Newer
Older
/*
* Asterisk -- A telephony toolkit for Linux.
*
* Convenience Signal Processing routines
*
* Copyright (C) 2002, Digium
*
* Mark Spencer <markster@linux-support.net>
*
* This program is free software, distributed under the terms of
* the GNU General Public License.
*
* Goertzel routines are borrowed from Steve Underwood's tremendous work on the
* DTMF detector.
*
*/
/* Some routines from tone_detect.c by Steven Underwood as published under the zapata library */
/*
tone_detect.c - General telephony tone detection, and specific
detection of DTMF.
Copyright (C) 2001 Steve Underwood <steveu@coppice.org>
Despite my general liking of the GPL, I place this code in the
public domain for the benefit of all mankind - even the slimy
ones who might try to proprietize my work and use it to my
detriment.
*/
#include <asterisk/frame.h>
#include <asterisk/channel.h>
#include <asterisk/channel_pvt.h>
#include <asterisk/logger.h>
#include <asterisk/dsp.h>
#include <asterisk/ulaw.h>
#include <asterisk/alaw.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include <math.h>
#include <errno.h>
#include <stdio.h>
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
/* Number of goertzels for progress detect */
#define GSAMP_SIZE_NA 183 /* North America - 350, 440, 480, 620, 950, 1400, 1800 Hz */
#define GSAMP_SIZE_CR 188 /* Costa Rica - Only care about 425 Hz */
#define PROG_MODE_NA 0
#define PROG_MODE_CR 1
/* For US modes */
#define HZ_350 0
#define HZ_440 1
#define HZ_480 2
#define HZ_620 3
#define HZ_950 4
#define HZ_1400 5
#define HZ_1800 6
/* For CR modes */
#define HZ_425 0
static struct progalias {
char *name;
int mode;
} aliases[] = {
{ "us", PROG_MODE_NA },
{ "ca", PROG_MODE_NA },
{ "cr", PROG_MODE_CR },
};
static struct progress {
int size;
int freqs[7];
} modes[] = {
{ GSAMP_SIZE_NA, { 350, 440, 480, 620, 950, 1400, 1800 } }, /* North America */
{ GSAMP_SIZE_CR, { 425 } },
};
Martin Pycko
committed
#define BUSY_PERCENT 10 /* The percentage diffrence between the two last silence periods */
#define BUSY_THRESHOLD 100 /* Max number of ms difference between max and min times in busy */
#define BUSY_MIN 75 /* Busy must be at least 80 ms in half-cadence */
#define BUSY_MAX 1100 /* Busy can't be longer than 1100 ms in half-cadence */
Martin Pycko
committed
/* Remember last 15 units */
#define DSP_HISTORY 15
/* Define if you want the fax detector -- NOT RECOMMENDED IN -STABLE */
#define FAX_DETECT
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
#define TONE_THRESH 10.0 /* How much louder the tone should be than channel energy */
#define TONE_MIN_THRESH 1e8 /* How much tone there should be at least to attempt */
#define COUNT_THRESH 3 /* Need at least 50ms of stuff to count it */
#define TONE_STATE_SILENCE 0
#define TONE_STATE_RINGING 1
#define TONE_STATE_DIALTONE 2
#define TONE_STATE_TALKING 3
#define TONE_STATE_BUSY 4
#define TONE_STATE_SPECIAL1 5
#define TONE_STATE_SPECIAL2 6
#define TONE_STATE_SPECIAL3 7
#define MAX_DTMF_DIGITS 128
/* Basic DTMF specs:
*
* Minimum tone on = 40ms
* Minimum tone off = 50ms
* Maximum digit rate = 10 per second
* Normal twist <= 8dB accepted
* Reverse twist <= 4dB accepted
* S/N >= 15dB will detect OK
* Attenuation <= 26dB will detect OK
* Frequency tolerance +- 1.5% will detect, +-3.5% will reject
*/
#define DTMF_THRESHOLD 8.0e7
#define FAX_THRESHOLD 8.0e7
#define FAX_2ND_HARMONIC 2.0 /* 4dB */
#define DTMF_NORMAL_TWIST 6.3 /* 8dB */
#define DTMF_REVERSE_TWIST ((digitmode & DSP_DIGITMODE_RELAXDTMF) ? 4.0 : 2.5) /* 4dB normal */
#define DTMF_RELATIVE_PEAK_ROW 6.3 /* 8dB */
#define DTMF_RELATIVE_PEAK_COL 6.3 /* 8dB */
#define DTMF_2ND_HARMONIC_ROW ((digitmode & DSP_DIGITMODE_RELAXDTMF) ? 1.7 : 2.5) /* 4dB normal */
#define DTMF_2ND_HARMONIC_COL 63.1 /* 18dB */
#ifndef OLD_DSP_ROUTINES
#define DTMF_TO_TOTAL_ENERGY 42.0
#endif
#ifdef OLD_DSP_ROUTINES
#define MF_THRESHOLD 8.0e7
#define MF_NORMAL_TWIST 5.3 /* 8dB */
#define MF_REVERSE_TWIST 4.0 /* was 2.5 */
#define MF_RELATIVE_PEAK 5.3 /* 8dB */
#define MF_2ND_HARMONIC 1.7 /* was 2.5 */
#else
#define BELL_MF_THRESHOLD 1.6e9
#define BELL_MF_TWIST 4.0 /* 6dB */
#define BELL_MF_RELATIVE_PEAK 12.6 /* 11dB */
#endif
typedef struct {
float v2;
float v3;
float fac;
#ifndef OLD_DSP_ROUTINES
int samples;
#endif
} goertzel_state_t;
typedef struct
{
goertzel_state_t row_out[4];
goertzel_state_t col_out[4];
#ifdef FAX_DETECT
goertzel_state_t fax_tone;
#ifdef OLD_DSP_ROUTINES
goertzel_state_t row_out2nd[4];
goertzel_state_t col_out2nd[4];
#ifdef FAX_DETECT
goertzel_state_t fax_tone2nd;
int hit1;
int hit2;
int hit3;
int hit4;
#else
int hits[3];
#endif
int mhit;
char digits[MAX_DTMF_DIGITS + 1];
int current_digits;
int detected_digits;
int lost_digits;
int digit_hits[16];
#ifdef FAX_DETECT
} dtmf_detect_state_t;
typedef struct
{
goertzel_state_t tone_out[6];
int mhit;
#ifdef OLD_DSP_ROUTINES
int hit1;
int hit2;
int hit3;
int hit4;
goertzel_state_t tone_out2nd[6];
float energy;
#else
int hits[5];
#endif
int current_sample;
char digits[MAX_DTMF_DIGITS + 1];
int current_digits;
int detected_digits;
int lost_digits;
#ifdef FAX_DETECT
} mf_detect_state_t;
static float dtmf_row[] =
{
697.0, 770.0, 852.0, 941.0
};
static float dtmf_col[] =
{
1209.0, 1336.0, 1477.0, 1633.0
};
static float mf_tones[] =
{
700.0, 900.0, 1100.0, 1300.0, 1500.0, 1700.0
};
#ifdef FAX_DETECT
static char dtmf_positions[] = "123A" "456B" "789C" "*0#D";
#ifdef OLD_DSP_ROUTINES
static char mf_hit[6][6] = {
/* 700 + */ { 0, '1', '2', '4', '7', 'C' },
/* 900 + */ { '1', 0, '3', '5', '8', 'A' },
/* 1100 + */ { '2', '3', 0, '6', '9', '*' },
/* 1300 + */ { '4', '5', '6', 0, '0', 'B' },
/* 1500 + */ { '7', '8', '9', '0', 0, '#' },
/* 1700 + */ { 'C', 'A', '*', 'B', '#', 0 },
};
#else
static char bell_mf_positions[] = "1247C-358A--69*---0B----#";
#endif
static inline void goertzel_sample(goertzel_state_t *s, short sample)
{
float v1;
float fsamp = sample;
v1 = s->v2;
s->v2 = s->v3;
s->v3 = s->fac * s->v2 - v1 + fsamp;
}
static inline void goertzel_update(goertzel_state_t *s, short *samps, int count)
{
int i;
for (i=0;i<count;i++)
goertzel_sample(s, samps[i]);
}
static inline float goertzel_result(goertzel_state_t *s)
{
return s->v3 * s->v3 + s->v2 * s->v2 - s->v2 * s->v3 * s->fac;
}
static inline void goertzel_init(goertzel_state_t *s, float freq, int samples)
{
s->v2 = s->v3 = 0.0;
s->fac = 2.0 * cos(2.0 * M_PI * (freq / 8000.0));
#ifndef OLD_DSP_ROUTINES
s->samples = samples;
#endif
}
static inline void goertzel_reset(goertzel_state_t *s)
{
s->v2 = s->v3 = 0.0;
}
struct ast_dsp {
struct ast_frame f;
int threshold;
int totalsilence;
int totalnoise;
int features;
int busymaybe;
int busycount;
int historicnoise[DSP_HISTORY];
int historicsilence[DSP_HISTORY];
goertzel_state_t freqs[7];
int tstate;
int tcount;
int digitmode;
int thinkdigit;
float genergy;
union {
dtmf_detect_state_t dtmf;
mf_detect_state_t mf;
} td;
};
static void ast_dtmf_detect_init (dtmf_detect_state_t *s)
{
int i;
#ifdef OLD_DSP_ROUTINES
s->mhit =
s->hit3 =
s->hit4 =
#else
s->hits[0] = s->hits[1] = s->hits[2] = 0;
#endif
goertzel_init (&s->row_out[i], dtmf_row[i], 102);
goertzel_init (&s->col_out[i], dtmf_col[i], 102);
#ifdef OLD_DSP_ROUTINES
goertzel_init (&s->row_out2nd[i], dtmf_row[i] * 2.0, 102);
goertzel_init (&s->col_out2nd[i], dtmf_col[i] * 2.0, 102);
#endif
#ifdef FAX_DETECT
goertzel_init (&s->fax_tone, fax_freq, 102);
#ifdef OLD_DSP_ROUTINES
goertzel_init (&s->fax_tone2nd, fax_freq * 2.0, 102);
#endif
#endif /* FAX_DETECT */
s->current_sample = 0;
s->detected_digits = 0;
s->current_digits = 0;
memset(&s->digits, 0, sizeof(s->digits));
s->lost_digits = 0;
s->digits[0] = '\0';
}
static void ast_mf_detect_init (mf_detect_state_t *s)
{
int i;
#ifdef OLD_DSP_ROUTINES
#else
s->hits[0] = s->hits[1] = s->hits[2] = s->hits[3] = s->hits[4] = 0;
#endif
goertzel_init (&s->tone_out[i], mf_tones[i], 160);
#ifdef OLD_DSP_ROUTINES
goertzel_init (&s->tone_out2nd[i], mf_tones[i] * 2.0, 160);
#endif
}
s->current_digits = 0;
memset(&s->digits, 0, sizeof(s->digits));
s->current_sample = 0;
s->detected_digits = 0;
s->lost_digits = 0;
s->digits[0] = '\0';
s->mhit = 0;
}
static int dtmf_detect (dtmf_detect_state_t *s,
int16_t amp[],
int samples,
int digitmode, int *writeback)
{
float row_energy[4];
float col_energy[4];
#ifdef FAX_DETECT
#ifdef OLD_DSP_ROUTINES
#endif
#endif /* FAX_DETECT */
float famp;
float v1;
int i;
int j;
int sample;
int best_row;
int best_col;
int hit;
int limit;
hit = 0;
for (sample = 0; sample < samples; sample = limit)
{
/* 102 is optimised to meet the DTMF specs. */
if ((samples - sample) >= (102 - s->current_sample))
limit = sample + (102 - s->current_sample);
else
limit = samples;
#if defined(USE_3DNOW)
_dtmf_goertzel_update (s->row_out, amp + sample, limit - sample);
_dtmf_goertzel_update (s->col_out, amp + sample, limit - sample);
#ifdef OLD_DSP_ROUTINES
_dtmf_goertzel_update (s->row_out2nd, amp + sample, limit2 - sample);
_dtmf_goertzel_update (s->col_out2nd, amp + sample, limit2 - sample);
#endif
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
/* XXX Need to fax detect for 3dnow too XXX */
#warning "Fax Support Broken"
#else
/* The following unrolled loop takes only 35% (rough estimate) of the
time of a rolled loop on the machine on which it was developed */
for (j = sample; j < limit; j++)
{
famp = amp[j];
s->energy += famp*famp;
/* With GCC 2.95, the following unrolled code seems to take about 35%
(rough estimate) as long as a neat little 0-3 loop */
v1 = s->row_out[0].v2;
s->row_out[0].v2 = s->row_out[0].v3;
s->row_out[0].v3 = s->row_out[0].fac*s->row_out[0].v2 - v1 + famp;
v1 = s->col_out[0].v2;
s->col_out[0].v2 = s->col_out[0].v3;
s->col_out[0].v3 = s->col_out[0].fac*s->col_out[0].v2 - v1 + famp;
v1 = s->row_out[1].v2;
s->row_out[1].v2 = s->row_out[1].v3;
s->row_out[1].v3 = s->row_out[1].fac*s->row_out[1].v2 - v1 + famp;
v1 = s->col_out[1].v2;
s->col_out[1].v2 = s->col_out[1].v3;
s->col_out[1].v3 = s->col_out[1].fac*s->col_out[1].v2 - v1 + famp;
v1 = s->row_out[2].v2;
s->row_out[2].v2 = s->row_out[2].v3;
s->row_out[2].v3 = s->row_out[2].fac*s->row_out[2].v2 - v1 + famp;
v1 = s->col_out[2].v2;
s->col_out[2].v2 = s->col_out[2].v3;
s->col_out[2].v3 = s->col_out[2].fac*s->col_out[2].v2 - v1 + famp;
v1 = s->row_out[3].v2;
s->row_out[3].v2 = s->row_out[3].v3;
s->row_out[3].v3 = s->row_out[3].fac*s->row_out[3].v2 - v1 + famp;
v1 = s->col_out[3].v2;
s->col_out[3].v2 = s->col_out[3].v3;
s->col_out[3].v3 = s->col_out[3].fac*s->col_out[3].v2 - v1 + famp;
#ifdef FAX_DETECT
/* Update fax tone */
v1 = s->fax_tone.v2;
s->fax_tone.v2 = s->fax_tone.v3;
s->fax_tone.v3 = s->fax_tone.fac*s->fax_tone.v2 - v1 + famp;
#endif /* FAX_DETECT */
#ifdef OLD_DSP_ROUTINES
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
v1 = s->col_out2nd[0].v2;
s->col_out2nd[0].v2 = s->col_out2nd[0].v3;
s->col_out2nd[0].v3 = s->col_out2nd[0].fac*s->col_out2nd[0].v2 - v1 + famp;
v1 = s->row_out2nd[0].v2;
s->row_out2nd[0].v2 = s->row_out2nd[0].v3;
s->row_out2nd[0].v3 = s->row_out2nd[0].fac*s->row_out2nd[0].v2 - v1 + famp;
v1 = s->col_out2nd[1].v2;
s->col_out2nd[1].v2 = s->col_out2nd[1].v3;
s->col_out2nd[1].v3 = s->col_out2nd[1].fac*s->col_out2nd[1].v2 - v1 + famp;
v1 = s->row_out2nd[1].v2;
s->row_out2nd[1].v2 = s->row_out2nd[1].v3;
s->row_out2nd[1].v3 = s->row_out2nd[1].fac*s->row_out2nd[1].v2 - v1 + famp;
v1 = s->col_out2nd[2].v2;
s->col_out2nd[2].v2 = s->col_out2nd[2].v3;
s->col_out2nd[2].v3 = s->col_out2nd[2].fac*s->col_out2nd[2].v2 - v1 + famp;
v1 = s->row_out2nd[2].v2;
s->row_out2nd[2].v2 = s->row_out2nd[2].v3;
s->row_out2nd[2].v3 = s->row_out2nd[2].fac*s->row_out2nd[2].v2 - v1 + famp;
v1 = s->col_out2nd[3].v2;
s->col_out2nd[3].v2 = s->col_out2nd[3].v3;
s->col_out2nd[3].v3 = s->col_out2nd[3].fac*s->col_out2nd[3].v2 - v1 + famp;
v1 = s->row_out2nd[3].v2;
s->row_out2nd[3].v2 = s->row_out2nd[3].v3;
s->row_out2nd[3].v3 = s->row_out2nd[3].fac*s->row_out2nd[3].v2 - v1 + famp;
#ifdef FAX_DETECT
/* Update fax tone */
v1 = s->fax_tone.v2;
s->fax_tone2nd.v2 = s->fax_tone2nd.v3;
s->fax_tone2nd.v3 = s->fax_tone2nd.fac*s->fax_tone2nd.v2 - v1 + famp;
#endif /* FAX_DETECT */
#endif
}
#endif
s->current_sample += (limit - sample);
if (s->current_sample < 102) {
if (hit && !((digitmode & DSP_DIGITMODE_NOQUELCH))) {
/* If we had a hit last time, go ahead and clear this out since likely it
will be another hit */
for (i=sample;i<limit;i++)
amp[i] = 0;
*writeback = 1;
}
continue;
}
#ifdef FAX_DETECT
/* Detect the fax energy, too */
fax_energy = goertzel_result(&s->fax_tone);
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
/* We are at the end of a DTMF detection block */
/* Find the peak row and the peak column */
row_energy[0] = goertzel_result (&s->row_out[0]);
col_energy[0] = goertzel_result (&s->col_out[0]);
for (best_row = best_col = 0, i = 1; i < 4; i++)
{
row_energy[i] = goertzel_result (&s->row_out[i]);
if (row_energy[i] > row_energy[best_row])
best_row = i;
col_energy[i] = goertzel_result (&s->col_out[i]);
if (col_energy[i] > col_energy[best_col])
best_col = i;
}
hit = 0;
/* Basic signal level test and the twist test */
if (row_energy[best_row] >= DTMF_THRESHOLD
&&
col_energy[best_col] >= DTMF_THRESHOLD
&&
col_energy[best_col] < row_energy[best_row]*DTMF_REVERSE_TWIST
&&
col_energy[best_col]*DTMF_NORMAL_TWIST > row_energy[best_row])
{
/* Relative peak test */
for (i = 0; i < 4; i++)
{
if ((i != best_col && col_energy[i]*DTMF_RELATIVE_PEAK_COL > col_energy[best_col])
||
(i != best_row && row_energy[i]*DTMF_RELATIVE_PEAK_ROW > row_energy[best_row]))
{
break;
}
}
#ifdef OLD_DSP_ROUTINES
/* ... and second harmonic test */
if (i >= 4
&&
(row_energy[best_row] + col_energy[best_col]) > 42.0*s->energy
&&
goertzel_result (&s->col_out2nd[best_col])*DTMF_2ND_HARMONIC_COL < col_energy[best_col]
&&
goertzel_result (&s->row_out2nd[best_row])*DTMF_2ND_HARMONIC_ROW < row_energy[best_row])
#else
/* ... and fraction of total energy test */
if (i >= 4
&&
(row_energy[best_row] + col_energy[best_col]) > DTMF_TO_TOTAL_ENERGY*s->energy)
#endif
{
/* Got a hit */
hit = dtmf_positions[(best_row << 2) + best_col];
if (!(digitmode & DSP_DIGITMODE_NOQUELCH)) {
/* Zero out frame data if this is part DTMF */
for (i=sample;i<limit;i++)
amp[i] = 0;
*writeback = 1;
}
/* Look for two successive similar results */
/* The logic in the next test is:
We need two successive identical clean detects, with
something different preceeding it. This can work with
back to back differing digits. More importantly, it
can work with nasty phones that give a very wobbly start
to a digit. */
#ifdef OLD_DSP_ROUTINES
s->mhit = hit;
s->digit_hits[(best_row << 2) + best_col]++;
s->detected_digits++;
if (s->current_digits < MAX_DTMF_DIGITS)
{
s->digits[s->current_digits++] = hit;
s->digits[s->current_digits] = '\0';
}
else
{
s->lost_digits++;
}
}
#else
if (hit == s->hits[2] && hit != s->hits[1] && hit != s->hits[0])
{
s->mhit = hit;
s->digit_hits[(best_row << 2) + best_col]++;
s->detected_digits++;
if (s->current_digits < MAX_DTMF_DIGITS)
{
s->digits[s->current_digits++] = hit;
s->digits[s->current_digits] = '\0';
}
else
{
s->lost_digits++;
}
}
#endif
#ifdef FAX_DETECT
#ifdef OLD_DSP_ROUTINES
if (!hit && (fax_energy >= FAX_THRESHOLD) && (fax_energy > s->energy * 21.0)) {
fax_energy_2nd = goertzel_result(&s->fax_tone2nd);
fax_energy_2nd = goertzel_result(&s->fax_tone2nd);
if (fax_energy_2nd * FAX_2ND_HARMONIC < fax_energy) {
#if 0
printf("Fax energy/Second Harmonic: %f/%f\n", fax_energy, fax_energy_2nd);
#endif
/* XXX Probably need better checking than just this the energy XXX */
hit = 'f';
s->fax_hits++;
} /* Don't reset fax hits counter */
}
#else /* OLD_DSP_ROUTINES */
if (!hit && (fax_energy >= FAX_THRESHOLD) && (fax_energy >= DTMF_TO_TOTAL_ENERGY*s->energy)) {
#if 0
printf("Fax energy/Second Harmonic: %f\n", fax_energy);
#endif
/* XXX Probably need better checking than just this the energy XXX */
hit = 'f';
s->fax_hits++;
}
#endif /* OLD_DSP_ROUTINES */
else {
s->mhit = 'f';
s->detected_digits++;
if (s->current_digits < MAX_DTMF_DIGITS)
{
s->digits[s->current_digits++] = hit;
s->digits[s->current_digits] = '\0';
}
else
{
s->lost_digits++;
}
}
s->fax_hits = 0;
}
#endif /* FAX_DETECT */
#ifdef OLD_DSP_ROUTINES
s->hit1 = s->hit2;
s->hit2 = s->hit3;
s->hit3 = hit;
#else
s->hits[0] = s->hits[1];
s->hits[1] = s->hits[2];
s->hits[2] = hit;
#endif
/* Reinitialise the detector for the next block */
for (i = 0; i < 4; i++)
{
goertzel_reset(&s->row_out[i]);
goertzel_reset(&s->col_out[i]);
#ifdef OLD_DSP_ROUTINES
goertzel_reset(&s->row_out2nd[i]);
goertzel_reset(&s->col_out2nd[i]);
#endif
#ifdef FAX_DETECT
#ifdef OLD_DSP_ROUTINES
#endif
s->energy = 0.0;
s->current_sample = 0;
}
if ((!s->mhit) || (s->mhit != hit))
{
s->mhit = 0;
return(0);
}
return (hit);
}
/* MF goertzel size */
#ifdef OLD_DSP_ROUTINES
#else
#define MF_GSIZE 120
#endif
static int mf_detect (mf_detect_state_t *s,
int16_t amp[],
int samples,
int digitmode, int *writeback)
{
#ifdef OLD_DSP_ROUTINES
int best1;
int best2;
float max;
int sofarsogood;
#else
float energy[6];
int best;
int second_best;
#endif
float famp;
float v1;
int i;
int j;
int sample;
int hit;
int limit;
hit = 0;
for (sample = 0; sample < samples; sample = limit)
{
/* 80 is optimised to meet the MF specs. */
if ((samples - sample) >= (MF_GSIZE - s->current_sample))
limit = sample + (MF_GSIZE - s->current_sample);
else
limit = samples;
#if defined(USE_3DNOW)
_dtmf_goertzel_update (s->row_out, amp + sample, limit - sample);
_dtmf_goertzel_update (s->col_out, amp + sample, limit - sample);
#ifdef OLD_DSP_ROUTINES
_dtmf_goertzel_update (s->row_out2nd, amp + sample, limit2 - sample);
_dtmf_goertzel_update (s->col_out2nd, amp + sample, limit2 - sample);
#endif
/* XXX Need to fax detect for 3dnow too XXX */
#warning "Fax Support Broken"
#else
/* The following unrolled loop takes only 35% (rough estimate) of the
time of a rolled loop on the machine on which it was developed */
for (j = sample; j < limit; j++)
{
famp = amp[j];
#ifdef OLD_DSP_ROUTINES
#endif
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
/* With GCC 2.95, the following unrolled code seems to take about 35%
(rough estimate) as long as a neat little 0-3 loop */
v1 = s->tone_out[0].v2;
s->tone_out[0].v2 = s->tone_out[0].v3;
s->tone_out[0].v3 = s->tone_out[0].fac*s->tone_out[0].v2 - v1 + famp;
v1 = s->tone_out[1].v2;
s->tone_out[1].v2 = s->tone_out[1].v3;
s->tone_out[1].v3 = s->tone_out[1].fac*s->tone_out[1].v2 - v1 + famp;
v1 = s->tone_out[2].v2;
s->tone_out[2].v2 = s->tone_out[2].v3;
s->tone_out[2].v3 = s->tone_out[2].fac*s->tone_out[2].v2 - v1 + famp;
v1 = s->tone_out[3].v2;
s->tone_out[3].v2 = s->tone_out[3].v3;
s->tone_out[3].v3 = s->tone_out[3].fac*s->tone_out[3].v2 - v1 + famp;
v1 = s->tone_out[4].v2;
s->tone_out[4].v2 = s->tone_out[4].v3;
s->tone_out[4].v3 = s->tone_out[4].fac*s->tone_out[4].v2 - v1 + famp;
v1 = s->tone_out[5].v2;
s->tone_out[5].v2 = s->tone_out[5].v3;
s->tone_out[5].v3 = s->tone_out[5].fac*s->tone_out[5].v2 - v1 + famp;
#ifdef OLD_DSP_ROUTINES
v1 = s->tone_out2nd[0].v2;
s->tone_out2nd[0].v2 = s->tone_out2nd[0].v3;
s->tone_out2nd[0].v3 = s->tone_out2nd[0].fac*s->tone_out2nd[0].v2 - v1 + famp;
v1 = s->tone_out2nd[1].v2;
s->tone_out2nd[1].v2 = s->tone_out2nd[1].v3;
s->tone_out2nd[1].v3 = s->tone_out2nd[1].fac*s->tone_out2nd[1].v2 - v1 + famp;
v1 = s->tone_out2nd[2].v2;
s->tone_out2nd[2].v2 = s->tone_out2nd[2].v3;
s->tone_out2nd[2].v3 = s->tone_out2nd[2].fac*s->tone_out2nd[2].v2 - v1 + famp;
v1 = s->tone_out2nd[3].v2;
s->tone_out2nd[3].v2 = s->tone_out2nd[3].v3;
s->tone_out2nd[3].v3 = s->tone_out2nd[3].fac*s->tone_out2nd[3].v2 - v1 + famp;
v1 = s->tone_out2nd[4].v2;
s->tone_out2nd[4].v2 = s->tone_out2nd[4].v3;
s->tone_out2nd[4].v3 = s->tone_out2nd[4].fac*s->tone_out2nd[2].v2 - v1 + famp;
v1 = s->tone_out2nd[3].v2;
s->tone_out2nd[5].v2 = s->tone_out2nd[6].v3;
s->tone_out2nd[5].v3 = s->tone_out2nd[6].fac*s->tone_out2nd[3].v2 - v1 + famp;
#endif
}
#endif
s->current_sample += (limit - sample);
if (s->current_sample < MF_GSIZE) {
if (hit && !((digitmode & DSP_DIGITMODE_NOQUELCH))) {
/* If we had a hit last time, go ahead and clear this out since likely it
will be another hit */
for (i=sample;i<limit;i++)
amp[i] = 0;
*writeback = 1;
}
continue;
}
#ifdef OLD_DSP_ROUTINES
/* We're at the end of an MF detection block. Go ahead and calculate
all the energies. */
for (i=0;i<6;i++) {
tone_energy[i] = goertzel_result(&s->tone_out[i]);
}
/* Find highest */
best1 = 0;
max = tone_energy[0];
for (i=1;i<6;i++) {
if (tone_energy[i] > max) {
max = tone_energy[i];
best1 = i;
}
}
/* Find 2nd highest */
if (best1) {
best2 = 0;
} else {
best2 = 1;
}
for (i=0;i<6;i++) {
if (i == best1) continue;
if (tone_energy[i] > max) {
max = tone_energy[i];
best2 = i;
}
}
if (best1 != best2) sofarsogood=1;
else sofarsogood=0;
/* Check for relative energies */
for (i=0;i<6;i++) {
if (i == best1) continue;
if (i == best2) continue;
if (tone_energy[best1] < tone_energy[i] * MF_RELATIVE_PEAK) {
sofarsogood = 0;
break;
}
if (tone_energy[best2] < tone_energy[i] * MF_RELATIVE_PEAK) {
sofarsogood = 0;
break;
}
}
if (sofarsogood) {
/* Check for 2nd harmonic */
if (goertzel_result(&s->tone_out2nd[best1]) * MF_2ND_HARMONIC > tone_energy[best1])
sofarsogood = 0;
else if (goertzel_result(&s->tone_out2nd[best2]) * MF_2ND_HARMONIC > tone_energy[best2])
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
sofarsogood = 0;
}
if (sofarsogood) {
hit = mf_hit[best1][best2];
if (!(digitmode & DSP_DIGITMODE_NOQUELCH)) {
/* Zero out frame data if this is part DTMF */
for (i=sample;i<limit;i++)
amp[i] = 0;
*writeback = 1;
}
/* Look for two consecutive clean hits */
if ((hit == s->hit3) && (s->hit3 != s->hit2)) {
s->mhit = hit;
s->detected_digits++;
if (s->current_digits < MAX_DTMF_DIGITS - 2) {
s->digits[s->current_digits++] = hit;
s->digits[s->current_digits] = '\0';
} else {
s->lost_digits++;
}
}
}
s->hit1 = s->hit2;
s->hit2 = s->hit3;
s->hit3 = hit;
/* Reinitialise the detector for the next block */
for (i = 0; i < 6; i++)
{
goertzel_reset(&s->tone_out[i]);
goertzel_reset(&s->tone_out2nd[i]);
}
s->energy = 0.0;
s->current_sample = 0;
}
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#else
/* We're at the end of an MF detection block. */
/* Find the two highest energies. The spec says to look for
two tones and two tones only. Taking this literally -ie
only two tones pass the minimum threshold - doesn't work
well. The sinc function mess, due to rectangular windowing
ensure that! Find the two highest energies and ensure they
are considerably stronger than any of the others. */
energy[0] = goertzel_result(&s->tone_out[0]);
energy[1] = goertzel_result(&s->tone_out[1]);
if (energy[0] > energy[1])
{
best = 0;
second_best = 1;
}
else
{
best = 1;
second_best = 0;
}
/*endif*/
for (i = 2; i < 6; i++)
{
energy[i] = goertzel_result(&s->tone_out[i]);
if (energy[i] >= energy[best])
{
second_best = best;
best = i;
}
else if (energy[i] >= energy[second_best])
{
second_best = i;
}
}
/* Basic signal level and twist tests */
hit = 0;
if (energy[best] >= BELL_MF_THRESHOLD
&&
energy[second_best] >= BELL_MF_THRESHOLD
&&
energy[best] < energy[second_best]*BELL_MF_TWIST
&&
energy[best]*BELL_MF_TWIST > energy[second_best])
{
/* Relative peak test */
hit = -1;
for (i = 0; i < 6; i++)
{
if (i != best && i != second_best)
{
if (energy[i]*BELL_MF_RELATIVE_PEAK >= energy[second_best])
{
/* The best two are not clearly the best */
hit = 0;
break;
}
}
}
}
if (hit)
{
/* Get the values into ascending order */
if (second_best < best)
{
i = best;
best = second_best;
second_best = i;
}
best = best*5 + second_best - 1;
hit = bell_mf_positions[best];