol(x)     (g2 = gf_mulx(x), g4 = gf_mulx(g2), g9 = (x) ^ gf_mulx(g4), g4 ^= g9, \
                            (x) ^ g2 ^ g4 ^ upr(g2 ^ g9, 3) ^ upr(g4, 2) ^ upr(g9, 1))
    #endif
    
    #if defined(FL4_SET)
    #define ls_box(x,c)     four_tables(x,t_use(f,l),vf1,rf2,c)
    #elif   defined(LS4_SET)
    #define ls_box(x,c)     four_tables(x,t_use(l,s),vf1,rf2,c)
    #elif defined(FL1_SET)
    #define ls_box(x,c)     one_table(x,upr,t_use(f,l),vf1,rf2,c)
    #elif defined(LS1_SET)
    #define ls_box(x,c)     one_table(x,upr,t_use(l,s),vf1,rf2,c)
    #else
    #define ls_box(x,c)     no_table(x,t_use(s,box),vf1,rf2,c)
    #endif
    
    #if defined(__cplusplus)
    extern "C"
    {
    #endif
    
    /*  If there are no global variables, the definitions here can be
        used to put the AES tables in a structure so that a pointer 
        can then be added to the AES context to pass them to the AES
        routines that need them.  If this facility is used, the calling 
        program has to ensure that this pointer is managed appropriately. 
        In particular, the value of the t_dec(in,it) item in the table 
        structure must be set to zero in order to ensure that the tables 
        are initialised. In practice the three code sequences in aeskey.c 
        that control the calls to gen_tabs() and the gen_tabs() routine 
        itself will have to be changed for a specific implementation. If 
        global variables are available it will generally be preferable to 
        use them with the precomputed FIXED_TABLES option that uses static 
        global tables.
    
        The following defines can be used to control the way the tables
        are defined, initialised and used in embedded environments that
        require special features for these purposes
    
        the 't_dec' construction is used to declare fixed table arrays
        the 't_set' construction is used to set fixed table values
        the 't_use' construction is used to access fixed table values
    
        256 byte tables:
    
            t_xxx(s,box)    => forward S box
            t_xxx(i,box)    => inverse S box
    
        256 32-bit word OR 4 x 256 32-bit word tables:
    
            t_xxx(f,n)      => forward normal round
            t_xxx(f,l)      => forward last round
            t_xxx(i,n)      => inverse normal round
            t_xxx(i,l)      => inverse last round
            t_xxx(l,s)      => key schedule table
            t_xxx(i,m)      => key schedule table
    
        Other variables and tables:
    
            t_xxx(r,c)      => the rcon table
    */
    
    #define t_dec(m,n) t_##m##n
    #define t_set(m,n) t_##m##n
    #define t_use(m,n) t_##m##n
    
    #if defined(DO_TABLES)  /* declare and instantiate tables   */
    
    /*  finite field arithmetic operations for table generation */
    
    #if defined(FIXED_TABLES) || !defined(FF_TABLES)
    
    #define f2(x)   ((x<<1) ^ (((x>>7) & 1) * WPOLY))
    #define f4(x)   ((x<<2) ^ (((x>>6) & 1) * WPOLY) ^ (((x>>6) & 2) * WPOLY))
    #define f8(x)   ((x<<3) ^ (((x>>5) & 1) * WPOLY) ^ (((x>>5) & 2) * WPOLY) \
                            ^ (((x>>5) & 4) * WPOLY))
    #define f3(x)   (f2(x) ^ x)
    #define f9(x)   (f8(x) ^ x)
    #define fb(x)   (f8(x) ^ f2(x) ^ x)
    #define fd(x)   (f8(x) ^ f4(x) ^ x)
    #define fe(x)   (f8(x) ^ f4(x) ^ f2(x))
    
    #else
    
    #define f2(x) ((x) ? pow[log[x] + 0x19] : 0)
    #define f3(x) ((x) ? pow[log[x] + 0x01] : 0)
    #define f9(x) ((x) ? pow[log[x] + 0xc7] : 0)
    #define fb(x) ((x) ? pow[log[x] + 0x68] : 0)
    #define fd(x) ((x) ? pow[log[x] + 0xee] : 0)
    #define fe(x) ((x) ? pow[log[x] + 0xdf] : 0)
    #define fi(x) ((x) ? pow[ 255 - log[x]] : 0)
    
    #endif
    
    #if defined(FIXED_TABLES)   /* declare and set values for static tables */
    
    #define sb_data(w) \
        w(0x63), w(0x7c), w(0x77), w(0x7b), w(0xf2), w(0x6b), w(0x6f), w(0xc5),\
        w(0x30), w(0x01), w(0x67), w(0x2b), w(0xfe), w(0xd7), w(0xab), w(0x76),\
        w(0xca), w(0x82), w(0xc9), w(0x7d), w(0xfa), w(0x59), w(0x47), w(0xf0),\
        w(0xad), w(0xd4), w(0xa2), w(0xaf), w(0x9c), w(0xa4), w(0x72), w(0xc0),\
        w(0xb7), w(0xfd), w(0x93), w(0x26), w(0x36), w(0x3f), w(0xf7), w(0xcc),\
        w(0x34), w(0xa5), w(0xe5), w(0xf1), w(0x71), w(0xd8), w(0x31), w(0x15),\
        w(0x04), w(0xc7), w(0x23), w(0xc3), w(0x18), w(0x96), w(0x05), w(0x9a),\
        w(0x07), w(0x12), w(0x80), w(0xe2), w(0xeb), w(0x27), w(0xb2), w(0x75),\
        w(0x09), w(0x83), w(0x2c), w(0x1a), w(0x1b), w(0x6e), w(0x5a), w(0xa0),\
        w(0x52), w(0x3b), w(0xd6), w(0xb3), w(0x29), w(0xe3), w(0x2f), w(0x84),\
        w(0x53), w(0xd1), w(0x00), w(0xed), w(0x20), w(0xfc), w(0xb1), w(0x5b),\
        w(0x6a), w(0xcb), w(0xbe), w(0x39), w(0x4a), w(0x4c), w(0x58), w(0xcf),\
        w(0xd0), w(0xef), w(0xaa), w(0xfb), w(0x43), w(0x4d), w(0x33), w(0x85),\
        w(0x45), w(0xf9), w(0x02), w(0x7f), w(0x50), w(0x3c), w(0x9f), w(0xa8),\
        w(0x51), w(0xa3), w(0x40), w(0x8f), w(0x92), w(0x9d), w(0x38), w(0xf5),\
        w(0xbc), w(0xb6), w(0xda), w(0x21), w(0x10), w(0xff), w(0xf3), w(0xd2),\
        w(0xcd), w(0x0c), w(0x13), w(0xec), w(0x5f), w(0x97), w(0x44), w(0x17),\
        w(0xc4), w(0xa7), w(0x7e), w(0x3d), w(0x64), w(0x5d), w(0x19), w(0x73),\
        w(0x60), w(0x81), w(0x4f), w(0xdc), w(0x22), w(0x2a), w(0x90), w(0x88),\
        w(0x46), w(0xee), w(0xb8), w(0x14), w(0xde), w(0x5e), w(0x0b), w(0xdb),\
        w(0xe0), w(0x32), w(0x3a), w(0x0a), w(0x49), w(0x06), w(0x24), w(0x5c),\
        w(0xc2), w(0xd3), w(0xac), w(0x62), w(0x91), w(0x95), w(0xe4), w(0x79),\
        w(0xe7), w(0xc8), w(0x37), w(0x6d), w(0x8d), w(0xd5), w(0x4e), w(0xa9),\
        w(0x6c), w(0x56), w(0xf4), w(0xea), w(0x65), w(0x7a), w(0xae), w(0x08),\
        w(0xba), w(0x78), w(0x25), w(0x2e), w(0x1c), w(0xa6), w(0xb4), w(0xc6),\
        w(0xe8), w(0xdd), w(0x74), w(0x1f), w(0x4b), w(0xbd), w(0x8b), w(0x8a),\
        w(0x70), w(0x3e), w(0xb5), w(0x66), w(0x48), w(0x03), w(0xf6), w(0x0e),\
        w(0x61), w(0x35), w(0x57), w(0xb9), w(0x86), w(0xc1), w(0x1d), w(0x9e),\
        w(0xe1), w(0xf8), w(0x98), w(0x11), w(0x69), w(0xd9), w(0x8e), w(0x94),\
        w(0x9b), w(0x1e), w(0x87), w(0xe9), w(0xce), w(0x55), w(0x28), w(0xdf),\
        w(0x8c), w(0xa1), w(0x89), w(0x0d), w(0xbf), w(0xe6), w(0x42), w(0x68),\
        w(0x41), w(0x99), w(0x2d), w(0x0f), w(0xb0), w(0x54), w(0xbb), w(0x16)
    
    #define isb_data(w) \
        w(0x52), w(0x09), w(0x6a), w(0xd5), w(0x30), w(0x36), w(0xa5), w(0x38),\
        w(0xbf), w(0x40), w(0xa3), w(0x9e), w(0x81), w(0xf3), w(0xd7), w(0xfb),\
        w(0x7c), w(0xe3), w(0x39), w(0x82), w(0x9b), w(0x2f), w(0xff), w(0x87),\
        w(0x34), w(0x8e), w(0x43), w(0x44), w(0xc4), w(0xde), w(0xe9), w(0xcb),\
        w(0x54), w(0x7b), w(0x94), w(0x32), w(0xa6), w(0xc2), w(0x23), w(0x3d),\
        w(0xee), w(0x4c), w(0x95), w(0x0b), w(0x42), w(0xfa), w(0xc3), w(0x4e),\
        w(0x08), w(0x2e), w(0xa1), w(0x66), w(0x28), w(0xd9), w(0x24), w(0xb2),\
        w(0x76), w(0x5b), w(0xa2), w(0x49), w(0x6d), w(0x8b), w(0xd1), w(0x25),\
        w(0x72), w(0xf8), w(0xf6), w(0x64), w(0x86), w(0x68), w(0x98), w(0x16),\
        w(0xd4), w(0xa4), w(0x5c), w(0xcc), w(0x5d), w(0x65), w(0xb6), w(0x92),\
        w(0x6c), w(0x70), w(0x48), w(0x50), w(0xfd), w(0xed), w(0xb9), w(0xda),\
        w(0x5e), w(0x15), w(0x46), w(0x57), w(0xa7), w(0x8d), w(0x9d), w(0x84),\
        w(0x90), w(0xd8), w(0xab), w(0x00), w(0x8c), w(0xbc), w(0xd3), w(0x0a),\
        w(0xf7), w(0xe4), w(0x58), w(0x05), w(0xb8), w(0xb3), w(0x45), w(0x06),\
        w(0xd0), w(0x2c), w(0x1e), w(0x8f), w(0xca), w(0x3f), w(0x0f), w(0x02),\
        w(0xc1), w(0xaf), w(0xbd), w(0x03), w(0x01), w(0x13), w(0x8a), w(0x6b),\
        w(0x3a), w(0x91), w(0x11), w(0x41), w(0x4f), w(0x67), w(0xdc), w(0xea),\
        w(0x97), w(0xf2), w(0xcf), w(0xce), w(0xf0), w(0xb4), w(0xe6), w(0x73),\
        w(0x96), w(0xac), w(0x74), w(0x22), w(0xe7), w(0xad), w(0x35), w(0x85),\
        w(0xe2), w(0xf9), w(0x37), w(0xe8), w(0x1c), w(0x75), w(0xdf), w(0x6e),\
        w(0x47), w(0xf1), w(0x1a), w(0x71), w(0x1d), w(0x29), w(0xc5), w(0x89),\
        w(0x6f), w(0xb7), w(0x62), w(0x0e), w(0xaa), w(0x18), w(0xbe), w(0x1b),\
        w(0xfc), w(0x56), w(0x3e), w(0x4b), w(0xc6), w(0xd2), w(0x79), w(0x20),\
        w(0x9a), w(0xdb), w(0xc0), w(0xfe), w(0x78), w(0xcd), w(0x5a), w(0xf4),\
        w(0x1f), w(0xdd), w(0xa8), w(0x33), w(0x88), w(0x07), w(0xc7), w(0x31),\
        w(0xb1), w(0x12), w(0x10), w(0x59), w(0x27), w(0x80), w(0xec), w(0x5f),\
        w(0x60), w(0x51), w(0x7f), w(0xa9), w(0x19), w(0xb5), w(0x4a), w(0x0d),\
        w(0x2d), w(0xe5), w(0x7a), w(0x9f), w(0x93), w(0xc9), w(0x9c), w(0xef),\
        w(0xa0), w(0xe0), w(0x3b), w(0x4d), w(0xae), w(0x2a), w(0xf5), w(0xb0),\
        w(0xc8), w(0xeb), w(0xbb), w(0x3c), w(0x83), w(0x53), w(0x99), w(0x61),\
        w(0x17), w(0x2b), w(0x04), w(0x7e), w(0xba), w(0x77), w(0xd6), w(0x26),\
        w(0xe1), w(0x69), w(0x14), w(0x63), w(0x55), w(0x21), w(0x0c), w(0x7d),
    
    #define mm_data(w) \
        w(0x00), w(0x01), w(0x02), w(0x03), w(0x04), w(0x05), w(0x06), w(0x07),\
        w(0x08), w(0x09), w(0x0a), w(0x0b), w(0x0c), w(0x0d), w(0x0e), w(0x0f),\
        w(0x10), w(0x11), w(0x12), w(0x13), w(0x14), w(0x15), w(0x16), w(0x17),\
        w(0x18), w(0x19), w(0x1a), w(0x1b), w(0x1c), w(0x1d), w(0x1e), w(0x1f),\
        w(0x20), w(0x21), w(0x22), w(0x23), w(0x24), w(0x25), w(0x26), w(0x27),\
        w(0x28), w(0x29), w(0x2a), w(0x2b), w(0x2c), w(0x2d), w(0x2e), w(0x2f),\
        w(0x30), w(0x31), w(0x32), w(0x33), w(0x34), w(0x35), w(0x36), w(0x37),\
        w(0x38), w(0x39), w(0x3a), w(0x3b), w(0x3c), w(0x3d), w(0x3e), w(0x3f),\
        w(0x40), w(0x41), w(0x42), w(0x43), w(0x44), w(0x45), w(0x46), w(0x47),\
        w(0x48), w(0x49), w(0x4a), w(0x4b), w(0x4c), w(0x4d), w(0x4e), w(0x4f),\
        w(0x50), w(0x51), w(0x52), w(0x53), w(0x54), w(0x55), w(0x56), w(0x57),\
        w(0x58), w(0x59), w(0x5a), w(0x5b), w(0x5c), w(0x5d), w(0x5e), w(0x5f),\
        w(0x60), w(0x61), w(0x62), w(0x63), w(0x64), w(0x65), w(0x66), w(0x67),\
        w(0x68), w(0x69), w(0x6a), w(0x6b), w(0x6c), w(0x6d), w(0x6e), w(0x6f),\
        w(0x70), w(0x71), w(0x72), w(0x73), w(0x74), w(0x75), w(0x76), w(0x77),\
        w(0x78), w(0x79), w(0x7a), w(0x7b), w(0x7c), w(0x7d), w(0x7e), w(0x7f),\
        w(0x80), w(0x81), w(0x82), w(0x83), w(0x84), w(0x85), w(0x86), w(0x87),\
        w(0x88), w(0x89), w(0x8a), w(0x8b), w(0x8c), w(0x8d), w(0x8e), w(0x8f),\
        w(0x90), w(0x91), w(0x92), w(0x93), w(0x94), w(0x95), w(0x96), w(0x97),\
        w(0x98), w(0x99), w(0x9a), w(0x9b), w(0x9c), w(0x9d), w(0x9e), w(0x9f),\
        w(0xa0), w(0xa1), w(0xa2), w(0xa3), w(0xa4), w(0xa5), w(0xa6), w(0xa7),\
        w(0xa8), w(0xa9), w(0xaa), w(0xab), w(0xac), w(0xad), w(0xae), w(0xaf),\
        w(0xb0), w(0xb1), w(0xb2), w(0xb3), w(0xb4), w(0xb5), w(0xb6), w(0xb7),\
        w(0xb8), w(0xb9), w(0xba), w(0xbb), w(0xbc), w(0xbd), w(0xbe), w(0xbf),\
        w(0xc0), w(0xc1), w(0xc2), w(0xc3), w(0xc4), w(0xc5), w(0xc6), w(0xc7),\
        w(0xc8), w(0xc9), w(0xca), w(0xcb), w(0xcc), w(0xcd), w(0xce), w(0xcf),\
        w(0xd0), w(0xd1), w(0xd2), w(0xd3), w(0xd4), w(0xd5), w(0xd6), w(0xd7),\
        w(0xd8), w(0xd9), w(0xda), w(0xdb), w(0xdc), w(0xdd), w(0xde), w(0xdf),\
        w(0xe0), w(0xe1), w(0xe2), w(0xe3), w(0xe4), w(0xe5), w(0xe6), w(0xe7),\
        w(0xe8), w(0xe9), w(0xea), w(0xeb), w(0xec), w(0xed), w(0xee), w(0xef),\
        w(0xf0), w(0xf1), w(0xf2), w(0xf3), w(0xf4), w(0xf5), w(0xf6), w(0xf7),\
        w(0xf8), w(0xf9), w(0xfa), w(0xfb), w(0xfc), w(0xfd), w(0xfe), w(0xff)
    
    #define h0(x)   (x)
    
    /*  These defines are used to ensure tables are generated in the
        right format depending on the internal byte order required
    */
    
    #define w0(p)   bytes2word(p, 0, 0, 0)
    #define w1(p)   bytes2word(0, p, 0, 0)
    #define w2(p)   bytes2word(0, 0, p, 0)
    #define w3(p)   bytes2word(0, 0, 0, p)
    
    #define u0(p)   bytes2word(f2(p), p, p, f3(p))
    #define u1(p)   bytes2word(f3(p), f2(p), p, p)
    #define u2(p)   bytes2word(p, f3(p), f2(p), p)
    #define u3(p)   bytes2word(p, p, f3(p), f2(p))
    
    #define v0(p)   bytes2word(fe(p), f9(p), fd(p), fb(p))
    #define v1(p)   bytes2word(fb(p), fe(p), f9(p), fd(p))
    #define v2(p)   bytes2word(fd(p), fb(p), fe(p), f9(p))
    #define v3(p)   bytes2word(f9(p), fd(p), fb(p), fe(p))
    
    const aes_32t t_dec(r,c)[RC_LENGTH] =
    {
        w0(0x01), w0(0x02), w0(0x04), w0(0x08), w0(0x10),
        w0(0x20), w0(0x40), w0(0x80), w0(0x1b), w0(0x36)
    };
    
    #define d_1(t,n,b,v) const t n[256]    =   { b(v##0) }
    #define d_4(t,n,b,v) const t n[4][256] = { { b(v##0) }, { b(v##1) }, { b(v##2) }, { b(v##3) } }
    
    #else   /* declare and instantiate tables for dynamic value generation in in tab.c  */
    
    aes_32t t_dec(r,c)[RC_LENGTH];
    
    #define d_1(t,n,b,v) t  n[256]
    #define d_4(t,n,b,v) t  n[4][256]
    
    #endif
    
    #else   /* declare tables without instantiation */
    
    #if defined(FIXED_TABLES)
    
    extern const aes_32t t_dec(r,c)[RC_LENGTH];
    
    #if defined(_MSC_VER) && defined(TABLE_ALIGN)
    #define d_1(t,n,b,v) extern __declspec(align(TABLE_ALIGN)) const t  n[256]
    #define d_4(t,n,b,v) extern __declspec(align(TABLE_ALIGN)) const t  n[4][256]
    #else
    #define d_1(t,n,b,v) extern const t  n[256]
    #define d_4(t,n,b,v) extern const t  n[4][256]
    #endif
    #else
    
    extern aes_32t t_dec(r,c)[RC_LENGTH];
    
    #if defined(_MSC_VER) && defined(TABLE_ALIGN)
    #define d_1(t,n,b,v) extern __declspec(align(TABLE_ALIGN)) t  n[256]
    #define d_4(t,n,b,v) extern __declspec(align(TABLE_ALIGN)) t  n[4][256]
    #else
    #define d_1(t,n,b,v) extern t  n[256]
    #define d_4(t,n,b,v) extern t  n[4][256]
    #endif
    #endif
    
    #endif
    
    #ifdef  SBX_SET
        d_1(aes_08t, t_dec(s,box), sb_data, h);
    #endif
    #ifdef  ISB_SET
        d_1(aes_08t, t_dec(i,box), isb_data, h);
    #endif
    
    #ifdef  FT1_SET
        d_1(aes_32t, t_dec(f,n), sb_data, u);
    #endif
    #ifdef  FT4_SET
        d_4(aes_32t, t_dec(f,n), sb_data, u);
    #endif
    
    #ifdef  FL1_SET
        d_1(aes_32t, t_dec(f,l), sb_data, w);
    #endif
    #ifdef  FL4_SET
        d_4(aes_32t, t_dec(f,l), sb_data, w);
    #endif
    
    #ifdef  IT1_SET
        d_1(aes_32t, t_dec(i,n), isb_data, v);
    #endif
    #ifdef  IT4_SET
        d_4(aes_32t, t_dec(i,n), isb_data, v);
    #endif
    
    #ifdef  IL1_SET
        d_1(aes_32t, t_dec(i,l), isb_data, w);
    #endif
    #ifdef  IL4_SET
        d_4(aes_32t, t_dec(i,l), isb_data, w);
    #endif