Newer
Older
Matthew Fredrickson
committed
/*
* Asterisk -- A telephony toolkit for Linux.
*
* UDPTL support for T.38
*
* Copyright (C) 2005, Steve Underwood, partly based on RTP code which is
* Copyright (C) 1999-2006, Digium, Inc.
Matthew Fredrickson
committed
*
* Steve Underwood <steveu@coppice.org>
*
* This program is free software, distributed under the terms of
* the GNU General Public License
*
* A license has been granted to Digium (via disclaimer) for the use of
* this code.
Matthew Fredrickson
committed
*/
Kevin P. Fleming
committed
#include "asterisk.h"
ASTERISK_FILE_VERSION(__FILE__, "$Revision$")
Matthew Fredrickson
committed
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/time.h>
#include <signal.h>
#include <errno.h>
#include <unistd.h>
#include <netinet/in.h>
#include <sys/time.h>
#include <sys/socket.h>
#include <arpa/inet.h>
#include <fcntl.h>
#include "asterisk/udptl.h"
#include "asterisk/frame.h"
#include "asterisk/logger.h"
#include "asterisk/options.h"
#include "asterisk/channel.h"
#include "asterisk/acl.h"
#include "asterisk/channel.h"
#include "asterisk/config.h"
#include "asterisk/lock.h"
#include "asterisk/utils.h"
#include "asterisk/cli.h"
#include "asterisk/unaligned.h"
#include "asterisk/utils.h"
#define UDPTL_MTU 1200
#if !defined(FALSE)
#define FALSE 0
#endif
#if !defined(TRUE)
#define TRUE (!FALSE)
#endif
static int udptlstart = 0;
static int udptlend = 0;
static int udptldebug = 0; /* Are we debugging? */
static struct sockaddr_in udptldebugaddr; /* Debug packets to/from this host */
Matthew Fredrickson
committed
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
#ifdef SO_NO_CHECK
static int nochecksums = 0;
#endif
static int udptlfectype = 0;
static int udptlfecentries = 0;
static int udptlfecspan = 0;
static int udptlmaxdatagram = 0;
#define LOCAL_FAX_MAX_DATAGRAM 400
#define MAX_FEC_ENTRIES 5
#define MAX_FEC_SPAN 5
#define UDPTL_BUF_MASK 15
typedef struct {
int buf_len;
uint8_t buf[LOCAL_FAX_MAX_DATAGRAM];
} udptl_fec_tx_buffer_t;
typedef struct {
int buf_len;
uint8_t buf[LOCAL_FAX_MAX_DATAGRAM];
int fec_len[MAX_FEC_ENTRIES];
uint8_t fec[MAX_FEC_ENTRIES][LOCAL_FAX_MAX_DATAGRAM];
int fec_span;
int fec_entries;
} udptl_fec_rx_buffer_t;
struct ast_udptl {
int fd;
char resp;
struct ast_frame f[16];
unsigned char rawdata[8192 + AST_FRIENDLY_OFFSET];
unsigned int lasteventseqn;
int nat;
int flags;
struct sockaddr_in us;
struct sockaddr_in them;
int *ioid;
uint16_t seqno;
struct sched_context *sched;
struct io_context *io;
void *data;
ast_udptl_callback callback;
int udptl_offered_from_local;
/*! This option indicates the error correction scheme used in transmitted UDPTL
packets. */
int error_correction_scheme;
/*! This option indicates the number of error correction entries transmitted in
UDPTL packets. */
int error_correction_entries;
/*! This option indicates the span of the error correction entries in transmitted
UDPTL packets (FEC only). */
int error_correction_span;
/*! This option indicates the maximum size of a UDPTL packet that can be accepted by
the remote device. */
int far_max_datagram_size;
/*! This option indicates the maximum size of a UDPTL packet that we are prepared to
accept. */
int local_max_datagram_size;
int verbose;
struct sockaddr_in far;
int tx_seq_no;
int rx_seq_no;
int rx_expected_seq_no;
udptl_fec_tx_buffer_t tx[UDPTL_BUF_MASK + 1];
udptl_fec_rx_buffer_t rx[UDPTL_BUF_MASK + 1];
};
static struct ast_udptl_protocol *protos = NULL;
static int udptl_rx_packet(struct ast_udptl *s, uint8_t *buf, int len);
static int udptl_build_packet(struct ast_udptl *s, uint8_t *buf, uint8_t *ifp, int ifp_len);
static inline int udptl_debug_test_addr(struct sockaddr_in *addr)
{
if (udptldebug == 0)
return 0;
if (udptldebugaddr.sin_addr.s_addr) {
if (((ntohs(udptldebugaddr.sin_port) != 0)
&& (udptldebugaddr.sin_port != addr->sin_port))
|| (udptldebugaddr.sin_addr.s_addr != addr->sin_addr.s_addr))
Matthew Fredrickson
committed
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
}
return 1;
}
static int decode_length(uint8_t *buf, int limit, int *len, int *pvalue)
{
if ((buf[*len] & 0x80) == 0) {
if (*len >= limit)
return -1;
*pvalue = buf[*len];
(*len)++;
return 0;
}
if ((buf[*len] & 0x40) == 0) {
if (*len >= limit - 1)
return -1;
*pvalue = (buf[*len] & 0x3F) << 8;
(*len)++;
*pvalue |= buf[*len];
(*len)++;
return 0;
}
if (*len >= limit)
return -1;
*pvalue = (buf[*len] & 0x3F) << 14;
(*len)++;
/* Indicate we have a fragment */
return 1;
}
/*- End of function --------------------------------------------------------*/
static int decode_open_type(uint8_t *buf, int limit, int *len, const uint8_t **p_object, int *p_num_octets)
{
int octet_cnt;
int octet_idx;
int stat;
int i;
const uint8_t **pbuf;
for (octet_idx = 0, *p_num_octets = 0; ; octet_idx += octet_cnt) {
Matthew Fredrickson
committed
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
if ((stat = decode_length(buf, limit, len, &octet_cnt)) < 0)
return -1;
if (octet_cnt > 0) {
*p_num_octets += octet_cnt;
pbuf = &p_object[octet_idx];
i = 0;
/* Make sure the buffer contains at least the number of bits requested */
if ((*len + octet_cnt) > limit)
return -1;
*pbuf = &buf[*len];
*len += octet_cnt;
}
if (stat == 0)
break;
}
return 0;
}
/*- End of function --------------------------------------------------------*/
static int encode_length(uint8_t *buf, int *len, int value)
{
int multiplier;
if (value < 0x80) {
/* 1 octet */
buf[*len] = value;
(*len)++;
return value;
}
if (value < 0x4000) {
/* 2 octets */
/* Set the first bit of the first octet */
buf[*len] = ((0x8000 | value) >> 8) & 0xFF;
(*len)++;
buf[*len] = value & 0xFF;
(*len)++;
return value;
}
/* Fragmentation */
multiplier = (value < 0x10000) ? (value >> 14) : 4;
Matthew Fredrickson
committed
/* Set the first 2 bits of the octet */
buf[*len] = 0xC0 | multiplier;
(*len)++;
return multiplier << 14;
}
/*- End of function --------------------------------------------------------*/
static int encode_open_type(uint8_t *buf, int *len, const uint8_t *data, int num_octets)
{
int enclen;
int octet_idx;
uint8_t zero_byte;
/* If open type is of zero length, add a single zero byte (10.1) */
if (num_octets == 0) {
zero_byte = 0;
data = &zero_byte;
num_octets = 1;
}
/* Encode the open type */
for (octet_idx = 0; ; num_octets -= enclen, octet_idx += enclen) {
Matthew Fredrickson
committed
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
if ((enclen = encode_length(buf, len, num_octets)) < 0)
return -1;
if (enclen > 0) {
memcpy(&buf[*len], &data[octet_idx], enclen);
*len += enclen;
}
if (enclen >= num_octets)
break;
}
return 0;
}
/*- End of function --------------------------------------------------------*/
static int udptl_rx_packet(struct ast_udptl *s, uint8_t *buf, int len)
{
int stat;
int stat2;
int i;
int j;
int k;
int l;
int m;
int x;
int limit;
int which;
int ptr;
int count;
int total_count;
int seq_no;
const uint8_t *ifp;
const uint8_t *data;
int ifp_len;
int repaired[16];
const uint8_t *bufs[16];
int lengths[16];
int span;
int entries;
int ifp_no;
ptr = 0;
ifp_no = 0;
Matthew Fredrickson
committed
/* Decode seq_number */
if (ptr + 2 > len)
return -1;
seq_no = (buf[0] << 8) | buf[1];
ptr += 2;
/* Break out the primary packet */
if ((stat = decode_open_type(buf, len, &ptr, &ifp, &ifp_len)) != 0)
return -1;
/* Decode error_recovery */
if (ptr + 1 > len)
return -1;
if ((buf[ptr++] & 0x80) == 0) {
/* Secondary packet mode for error recovery */
if (seq_no > s->rx_seq_no) {
/* We received a later packet than we expected, so we need to check if we can fill in the gap from the
secondary packets. */
total_count = 0;
do {
if ((stat2 = decode_length(buf, len, &ptr, &count)) < 0)
return -1;
Matthew Fredrickson
committed
if ((stat = decode_open_type(buf, len, &ptr, &bufs[total_count + i], &lengths[total_count + i])) != 0)
return -1;
}
total_count += count;
}
while (stat2 > 0);
/* Step through in reverse order, so we go oldest to newest */
Matthew Fredrickson
committed
if (seq_no - i >= s->rx_seq_no) {
/* This one wasn't seen before */
/* Decode the secondary IFP packet */
//fprintf(stderr, "Secondary %d, len %d\n", seq_no - i, lengths[i - 1]);
s->f[ifp_no].frametype = AST_FRAME_MODEM;
s->f[ifp_no].subclass = AST_MODEM_T38;
s->f[ifp_no].mallocd = 0;
//s->f[ifp_no].???seq_no = seq_no - i;
s->f[ifp_no].datalen = lengths[i - 1];
s->f[ifp_no].data = (uint8_t *) bufs[i - 1];
s->f[ifp_no].offset = 0;
s->f[ifp_no].src = "UDPTL";
if (ifp_no > 0)
AST_LIST_NEXT(&s->f[ifp_no - 1], frame_list) = &s->f[ifp_no];
AST_LIST_NEXT(&s->f[ifp_no], frame_list) = NULL;
Matthew Fredrickson
committed
ifp_no++;
}
}
}
/* If packets are received out of sequence, we may have already processed this packet from the error
recovery information in a packet already received. */
if (seq_no >= s->rx_seq_no) {
/* Decode the primary IFP packet */
s->f[ifp_no].frametype = AST_FRAME_MODEM;
s->f[ifp_no].subclass = AST_MODEM_T38;
s->f[ifp_no].mallocd = 0;
//s->f[ifp_no].???seq_no = seq_no;
s->f[ifp_no].datalen = ifp_len;
s->f[ifp_no].data = (uint8_t *) ifp;
s->f[ifp_no].offset = 0;
s->f[ifp_no].src = "UDPTL";
if (ifp_no > 0)
AST_LIST_NEXT(&s->f[ifp_no - 1], frame_list) = &s->f[ifp_no];
AST_LIST_NEXT(&s->f[ifp_no], frame_list) = NULL;
Matthew Fredrickson
committed
}
}
else
{
/* FEC mode for error recovery */
/* Our buffers cannot tolerate overlength IFP packets in FEC mode */
if (ifp_len > LOCAL_FAX_MAX_DATAGRAM)
return -1;
/* Update any missed slots in the buffer */
for ( ; seq_no > s->rx_seq_no; s->rx_seq_no++) {
Matthew Fredrickson
committed
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
x = s->rx_seq_no & UDPTL_BUF_MASK;
s->rx[x].buf_len = -1;
s->rx[x].fec_len[0] = 0;
s->rx[x].fec_span = 0;
s->rx[x].fec_entries = 0;
}
x = seq_no & UDPTL_BUF_MASK;
memset(repaired, 0, sizeof(repaired));
/* Save the new IFP packet */
memcpy(s->rx[x].buf, ifp, ifp_len);
s->rx[x].buf_len = ifp_len;
repaired[x] = TRUE;
/* Decode the FEC packets */
/* The span is defined as an unconstrained integer, but will never be more
than a small value. */
if (ptr + 2 > len)
return -1;
if (buf[ptr++] != 1)
return -1;
span = buf[ptr++];
s->rx[x].fec_span = span;
/* The number of entries is defined as a length, but will only ever be a small
value. Treat it as such. */
if (ptr + 1 > len)
return -1;
entries = buf[ptr++];
s->rx[x].fec_entries = entries;
/* Decode the elements */
Matthew Fredrickson
committed
if ((stat = decode_open_type(buf, len, &ptr, &data, &s->rx[x].fec_len[i])) != 0)
return -1;
if (s->rx[x].fec_len[i] > LOCAL_FAX_MAX_DATAGRAM)
return -1;
/* Save the new FEC data */
memcpy(s->rx[x].fec[i], data, s->rx[x].fec_len[i]);
#if 0
fprintf(stderr, "FEC: ");
Matthew Fredrickson
committed
fprintf(stderr, "%02X ", data[j]);
fprintf(stderr, "\n");
#endif
Matthew Fredrickson
committed
/* See if we can reconstruct anything which is missing */
/* TODO: this does not comprehensively hunt back and repair everything that is possible */
for (l = x; l != ((x - (16 - span*entries)) & UDPTL_BUF_MASK); l = (l - 1) & UDPTL_BUF_MASK) {
Matthew Fredrickson
committed
if (s->rx[l].fec_len[0] <= 0)
continue;
Matthew Fredrickson
committed
limit = (l + m) & UDPTL_BUF_MASK;
for (which = -1, k = (limit - s->rx[l].fec_span * s->rx[l].fec_entries) & UDPTL_BUF_MASK; k != limit; k = (k + s->rx[l].fec_entries) & UDPTL_BUF_MASK) {
Matthew Fredrickson
committed
if (s->rx[k].buf_len <= 0)
Matthew Fredrickson
committed
}
if (which >= 0) {
/* Repairable */
Matthew Fredrickson
committed
s->rx[which].buf[j] = s->rx[l].fec[m][j];
for (k = (limit - s->rx[l].fec_span * s->rx[l].fec_entries) & UDPTL_BUF_MASK; k != limit; k = (k + s->rx[l].fec_entries) & UDPTL_BUF_MASK)
s->rx[which].buf[j] ^= (s->rx[k].buf_len > j) ? s->rx[k].buf[j] : 0;
Matthew Fredrickson
committed
}
s->rx[which].buf_len = s->rx[l].fec_len[m];
repaired[which] = TRUE;
}
}
}
/* Now play any new packets forwards in time */
for (l = (x + 1) & UDPTL_BUF_MASK, j = seq_no - UDPTL_BUF_MASK; l != x; l = (l + 1) & UDPTL_BUF_MASK, j++) {
Matthew Fredrickson
committed
if (repaired[l]) {
//fprintf(stderr, "Fixed packet %d, len %d\n", j, l);
s->f[ifp_no].frametype = AST_FRAME_MODEM;
s->f[ifp_no].subclass = AST_MODEM_T38;
s->f[ifp_no].mallocd = 0;
//s->f[ifp_no].???seq_no = j;
s->f[ifp_no].datalen = s->rx[l].buf_len;
s->f[ifp_no].data = s->rx[l].buf;
s->f[ifp_no].offset = 0;
s->f[ifp_no].src = "UDPTL";
if (ifp_no > 0)
AST_LIST_NEXT(&s->f[ifp_no - 1], frame_list) = &s->f[ifp_no];
AST_LIST_NEXT(&s->f[ifp_no], frame_list) = NULL;
Matthew Fredrickson
committed
ifp_no++;
}
}
/* Decode the primary IFP packet */
s->f[ifp_no].frametype = AST_FRAME_MODEM;
s->f[ifp_no].subclass = AST_MODEM_T38;
s->f[ifp_no].mallocd = 0;
//s->f[ifp_no].???seq_no = j;
s->f[ifp_no].datalen = ifp_len;
s->f[ifp_no].data = (uint8_t *) ifp;
s->f[ifp_no].offset = 0;
s->f[ifp_no].src = "UDPTL";
if (ifp_no > 0)
AST_LIST_NEXT(&s->f[ifp_no - 1], frame_list) = &s->f[ifp_no];
AST_LIST_NEXT(&s->f[ifp_no], frame_list) = NULL;
Matthew Fredrickson
committed
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
}
s->rx_seq_no = seq_no + 1;
return 0;
}
/*- End of function --------------------------------------------------------*/
static int udptl_build_packet(struct ast_udptl *s, uint8_t *buf, uint8_t *ifp, int ifp_len)
{
uint8_t fec[LOCAL_FAX_MAX_DATAGRAM];
int i;
int j;
int seq;
int entry;
int entries;
int span;
int m;
int len;
int limit;
int high_tide;
seq = s->tx_seq_no & 0xFFFF;
/* Map the sequence number to an entry in the circular buffer */
entry = seq & UDPTL_BUF_MASK;
/* We save the message in a circular buffer, for generating FEC or
redundancy sets later on. */
s->tx[entry].buf_len = ifp_len;
memcpy(s->tx[entry].buf, ifp, ifp_len);
/* Build the UDPTLPacket */
len = 0;
/* Encode the sequence number */
buf[len++] = (seq >> 8) & 0xFF;
buf[len++] = seq & 0xFF;
/* Encode the primary IFP packet */
if (encode_open_type(buf, &len, ifp, ifp_len) < 0)
return -1;
/* Encode the appropriate type of error recovery information */
switch (s->error_correction_scheme)
{
case UDPTL_ERROR_CORRECTION_NONE:
/* Encode the error recovery type */
buf[len++] = 0x00;
/* The number of entries will always be zero, so it is pointless allowing
for the fragmented case here. */
if (encode_length(buf, &len, 0) < 0)
return -1;
break;
case UDPTL_ERROR_CORRECTION_REDUNDANCY:
/* Encode the error recovery type */
buf[len++] = 0x00;
if (s->tx_seq_no > s->error_correction_entries)
entries = s->error_correction_entries;
else
entries = s->tx_seq_no;
/* The number of entries will always be small, so it is pointless allowing
for the fragmented case here. */
if (encode_length(buf, &len, entries) < 0)
return -1;
/* Encode the elements */
Matthew Fredrickson
committed
j = (entry - i - 1) & UDPTL_BUF_MASK;
if (encode_open_type(buf, &len, s->tx[j].buf, s->tx[j].buf_len) < 0)
return -1;
}
break;
case UDPTL_ERROR_CORRECTION_FEC:
span = s->error_correction_span;
entries = s->error_correction_entries;
if (seq < s->error_correction_span*s->error_correction_entries) {
/* In the initial stages, wind up the FEC smoothly */
entries = seq/s->error_correction_span;
if (seq < s->error_correction_span)
span = 0;
}
/* Encode the error recovery type */
buf[len++] = 0x80;
/* Span is defined as an inconstrained integer, which it dumb. It will only
ever be a small value. Treat it as such. */
buf[len++] = 1;
buf[len++] = span;
/* The number of entries is defined as a length, but will only ever be a small
value. Treat it as such. */
buf[len++] = entries;
Matthew Fredrickson
committed
/* Make an XOR'ed entry the maximum length */
limit = (entry + m) & UDPTL_BUF_MASK;
high_tide = 0;
for (i = (limit - span*entries) & UDPTL_BUF_MASK; i != limit; i = (i + entries) & UDPTL_BUF_MASK) {
Matthew Fredrickson
committed
if (high_tide < s->tx[i].buf_len) {
Matthew Fredrickson
committed
fec[j] ^= s->tx[i].buf[j];
Matthew Fredrickson
committed
fec[j] = s->tx[i].buf[j];
high_tide = s->tx[i].buf_len;
} else {
Matthew Fredrickson
committed
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
fec[j] ^= s->tx[i].buf[j];
}
}
if (encode_open_type(buf, &len, fec, high_tide) < 0)
return -1;
}
break;
}
if (s->verbose)
fprintf(stderr, "\n");
s->tx_seq_no++;
return len;
}
int ast_udptl_fd(struct ast_udptl *udptl)
{
return udptl->fd;
}
void ast_udptl_set_data(struct ast_udptl *udptl, void *data)
{
udptl->data = data;
}
void ast_udptl_set_callback(struct ast_udptl *udptl, ast_udptl_callback callback)
{
udptl->callback = callback;
}
void ast_udptl_setnat(struct ast_udptl *udptl, int nat)
{
udptl->nat = nat;
}
static int udptlread(int *id, int fd, short events, void *cbdata)
{
struct ast_udptl *udptl = cbdata;
struct ast_frame *f;
if ((f = ast_udptl_read(udptl))) {
if (udptl->callback)
udptl->callback(udptl, f, udptl->data);
}
return 1;
}
struct ast_frame *ast_udptl_read(struct ast_udptl *udptl)
{
int res;
struct sockaddr_in sin;
socklen_t len;
uint16_t seqno = 0;
uint16_t *udptlheader;
len = sizeof(sin);
/* Cache where the header will go */
res = recvfrom(udptl->fd,
udptl->rawdata + AST_FRIENDLY_OFFSET,
sizeof(udptl->rawdata) - AST_FRIENDLY_OFFSET,
0,
(struct sockaddr *) &sin,
&len);
udptlheader = (uint16_t *)(udptl->rawdata + AST_FRIENDLY_OFFSET);
if (res < 0) {
if (errno != EAGAIN)
ast_log(LOG_WARNING, "UDPTL read error: %s\n", strerror(errno));
if (errno == EBADF)
CRASH;
return &ast_null_frame;
Matthew Fredrickson
committed
}
/* Ignore if the other side hasn't been given an address yet. */
if (!udptl->them.sin_addr.s_addr || !udptl->them.sin_port)
return &ast_null_frame;
Matthew Fredrickson
committed
if (udptl->nat) {
/* Send to whoever sent to us */
if ((udptl->them.sin_addr.s_addr != sin.sin_addr.s_addr) ||
(udptl->them.sin_port != sin.sin_port)) {
memcpy(&udptl->them, &sin, sizeof(udptl->them));
if (option_debug)
ast_log(LOG_DEBUG, "UDPTL NAT: Using address %s:%d\n", ast_inet_ntoa(udptl->them.sin_addr), ntohs(udptl->them.sin_port));
Matthew Fredrickson
committed
}
}
if (udptl_debug_test_addr(&sin)) {
if (option_verbose)
ast_verbose("Got UDPTL packet from %s:%d (type %d, seq %d, len %d)\n",
ast_inet_ntoa(sin.sin_addr), ntohs(sin.sin_port), 0, seqno, res);
Matthew Fredrickson
committed
}
#if 0
Russell Bryant
committed
printf("Got UDPTL packet from %s:%d (seq %d, len = %d)\n", ast_inet_ntoa(sin.sin_addr), ntohs(sin.sin_port), seqno, res);
Matthew Fredrickson
committed
#endif
udptl_rx_packet(udptl, udptl->rawdata + AST_FRIENDLY_OFFSET, res);
return &udptl->f[0];
}
void ast_udptl_offered_from_local(struct ast_udptl* udptl, int local)
{
if (udptl)
udptl->udptl_offered_from_local = local;
else
ast_log(LOG_WARNING, "udptl structure is null\n");
}
int ast_udptl_get_error_correction_scheme(struct ast_udptl* udptl)
{
if (udptl)
return udptl->error_correction_scheme;
else {
ast_log(LOG_WARNING, "udptl structure is null\n");
return -1;
}
Matthew Fredrickson
committed
}
void ast_udptl_set_error_correction_scheme(struct ast_udptl* udptl, int ec)
{
if (udptl) {
switch (ec) {
case UDPTL_ERROR_CORRECTION_FEC:
udptl->error_correction_scheme = UDPTL_ERROR_CORRECTION_FEC;
break;
case UDPTL_ERROR_CORRECTION_REDUNDANCY:
udptl->error_correction_scheme = UDPTL_ERROR_CORRECTION_REDUNDANCY;
break;
case UDPTL_ERROR_CORRECTION_NONE:
udptl->error_correction_scheme = UDPTL_ERROR_CORRECTION_NONE;
break;
default:
ast_log(LOG_WARNING, "error correction parameter invalid\n");
};
} else
ast_log(LOG_WARNING, "udptl structure is null\n");
Matthew Fredrickson
committed
}
int ast_udptl_get_local_max_datagram(struct ast_udptl* udptl)
{
if (udptl)
return udptl->local_max_datagram_size;
else {
ast_log(LOG_WARNING, "udptl structure is null\n");
return -1;
}
Matthew Fredrickson
committed
}
int ast_udptl_get_far_max_datagram(struct ast_udptl* udptl)
{
if (udptl)
return udptl->far_max_datagram_size;
else {
ast_log(LOG_WARNING, "udptl structure is null\n");
return -1;
}
Matthew Fredrickson
committed
}
void ast_udptl_set_local_max_datagram(struct ast_udptl* udptl, int max_datagram)
{
if (udptl)
udptl->local_max_datagram_size = max_datagram;
else
ast_log(LOG_WARNING, "udptl structure is null\n");
Matthew Fredrickson
committed
}
void ast_udptl_set_far_max_datagram(struct ast_udptl* udptl, int max_datagram)
{
if (udptl)
udptl->far_max_datagram_size = max_datagram;
else
ast_log(LOG_WARNING, "udptl structure is null\n");
Matthew Fredrickson
committed
}
struct ast_udptl *ast_udptl_new_with_bindaddr(struct sched_context *sched, struct io_context *io, int callbackmode, struct in_addr addr)
{
struct ast_udptl *udptl;
int x;
int startplace;
int i;
long int flags;
if (!(udptl = ast_calloc(1, sizeof(*udptl))))
Matthew Fredrickson
committed
return NULL;
if (udptlfectype == 2)
udptl->error_correction_scheme = UDPTL_ERROR_CORRECTION_FEC;
else if (udptlfectype == 1)
udptl->error_correction_scheme = UDPTL_ERROR_CORRECTION_REDUNDANCY;
else
udptl->error_correction_scheme = UDPTL_ERROR_CORRECTION_NONE;
udptl->error_correction_span = udptlfecspan;
udptl->error_correction_entries = udptlfecentries;
udptl->far_max_datagram_size = udptlmaxdatagram;
udptl->local_max_datagram_size = udptlmaxdatagram;
memset(&udptl->rx, 0, sizeof(udptl->rx));
memset(&udptl->tx, 0, sizeof(udptl->tx));
Matthew Fredrickson
committed
udptl->rx[i].buf_len = -1;
udptl->tx[i].buf_len = -1;
}
Tilghman Lesher
committed
udptl->seqno = ast_random() & 0xffff;
Matthew Fredrickson
committed
udptl->them.sin_family = AF_INET;
udptl->us.sin_family = AF_INET;
if ((udptl->fd = socket(AF_INET, SOCK_DGRAM, 0)) < 0) {
free(udptl);
ast_log(LOG_WARNING, "Unable to allocate socket: %s\n", strerror(errno));
return NULL;
}
flags = fcntl(udptl->fd, F_GETFL);
fcntl(udptl->fd, F_SETFL, flags | O_NONBLOCK);
#ifdef SO_NO_CHECK
if (nochecksums)
setsockopt(udptl->fd, SOL_SOCKET, SO_NO_CHECK, &nochecksums, sizeof(nochecksums));
#endif
/* Find us a place */
Tilghman Lesher
committed
x = (ast_random() % (udptlend - udptlstart)) + udptlstart;
Matthew Fredrickson
committed
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
startplace = x;
for (;;) {
udptl->us.sin_port = htons(x);
udptl->us.sin_addr = addr;
if (bind(udptl->fd, (struct sockaddr *) &udptl->us, sizeof(udptl->us)) == 0)
break;
if (errno != EADDRINUSE) {
ast_log(LOG_WARNING, "Unexpected bind error: %s\n", strerror(errno));
close(udptl->fd);
free(udptl);
return NULL;
}
if (++x > udptlend)
x = udptlstart;
if (x == startplace) {
ast_log(LOG_WARNING, "No UDPTL ports remaining\n");
close(udptl->fd);
free(udptl);
return NULL;
}
}
if (io && sched && callbackmode) {
/* Operate this one in a callback mode */
udptl->sched = sched;
udptl->io = io;
udptl->ioid = ast_io_add(udptl->io, udptl->fd, udptlread, AST_IO_IN, udptl);
}
return udptl;
}
struct ast_udptl *ast_udptl_new(struct sched_context *sched, struct io_context *io, int callbackmode)
{
struct in_addr ia;
memset(&ia, 0, sizeof(ia));
return ast_udptl_new_with_bindaddr(sched, io, callbackmode, ia);
}
int ast_udptl_settos(struct ast_udptl *udptl, int tos)
{
int res;
if ((res = setsockopt(udptl->fd, IPPROTO_IP, IP_TOS, &tos, sizeof(tos))))
ast_log(LOG_WARNING, "UDPTL unable to set TOS to %d\n", tos);
return res;
}
void ast_udptl_set_peer(struct ast_udptl *udptl, struct sockaddr_in *them)
{
udptl->them.sin_port = them->sin_port;
udptl->them.sin_addr = them->sin_addr;
}
void ast_udptl_get_peer(struct ast_udptl *udptl, struct sockaddr_in *them)
{
them->sin_family = AF_INET;
them->sin_port = udptl->them.sin_port;
them->sin_addr = udptl->them.sin_addr;
}
void ast_udptl_get_us(struct ast_udptl *udptl, struct sockaddr_in *us)
{
memcpy(us, &udptl->us, sizeof(udptl->us));
}
void ast_udptl_stop(struct ast_udptl *udptl)
{
memset(&udptl->them.sin_addr, 0, sizeof(udptl->them.sin_addr));
memset(&udptl->them.sin_port, 0, sizeof(udptl->them.sin_port));
}
void ast_udptl_destroy(struct ast_udptl *udptl)
{
if (udptl->ioid)
ast_io_remove(udptl->io, udptl->ioid);
if (udptl->fd > -1)
close(udptl->fd);
free(udptl);
}
int ast_udptl_write(struct ast_udptl *s, struct ast_frame *f)
{
int len;
int res;
uint8_t buf[LOCAL_FAX_MAX_DATAGRAM];
/* If we have no peer, return immediately */
if (s->them.sin_addr.s_addr == INADDR_ANY)
return 0;
/* If there is no data length, return immediately */
if (f->datalen == 0)
return 0;
if (f->frametype != AST_FRAME_MODEM) {
ast_log(LOG_WARNING, "UDPTL can only send T.38 data\n");
return -1;
}
/* Cook up the UDPTL packet, with the relevant EC info. */
len = udptl_build_packet(s, buf, f->data, f->datalen);
if (len > 0 && s->them.sin_port && s->them.sin_addr.s_addr) {
Matthew Fredrickson
committed
if ((res = sendto(s->fd, buf, len, 0, (struct sockaddr *) &s->them, sizeof(s->them))) < 0)
Russell Bryant
committed
ast_log(LOG_NOTICE, "UDPTL Transmission error to %s:%d: %s\n", ast_inet_ntoa(s->them.sin_addr), ntohs(s->them.sin_port), strerror(errno));
Matthew Fredrickson
committed
#if 0
Russell Bryant
committed
printf("Sent %d bytes of UDPTL data to %s:%d\n", res, ast_inet_ntoa(udptl->them.sin_addr), ntohs(udptl->them.sin_port));
Matthew Fredrickson
committed
#endif
if (udptl_debug_test_addr(&s->them))
ast_verbose("Sent UDPTL packet to %s:%d (type %d, seq %d, len %d)\n",
Russell Bryant
committed
ast_inet_ntoa(s->them.sin_addr),
Matthew Fredrickson
committed
ntohs(s->them.sin_port), 0, s->seqno, len);
}
return 0;
}
void ast_udptl_proto_unregister(struct ast_udptl_protocol *proto)
{
struct ast_udptl_protocol *cur;
struct ast_udptl_protocol *prev;
cur = protos;
prev = NULL;
Matthew Fredrickson
committed
if (cur == proto) {
if (prev)
prev->next = proto->next;
else
protos = proto->next;
return;
}
prev = cur;
cur = cur->next;
}
}
int ast_udptl_proto_register(struct ast_udptl_protocol *proto)
{
struct ast_udptl_protocol *cur;
cur = protos;
Matthew Fredrickson
committed
if (cur->type == proto->type) {
ast_log(LOG_WARNING, "Tried to register same protocol '%s' twice\n", cur->type);
return -1;
}
cur = cur->next;
}
proto->next = protos;
protos = proto;
return 0;
}
static struct ast_udptl_protocol *get_proto(struct ast_channel *chan)
{
struct ast_udptl_protocol *cur;
cur = protos;
while (cur) {
if (cur->type == chan->tech->type)
Matthew Fredrickson
committed
return cur;
cur = cur->next;
}
return NULL;
}
int ast_udptl_bridge(struct ast_channel *c0, struct ast_channel *c1, int flags, struct ast_frame **fo, struct ast_channel **rc)
{
struct ast_frame *f;
struct ast_channel *who;
struct ast_channel *cs[3];
struct ast_udptl *p0;
struct ast_udptl *p1;
struct ast_udptl_protocol *pr0;
struct ast_udptl_protocol *pr1;
struct sockaddr_in ac0;
struct sockaddr_in ac1;
struct sockaddr_in t0;
struct sockaddr_in t1;
void *pvt0;
void *pvt1;
int to;
ast_channel_lock(c0);
while (ast_channel_trylock(c1)) {
ast_channel_unlock(c0);
Matthew Fredrickson
committed
usleep(1);
ast_channel_lock(c0);
Matthew Fredrickson
committed
}
pr0 = get_proto(c0);
pr1 = get_proto(c1);
if (!pr0) {
ast_log(LOG_WARNING, "Can't find native functions for channel '%s'\n", c0->name);
ast_channel_unlock(c0);
ast_channel_unlock(c1);