Skip to content
Snippets Groups Projects
codec_g726.c 22.7 KiB
Newer Older
  • Learn to ignore specific revisions
  • /*
     * Asterisk -- An open source telephony toolkit.
     *
    
    Kevin P. Fleming's avatar
    Kevin P. Fleming committed
     * Copyright (C) 1999 - 2006, Digium, Inc.
    
     *
     * Mark Spencer <markster@digium.com>
    
    Kevin P. Fleming's avatar
    Kevin P. Fleming committed
     * Kevin P. Fleming <kpfleming@digium.com>
    
     *
     * Based on frompcm.c and topcm.c from the Emiliano MIPL browser/
     * interpreter.  See http://www.bsdtelephony.com.mx
     *
    
     * See http://www.asterisk.org for more information about
     * the Asterisk project. Please do not directly contact
     * any of the maintainers of this project for assistance;
     * the project provides a web site, mailing lists and IRC
     * channels for your use.
    
     *
     * This program is free software, distributed under the terms of
    
     * the GNU General Public License Version 2. See the LICENSE file
     * at the top of the source tree.
     */
    
    
    Kevin P. Fleming's avatar
    Kevin P. Fleming committed
     * \brief codec_g726.c - translate between signed linear and ITU G.726-32kbps (both RFC3551 and AAL2 codeword packing)
    
    Russell Bryant's avatar
    Russell Bryant committed
     * \ingroup codecs
    
    /*** MODULEINFO
    	<support_level>core</support_level>
     ***/
    
    
    #include "asterisk/module.h"
    #include "asterisk/config.h"
    #include "asterisk/translate.h"
    
    #include "asterisk/utils.h"
    
    #define WANT_ASM
    #include "log2comp.h"
    
    /* define NOT_BLI to use a faster but not bit-level identical version */
    /* #define NOT_BLI */
    
    #if defined(NOT_BLI)
    #	if defined(_MSC_VER)
    typedef __int64 sint64;
    #	elif defined(__GNUC__)
    typedef long long sint64;
    #	else
    #		error 64-bit integer type is not defined for your compiler/platform
    #	endif
    #endif
    
    
    #define BUFFER_SAMPLES   8096	/* size for the translation buffers */
    
    #define BUF_SHIFT	5
    
    /* Sample frame data */
    
    #include "asterisk/slin.h"
    #include "ex_g726.h"
    
    
    /*
     * The following is the definition of the state structure
    
    Kevin P. Fleming's avatar
    Kevin P. Fleming committed
     * used by the G.726 encoder and decoder to preserve their internal
    
     * state between successive calls.  The meanings of the majority
     * of the state structure fields are explained in detail in the
    
    Kevin P. Fleming's avatar
    Kevin P. Fleming committed
     * CCITT Recommendation G.721.  The field names are essentially identical
    
     * to variable names in the bit level description of the coding algorithm
     * included in this Recommendation.
     */
    struct g726_state {
    	long yl;	/* Locked or steady state step size multiplier. */
    
    	int yu;		/* Unlocked or non-steady state step size multiplier. */
    	int dms;	/* Short term energy estimate. */
    	int dml;	/* Long term energy estimate. */
    	int ap;		/* Linear weighting coefficient of 'yl' and 'yu'. */
    	int a[2];	/* Coefficients of pole portion of prediction filter.
    
    Kevin P. Fleming's avatar
    Kevin P. Fleming committed
    			 * stored as fixed-point 1==2^14 */
    
    	int b[6];	/* Coefficients of zero portion of prediction filter.
    
    Kevin P. Fleming's avatar
    Kevin P. Fleming committed
    			 * stored as fixed-point 1==2^14 */
    
    	int pk[2];	/* Signs of previous two samples of a partially
    
    Kevin P. Fleming's avatar
    Kevin P. Fleming committed
    			 * reconstructed signal. */
    	int dq[6];  	/* Previous 6 samples of the quantized difference signal
    			 * stored as fixed point 1==2^12,
    			 * or in internal floating point format */
    
    	int sr[2];	/* Previous 2 samples of the quantized difference signal
    
    Kevin P. Fleming's avatar
    Kevin P. Fleming committed
    			 * stored as fixed point 1==2^12,
    			 * or in internal floating point format */
    	int td;		/* delayed tone detect, new in 1988 version */
    
    static int qtab_721[7] = {-124, 80, 178, 246, 300, 349, 400};
    
    /*
     * Maps G.721 code word to reconstructed scale factor normalized log
     * magnitude values.
     */
    
    static int _dqlntab[16] = {-2048, 4, 135, 213, 273, 323, 373, 425,
    
    				425, 373, 323, 273, 213, 135, 4, -2048};
    
    /* Maps G.721 code word to log of scale factor multiplier. */
    
    static int _witab[16] = {-12, 18, 41, 64, 112, 198, 355, 1122,
    
    				1122, 355, 198, 112, 64, 41, 18, -12};
    /*
     * Maps G.721 code words to a set of values whose long and short
     * term averages are computed and then compared to give an indication
     * how stationary (steady state) the signal is.
     */
    
    static int _fitab[16] = {0, 0, 0, 0x200, 0x200, 0x200, 0x600, 0xE00,
    
    				0xE00, 0x600, 0x200, 0x200, 0x200, 0, 0, 0};
    
    
    /*
     * g72x_init_state()
     *
     * This routine initializes and/or resets the g726_state structure
     * pointed to by 'state_ptr'.
     * All the initial state values are specified in the CCITT G.721 document.
     */
    static void g726_init_state(struct g726_state *state_ptr)
    {
    	int		cnta;
    
    	state_ptr->yl = 34816;
    	state_ptr->yu = 544;
    	state_ptr->dms = 0;
    	state_ptr->dml = 0;
    	state_ptr->ap = 0;
    
    		state_ptr->a[cnta] = 0;
    		state_ptr->pk[cnta] = 0;
    
    #ifdef NOT_BLI
    		state_ptr->sr[cnta] = 1;
    #else
    
    #ifdef NOT_BLI
    		state_ptr->dq[cnta] = 1;
    #else
    
     * quantizes the input val against the table of integers.
     * It returns i if table[i - 1] <= val < table[i].
    
     * Using linear search for simple coding.
    
    static int quan(int val, int *table, int size)
    
    	for (i = 0; i < size && val >= *table; ++i, ++table)
    		;
    
    
    #ifdef NOT_BLI /* faster non-identical version */
    
    /*
     * predictor_zero()
     *
     * computes the estimated signal from 6-zero predictor.
     *
     */
    static int predictor_zero(struct g726_state *state_ptr)
    {	/* divide by 2 is necessary here to handle negative numbers correctly */
    	int i;
    	sint64 sezi;
    	for (sezi = 0, i = 0; i < 6; i++)			/* ACCUM */
    		sezi += (sint64)state_ptr->b[i] * state_ptr->dq[i];
    	return (int)(sezi >> 13) / 2 /* 2^14 */;
    }
    
    
    /*
     * predictor_pole()
     *
     * computes the estimated signal from 2-pole predictor.
     *
     */
    
    static int predictor_pole(struct g726_state *state_ptr)
    {	/* divide by 2 is necessary here to handle negative numbers correctly */
    	return (int)(((sint64)state_ptr->a[1] * state_ptr->sr[1] +
    	              (sint64)state_ptr->a[0] * state_ptr->sr[0]) >> 13) / 2 /* 2^14 */;
    }
    
    #else /* NOT_BLI - identical version */
    /*
     * fmult()
     *
     * returns the integer product of the fixed-point number "an" (1==2^12) and
     * "floating point" representation (4-bit exponent, 6-bit mantessa) "srn".
     */
    static int fmult(int an, int srn)
    {
    	int		anmag, anexp, anmant;
    	int		wanexp, wanmant;
    	int		retval;
    
    	anmag = (an > 0) ? an : ((-an) & 0x1FFF);
    
    	anmant = (anmag == 0) ? 32 :
    	    (anexp >= 0) ? anmag >> anexp : anmag << -anexp;
    	wanexp = anexp + ((srn >> 6) & 0xF) - 13;
    
    	wanmant = (anmant * (srn & 077) + 0x30) >> 4;
    	retval = (wanexp >= 0) ? ((wanmant << wanexp) & 0x7FFF) :
    	    (wanmant >> -wanexp);
    
    	return (((an ^ srn) < 0) ? -retval : retval);
    }
    
    static int predictor_zero(struct g726_state *state_ptr)
    {
    	int		i;
    	int		sezi;
    	for (sezi = 0, i = 0; i < 6; i++)			/* ACCUM */
    		sezi += fmult(state_ptr->b[i] >> 2, state_ptr->dq[i]);
    	return sezi;
    }
    
    
    static int predictor_pole(struct g726_state *state_ptr)
    {
    	return (fmult(state_ptr->a[1] >> 2, state_ptr->sr[1]) +
    
    			fmult(state_ptr->a[0] >> 2, state_ptr->sr[0]));
    
    /*
     * step_size()
     *
     * computes the quantization step size of the adaptive quantizer.
     *
     */
    static int step_size(struct g726_state *state_ptr)
    {
    
    	int y, dif, al;
    
    	if (state_ptr->ap >= 256) {
    		return state_ptr->yu;
    
    
    	y = state_ptr->yl >> 6;
    	dif = state_ptr->yu - y;
    	al = state_ptr->ap >> 2;
    
    	if (dif > 0) {
    		y += (dif * al) >> 6;
    	} else if (dif < 0) {
    		y += (dif * al + 0x3F) >> 6;
    	}
    	return y;
    
    }
    
    /*
     * quantize()
     *
     * Given a raw sample, 'd', of the difference signal and a
     * quantization step size scale factor, 'y', this routine returns the
     * ADPCM codeword to which that sample gets quantized.  The step
     * size scale factor division operation is done in the log base 2 domain
     * as a subtraction.
     */
    static int quantize(
    	int		d,	/* Raw difference signal sample */
    	int		y,	/* Step size multiplier */
    
    	int		*table,	/* quantization table */
    	int		size)	/* table size of integers */
    
    	int		dqm;	/* Magnitude of 'd' */
    	int		exp;	/* Integer part of base 2 log of 'd' */
    	int		mant;	/* Fractional part of base 2 log */
    	int		dl;		/* Log of magnitude of 'd' */
    	int		dln;	/* Step size scale factor normalized log */
    
    	int		i;
    
    	/*
    	 * LOG
    	 *
    	 * Compute base 2 log of 'd', and store in 'dl'.
    	 */
    	dqm = abs(d);
    
    	mant = ((dqm << 7) >> exp) & 0x7F;	/* Fractional portion. */
    
    
    	/*
    	 * SUBTB
    	 *
    	 * "Divide" by step size multiplier.
    	 */
    	dln = dl - (y >> 2);
    
    	/*
    	 * QUAN
    	 *
    	 * Obtain codword i for 'd'.
    	 */
    	i = quan(dln, table, size);
    
    	if (d < 0) {			/* take 1's complement of i */
    
    		return ((size << 1) + 1 - i);
    
    	} else if (i == 0) {		/* take 1's complement of 0 */
    
    		return ((size << 1) + 1); /* new in 1988 */
    
    }
    
    /*
     * reconstruct()
     *
     * Returns reconstructed difference signal 'dq' obtained from
     * codeword 'i' and quantization step size scale factor 'y'.
     * Multiplication is performed in log base 2 domain as addition.
     */
    static int reconstruct(
    	int		sign,	/* 0 for non-negative value */
    	int		dqln,	/* G.72x codeword */
    	int		y)	/* Step size multiplier */
    {
    
    	int		dql;	/* Log of 'dq' magnitude */
    	int		dex;	/* Integer part of log */
    	int		dqt;
    	int		dq;	/* Reconstructed difference signal sample */
    
    
    	dql = dqln + (y >> 2);	/* ADDA */
    
    	if (dql < 0) {
    
    #ifdef NOT_BLI
    		return (sign) ? -1 : 1;
    #else
    		return (sign) ? -0x8000 : 0;
    #endif
    
    	} else {		/* ANTILOG */
    		dex = (dql >> 7) & 15;
    		dqt = 128 + (dql & 127);
    
    #ifdef NOT_BLI
    		dq = ((dqt << 19) >> (14 - dex));
    		return (sign) ? -dq : dq;
    #else
    
    		dq = (dqt << 7) >> (14 - dex);
    
    		return (sign) ? (dq - 0x8000) : dq;
    #endif
    
    	}
    }
    
    /*
     * update()
     *
     * updates the state variables for each output code
     */
    static void update(
    	int		code_size,	/* distinguish 723_40 with others */
    	int		y,		/* quantizer step size */
    	int		wi,		/* scale factor multiplier */
    	int		fi,		/* for long/short term energies */
    	int		dq,		/* quantized prediction difference */
    	int		sr,		/* reconstructed signal */
    	int		dqsez,		/* difference from 2-pole predictor */
    	struct g726_state *state_ptr)	/* coder state pointer */
    {
    	int		cnt;
    
    	int		mag;		/* Adaptive predictor, FLOAT A */
    #ifndef NOT_BLI
    	int		exp;
    #endif
    	int		a2p=0;		/* LIMC */
    	int		a1ul;		/* UPA1 */
    	int		pks1;		/* UPA2 */
    	int		fa1;
    	int		tr;			/* tone/transition detector */
    	int		ylint, thr2, dqthr;
    	int		ylfrac, thr1;
    	int		pk0;
    
    
    	pk0 = (dqsez < 0) ? 1 : 0;	/* needed in updating predictor poles */
    
    
    #ifdef NOT_BLI
    	mag = abs(dq / 0x1000); /* prediction difference magnitude */
    #else
    
    	mag = dq & 0x7FFF;		/* prediction difference magnitude */
    
    	/* TRANS */
    	ylint = state_ptr->yl >> 15;	/* exponent part of yl */
    	ylfrac = (state_ptr->yl >> 10) & 0x1F;	/* fractional part of yl */
    	thr1 = (32 + ylfrac) << ylint;		/* threshold */
    	thr2 = (ylint > 9) ? 31 << 10 : thr1;	/* limit thr2 to 31 << 10 */
    	dqthr = (thr2 + (thr2 >> 1)) >> 1;	/* dqthr = 0.75 * thr2 */
    
    	if (state_ptr->td == 0) {		/* signal supposed voice */
    
    	} else if (mag <= dqthr) {		/* supposed data, but small mag */
    
    		tr = 0;			/* treated as voice */
    
    	} else {				/* signal is data (modem) */
    
    	/*
    	 * Quantizer scale factor adaptation.
    	 */
    
    	/* FUNCTW & FILTD & DELAY */
    	/* update non-steady state step size multiplier */
    	state_ptr->yu = y + ((wi - y) >> 5);
    
    	/* LIMB */
    
    	if (state_ptr->yu < 544) {	/* 544 <= yu <= 5120 */
    
    	} else if (state_ptr->yu > 5120) {
    
    
    	/* FILTE & DELAY */
    	/* update steady state step size multiplier */
    	state_ptr->yl += state_ptr->yu + ((-state_ptr->yl) >> 6);
    
    	/*
    	 * Adaptive predictor coefficients.
    	 */
    	if (tr == 1) {			/* reset a's and b's for modem signal */
    		state_ptr->a[0] = 0;
    		state_ptr->a[1] = 0;
    		state_ptr->b[0] = 0;
    		state_ptr->b[1] = 0;
    		state_ptr->b[2] = 0;
    		state_ptr->b[3] = 0;
    		state_ptr->b[4] = 0;
    		state_ptr->b[5] = 0;
    	} else {			/* update a's and b's */
    		pks1 = pk0 ^ state_ptr->pk[0];		/* UPA2 */
    
    		/* update predictor pole a[1] */
    		a2p = state_ptr->a[1] - (state_ptr->a[1] >> 7);
    		if (dqsez != 0) {
    			fa1 = (pks1) ? state_ptr->a[0] : -state_ptr->a[0];
    
    			if (fa1 < -8191) {	/* a2p = function of fa1 */
    
    		}
    
    		/* TRIGB & DELAY */
    		state_ptr->a[1] = a2p;
    
    		/* UPA1 */
    		/* update predictor pole a[0] */
    		state_ptr->a[0] -= state_ptr->a[0] >> 8;
    		if (dqsez != 0) {
    			if (pks1 == 0)
    				state_ptr->a[0] += 192;
    			else
    				state_ptr->a[0] -= 192;
    		}
    		/* LIMD */
    		a1ul = 15360 - a2p;
    
    		} else if (state_ptr->a[0] > a1ul) {
    
    
    		/* UPB : update predictor zeros b[6] */
    		for (cnt = 0; cnt < 6; cnt++) {
    
    			if (code_size == 5) {		/* for 40Kbps G.723 */
    
    				state_ptr->b[cnt] -= state_ptr->b[cnt] >> 9;
    
    			} else {			/* for G.721 and 24Kbps G.723 */
    
    				state_ptr->b[cnt] -= state_ptr->b[cnt] >> 8;
    
    			}
    			if (mag) {	/* XOR */
    				if ((dq ^ state_ptr->dq[cnt]) >= 0) {
    
    			}
    		}
    	}
    
    	for (cnt = 5; cnt > 0; cnt--)
    		state_ptr->dq[cnt] = state_ptr->dq[cnt-1];
    
    #ifdef NOT_BLI
    	state_ptr->dq[0] = dq;
    #else
    
    	/* FLOAT A : convert dq[0] to 4-bit exp, 6-bit mantissa f.p. */
    	if (mag == 0) {
    
    		state_ptr->dq[0] = (dq >= 0) ? 0x20 : 0x20 - 0x400;
    
    		state_ptr->dq[0] = (dq >= 0) ?
    		    (exp << 6) + ((mag << 6) >> exp) :
    		    (exp << 6) + ((mag << 6) >> exp) - 0x400;
    	}
    
    
    	state_ptr->sr[1] = state_ptr->sr[0];
    
    #ifdef NOT_BLI
    	state_ptr->sr[0] = sr;
    #else
    
    	/* FLOAT B : convert sr to 4-bit exp., 6-bit mantissa f.p. */
    	if (sr == 0) {
    		state_ptr->sr[0] = 0x20;
    	} else if (sr > 0) {
    
    		state_ptr->sr[0] = (exp << 6) + ((sr << 6) >> exp);
    
    		state_ptr->sr[0] =  (exp << 6) + ((mag << 6) >> exp) - 0x400;
    	} else
    
    		state_ptr->sr[0] = 0x20 - 0x400;
    #endif
    
    
    	/* DELAY A */
    	state_ptr->pk[1] = state_ptr->pk[0];
    	state_ptr->pk[0] = pk0;
    
    	/* TONE */
    
    	if (tr == 1) {		/* this sample has been treated as data */
    
    		state_ptr->td = 0;	/* next one will be treated as voice */
    
    	} else if (a2p < -11776) {	/* small sample-to-sample correlation */
    
    		state_ptr->td = 1;	/* signal may be data */
    
    
    	/*
    	 * Adaptation speed control.
    	 */
    	state_ptr->dms += (fi - state_ptr->dms) >> 5;		/* FILTA */
    	state_ptr->dml += (((fi << 2) - state_ptr->dml) >> 7);	/* FILTB */
    
    
    	} else if (y < 1536) {					/* SUBTC */
    
    		state_ptr->ap += (0x200 - state_ptr->ap) >> 4;
    
    	} else if (state_ptr->td == 1) {
    
    		state_ptr->ap += (0x200 - state_ptr->ap) >> 4;
    
    	} else if (abs((state_ptr->dms << 2) - state_ptr->dml) >=
    	    (state_ptr->dml >> 3)) {
    
    		state_ptr->ap += (0x200 - state_ptr->ap) >> 4;
    
    		state_ptr->ap += (-state_ptr->ap) >> 4;
    
    }
    
    /*
     * g726_decode()
     *
     * Description:
     *
     * Decodes a 4-bit code of G.726-32 encoded data of i and
     * returns the resulting linear PCM, A-law or u-law value.
     * return -1 for unknown out_coding value.
     */
    static int g726_decode(int	i, struct g726_state *state_ptr)
    {
    
    	int		sezi, sez, se;	/* ACCUM */
    	int		y;			/* MIX */
    	int		sr;			/* ADDB */
    	int		dq;
    	int		dqsez;
    
    
    	i &= 0x0f;			/* mask to get proper bits */
    
    #ifdef NOT_BLI
    	sezi = predictor_zero(state_ptr);
    	sez = sezi;
    	se = sezi + predictor_pole(state_ptr);	/* estimated signal */
    #else
    
    	sezi = predictor_zero(state_ptr);
    	sez = sezi >> 1;
    
    	se = (sezi + predictor_pole(state_ptr)) >> 1;	/* estimated signal */
    #endif
    
    
    	y = step_size(state_ptr);	/* dynamic quantizer step size */
    
    
    	dq = reconstruct(i & 8, _dqlntab[i], y); /* quantized diff. */
    
    #ifdef NOT_BLI
    	sr = se + dq;				/* reconst. signal */
    	dqsez = dq + sez;			/* pole prediction diff. */
    #else
    	sr = (dq < 0) ? se - (dq & 0x3FFF) : se + dq;	/* reconst. signal */
    	dqsez = sr - se + sez;		/* pole prediction diff. */
    #endif
    
    
    	update(4, y, _witab[i] << 5, _fitab[i], dq, sr, dqsez, state_ptr);
    
    
    #ifdef NOT_BLI
    	return (sr >> 10);	/* sr was 26-bit dynamic range */
    #else
    
    	return (sr << 2);	/* sr was 14-bit dynamic range */
    
    /*
     * g726_encode()
     *
     * Encodes the input vale of linear PCM, A-law or u-law data sl and returns
     * the resulting code. -1 is returned for unknown input coding value.
     */
    static int g726_encode(int sl, struct g726_state *state_ptr)
    {
    
    	int		sezi, se, sez;		/* ACCUM */
    	int		d;			/* SUBTA */
    	int		sr;			/* ADDB */
    	int		y;			/* MIX */
    	int		dqsez;			/* ADDC */
    	int		dq, i;
    
    #ifdef NOT_BLI
    	sl <<= 10;			/* 26-bit dynamic range */
    
    	sezi = predictor_zero(state_ptr);
    	sez = sezi;
    	se = sezi + predictor_pole(state_ptr);	/* estimated signal */
    #else
    
    	sl >>= 2;			/* 14-bit dynamic range */
    
    	sezi = predictor_zero(state_ptr);
    	sez = sezi >> 1;
    	se = (sezi + predictor_pole(state_ptr)) >> 1;	/* estimated signal */
    
    
    	d = sl - se;				/* estimation difference */
    
    	/* quantize the prediction difference */
    	y = step_size(state_ptr);		/* quantizer step size */
    
    	i = quantize(d, y, qtab_721, 7);	/* i = G726 code */
    
    	dq = reconstruct(i & 8, _dqlntab[i], y);	/* quantized est diff */
    
    
    #ifdef NOT_BLI
    	sr = se + dq;				/* reconst. signal */
    	dqsez = dq + sez;			/* pole prediction diff. */
    #else
    
    	sr = (dq < 0) ? se - (dq & 0x3FFF) : se + dq;	/* reconst. signal */
    
    	dqsez = sr - se + sez;			/* pole prediction diff. */
    #endif
    
    
    	update(4, y, _witab[i] << 5, _fitab[i], dq, sr, dqsez, state_ptr);
    
    
     * Private workspace for translating signed linear signals to G726.
     * Don't bother to define two distinct structs.
    
    struct g726_coder_pvt {
    	/* buffer any odd byte in input - 0x80 + (value & 0xf) if present */
    	unsigned char next_flag;
    	struct g726_state g726;
    
    /*! \brief init a new instance of g726_coder_pvt. */
    
    static int lintog726_new(struct ast_trans_pvt *pvt)
    
    Kevin P. Fleming's avatar
    Kevin P. Fleming committed
    /*! \brief decode packed 4-bit G726 values (AAL2 packing) and store in buffer. */
    static int g726aal2tolin_framein (struct ast_trans_pvt *pvt, struct ast_frame *f)
    
    	int16_t *dst = pvt->outbuf.i16 + pvt->samples;
    
    Kevin P. Fleming's avatar
    Kevin P. Fleming committed
    	unsigned int i;
    
    Kevin P. Fleming's avatar
    Kevin P. Fleming committed
    	for (i = 0; i < f->datalen; i++) {
    
    		*dst++ = g726_decode((src[i] >> 4) & 0xf, &tmp->g726);
    		*dst++ = g726_decode(src[i] & 0x0f, &tmp->g726);
    	}
    
    Kevin P. Fleming's avatar
    Kevin P. Fleming committed
    
    
    	pvt->samples += f->samples;
    	pvt->datalen += 2 * f->samples; /* 2 bytes/sample */
    
    Kevin P. Fleming's avatar
    Kevin P. Fleming committed
    
    
    Kevin P. Fleming's avatar
    Kevin P. Fleming committed
    /*! \brief compress and store data (4-bit G726 samples, AAL2 packing) in outbuf */
    static int lintog726aal2_framein(struct ast_trans_pvt *pvt, struct ast_frame *f)
    
    Kevin P. Fleming's avatar
    Kevin P. Fleming committed
    	unsigned int i;
    
    	for (i = 0; i < f->samples; i++) {
    
    		unsigned char d = g726_encode(src[i], &tmp->g726); /* this sample */
    
    Kevin P. Fleming's avatar
    Kevin P. Fleming committed
    
    
    		if (tmp->next_flag & 0x80) {	/* merge with leftover sample */
    
    			pvt->outbuf.c[pvt->datalen++] = ((tmp->next_flag & 0xf)<< 4) | d;
    
    			pvt->samples += 2;	/* 2 samples per byte */
    			tmp->next_flag = 0;
    		} else {
    			tmp->next_flag = 0x80 | d;
    
    Kevin P. Fleming's avatar
    Kevin P. Fleming committed
    
    	return 0;
    }
    
    /*! \brief decode packed 4-bit G726 values (RFC3551 packing) and store in buffer. */
    static int g726tolin_framein (struct ast_trans_pvt *pvt, struct ast_frame *f)
    {
    	struct g726_coder_pvt *tmp = pvt->pvt;
    
    	int16_t *dst = pvt->outbuf.i16 + pvt->samples;
    
    Kevin P. Fleming's avatar
    Kevin P. Fleming committed
    	unsigned int i;
    
    	for (i = 0; i < f->datalen; i++) {
    		*dst++ = g726_decode(src[i] & 0x0f, &tmp->g726);
    		*dst++ = g726_decode((src[i] >> 4) & 0xf, &tmp->g726);
    	}
    
    	pvt->samples += f->samples;
    	pvt->datalen += 2 * f->samples; /* 2 bytes/sample */
    
    	return 0;
    }
    
    /*! \brief compress and store data (4-bit G726 samples, RFC3551 packing) in outbuf */
    static int lintog726_framein(struct ast_trans_pvt *pvt, struct ast_frame *f)
    {
    	struct g726_coder_pvt *tmp = pvt->pvt;
    
    Kevin P. Fleming's avatar
    Kevin P. Fleming committed
    	unsigned int i;
    
    	for (i = 0; i < f->samples; i++) {
    		unsigned char d = g726_encode(src[i], &tmp->g726); /* this sample */
    
    		if (tmp->next_flag & 0x80) {	/* merge with leftover sample */
    
    			pvt->outbuf.c[pvt->datalen++] = (d << 4) | (tmp->next_flag & 0xf);
    
    Kevin P. Fleming's avatar
    Kevin P. Fleming committed
    			pvt->samples += 2;	/* 2 samples per byte */
    			tmp->next_flag = 0;
    		} else {
    			tmp->next_flag = 0x80 | d;
    		}
    	}
    
    	return 0;
    }
    
    
    static struct ast_translator g726tolin = {
    
    	.src_codec = {
    		.name = "g726",
    		.type = AST_MEDIA_TYPE_AUDIO,
    		.sample_rate = 8000,
    	},
    	.dst_codec = {
    		.name = "slin",
    		.type = AST_MEDIA_TYPE_AUDIO,
    		.sample_rate = 8000,
    	},
    	.format = "slin",
    
    	.newpvt = lintog726_new,	/* same for both directions */
    	.framein = g726tolin_framein,
    
    	.desc_size = sizeof(struct g726_coder_pvt),
    	.buffer_samples = BUFFER_SAMPLES,
    	.buf_size = BUFFER_SAMPLES * 2,
    
    };
    
    static struct ast_translator lintog726 = {
    
    	.src_codec = {
    		.name = "slin",
    		.type = AST_MEDIA_TYPE_AUDIO,
    		.sample_rate = 8000,
    	},
    	.dst_codec = {
    		.name = "g726",
    		.type = AST_MEDIA_TYPE_AUDIO,
    		.sample_rate = 8000,
    	},
    	.format = "g726",
    
    	.newpvt = lintog726_new,	/* same for both directions */
    	.framein = lintog726_framein,
    
    	.desc_size = sizeof(struct g726_coder_pvt),
    	.buffer_samples = BUFFER_SAMPLES,
    	.buf_size = BUFFER_SAMPLES/2,
    
    Kevin P. Fleming's avatar
    Kevin P. Fleming committed
    static struct ast_translator g726aal2tolin = {
    	.name = "g726aal2tolin",
    
    	.src_codec = {
    		.name = "g726aal2",
    		.type = AST_MEDIA_TYPE_AUDIO,
    		.sample_rate = 8000,
    	},
    	.dst_codec = {
    		.name = "slin",
    		.type = AST_MEDIA_TYPE_AUDIO,
    		.sample_rate = 8000,
    	},
    	.format = "slin",
    
    Kevin P. Fleming's avatar
    Kevin P. Fleming committed
    	.newpvt = lintog726_new,	/* same for both directions */
    	.framein = g726aal2tolin_framein,
    
    Kevin P. Fleming's avatar
    Kevin P. Fleming committed
    	.desc_size = sizeof(struct g726_coder_pvt),
    	.buffer_samples = BUFFER_SAMPLES,
    	.buf_size = BUFFER_SAMPLES * 2,
    };
    
    static struct ast_translator lintog726aal2 = {
    	.name = "lintog726aal2",
    
    	.src_codec = {
    		.name = "slin",
    		.type = AST_MEDIA_TYPE_AUDIO,
    		.sample_rate = 8000,
    	},
    	.dst_codec = {
    		.name = "g726aal2",
    		.type = AST_MEDIA_TYPE_AUDIO,
    		.sample_rate = 8000,
    	},
    	.format = "g726aal2",
    
    Kevin P. Fleming's avatar
    Kevin P. Fleming committed
    	.newpvt = lintog726_new,	/* same for both directions */
    	.framein = lintog726aal2_framein,
    
    Kevin P. Fleming's avatar
    Kevin P. Fleming committed
    	.desc_size = sizeof(struct g726_coder_pvt),
    	.buffer_samples = BUFFER_SAMPLES,
    	.buf_size = BUFFER_SAMPLES / 2,
    };
    
    
    static int unload_module(void)
    
    Kevin P. Fleming's avatar
    Kevin P. Fleming committed
    	int res = 0;
    
    	res |= ast_unregister_translator(&g726tolin);
    	res |= ast_unregister_translator(&lintog726);
    
    	res |= ast_unregister_translator(&g726aal2tolin);
    	res |= ast_unregister_translator(&lintog726aal2);
    
    
    static int load_module(void)
    
    Kevin P. Fleming's avatar
    Kevin P. Fleming committed
    	int res = 0;
    
    
    	res |= ast_register_translator(&g726tolin);
    	res |= ast_register_translator(&lintog726);
    
    Kevin P. Fleming's avatar
    Kevin P. Fleming committed
    
    
    	res |= ast_register_translator(&g726aal2tolin);
    	res |= ast_register_translator(&lintog726aal2);
    
    Kevin P. Fleming's avatar
    Kevin P. Fleming committed
    
    
    		return AST_MODULE_LOAD_DECLINE;
    
    Kevin P. Fleming's avatar
    Kevin P. Fleming committed
    
    
    	return AST_MODULE_LOAD_SUCCESS;
    
    AST_MODULE_INFO(ASTERISK_GPL_KEY, AST_MODFLAG_DEFAULT, "ITU G.726-32kbps G726 Transcoder",
    
    	.support_level = AST_MODULE_SUPPORT_CORE,
    	.load = load_module,
    	.unload = unload_module,
    );