Newer
Older
* Asterisk -- An open source telephony toolkit.
* Copyright (C) 1999 - 2005, Digium, Inc.
*
* Goertzel routines are borrowed from Steve Underwood's tremendous work on the
* DTMF detector.
*
* See http://www.asterisk.org for more information about
* the Asterisk project. Please do not directly contact
* any of the maintainers of this project for assistance;
* the project provides a web site, mailing lists and IRC
* channels for your use.
*
* This program is free software, distributed under the terms of
* the GNU General Public License Version 2. See the LICENSE file
* at the top of the source tree.
*/
* \brief Convenience Signal Processing routines
*
* \author Mark Spencer <markster@digium.com>
* \author Steve Underwood <steveu@coppice.org>
*/
/* Some routines from tone_detect.c by Steven Underwood as published under the zapata library */
/*
tone_detect.c - General telephony tone detection, and specific
detection of DTMF.
Copyright (C) 2001 Steve Underwood <steveu@coppice.org>
Despite my general liking of the GPL, I place this code in the
public domain for the benefit of all mankind - even the slimy
ones who might try to proprietize my work and use it to my
detriment.
*/
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include <math.h>
#include <errno.h>
#include <stdio.h>
#include "asterisk/frame.h"
#include "asterisk/channel.h"
#include "asterisk/logger.h"
#include "asterisk/dsp.h"
#include "asterisk/ulaw.h"
#include "asterisk/alaw.h"
Russell Bryant
committed
#include "asterisk/utils.h"
Russell Bryant
committed
/*! Number of goertzels for progress detect */
enum gsamp_size {
GSAMP_SIZE_NA = 183, /*!< North America - 350, 440, 480, 620, 950, 1400, 1800 Hz */
GSAMP_SIZE_CR = 188, /*!< Costa Rica, Brazil - Only care about 425 Hz */
GSAMP_SIZE_UK = 160 /*!< UK disconnect goertzel feed - should trigger 400hz */
};
Russell Bryant
committed
enum prog_mode {
PROG_MODE_NA = 0,
PROG_MODE_CR,
PROG_MODE_UK
};
Russell Bryant
committed
enum freq_index {
/*! For US modes { */
HZ_350 = 0,
HZ_440,
HZ_480,
HZ_620,
HZ_950,
HZ_1400,
HZ_1800, /*!< } */
/*! For CR/BR modes */
HZ_425 = 0,
/*! For UK mode */
HZ_400 = 0
};
static struct progalias {
char *name;
Russell Bryant
committed
enum prog_mode mode;
} aliases[] = {
{ "us", PROG_MODE_NA },
{ "ca", PROG_MODE_NA },
{ "cr", PROG_MODE_CR },
{ "uk", PROG_MODE_UK },
Russell Bryant
committed
enum gsamp_size size;
Russell Bryant
committed
{ GSAMP_SIZE_NA, { 350, 440, 480, 620, 950, 1400, 1800 } }, /*!< North America */
{ GSAMP_SIZE_CR, { 425 } }, /*!< Costa Rica, Brazil */
{ GSAMP_SIZE_UK, { 400 } }, /*!< UK */
#define DEFAULT_THRESHOLD 512
Russell Bryant
committed
enum busy_detect {
BUSY_PERCENT = 10, /*!< The percentage difference between the two last silence periods */
BUSY_PAT_PERCENT = 7, /*!< The percentage difference between measured and actual pattern */
BUSY_THRESHOLD = 100, /*!< Max number of ms difference between max and min times in busy */
BUSY_MIN = 75, /*!< Busy must be at least 80 ms in half-cadence */
BUSY_MAX =3100 /*!< Busy can't be longer than 3100 ms in half-cadence */
};
Russell Bryant
committed
/*! Remember last 15 units */
Russell Bryant
committed
/*! Define if you want the fax detector -- NOT RECOMMENDED IN -STABLE */
#define FAX_DETECT
Russell Bryant
committed
#define TONE_THRESH 10.0 /*!< How much louder the tone should be than channel energy */
#define TONE_MIN_THRESH 1e8 /*!< How much tone there should be at least to attempt */
/*! All THRESH_XXX values are in GSAMP_SIZE chunks (us = 22ms) */
enum gsamp_thresh {
THRESH_RING = 8, /*!< Need at least 150ms ring to accept */
THRESH_TALK = 2, /*!< Talk detection does not work continuously */
THRESH_BUSY = 4, /*!< Need at least 80ms to accept */
THRESH_CONGESTION = 4, /*!< Need at least 80ms to accept */
THRESH_HANGUP = 60, /*!< Need at least 1300ms to accept hangup */
THRESH_RING2ANSWER = 300 /*!< Timeout from start of ring to answer (about 6600 ms) */
};
#define MAX_DTMF_DIGITS 128
/* Basic DTMF specs:
*
* Minimum tone on = 40ms
* Minimum tone off = 50ms
* Maximum digit rate = 10 per second
* Normal twist <= 8dB accepted
* Reverse twist <= 4dB accepted
* S/N >= 15dB will detect OK
* Attenuation <= 26dB will detect OK
* Frequency tolerance +- 1.5% will detect, +-3.5% will reject
*/
#define DTMF_THRESHOLD 8.0e7
#define FAX_THRESHOLD 8.0e7
#define FAX_2ND_HARMONIC 2.0 /* 4dB */
#define DTMF_NORMAL_TWIST 6.3 /* 8dB */
#ifdef RADIO_RELAX
#define DTMF_REVERSE_TWIST ((digitmode & DSP_DIGITMODE_RELAXDTMF) ? 6.5 : 2.5) /* 4dB normal */
#else
#define DTMF_REVERSE_TWIST ((digitmode & DSP_DIGITMODE_RELAXDTMF) ? 4.0 : 2.5) /* 4dB normal */
#endif
#define DTMF_RELATIVE_PEAK_ROW 6.3 /* 8dB */
#define DTMF_RELATIVE_PEAK_COL 6.3 /* 8dB */
#define DTMF_2ND_HARMONIC_ROW ((digitmode & DSP_DIGITMODE_RELAXDTMF) ? 1.7 : 2.5) /* 4dB normal */
#define DTMF_2ND_HARMONIC_COL 63.1 /* 18dB */
#define DTMF_TO_TOTAL_ENERGY 42.0
#ifdef OLD_DSP_ROUTINES
#define MF_THRESHOLD 8.0e7
#define MF_NORMAL_TWIST 5.3 /* 8dB */
#define MF_REVERSE_TWIST 4.0 /* was 2.5 */
#define MF_RELATIVE_PEAK 5.3 /* 8dB */
#define MF_2ND_HARMONIC 1.7 /* was 2.5 */
#else
#define BELL_MF_THRESHOLD 1.6e9
#define BELL_MF_TWIST 4.0 /* 6dB */
#define BELL_MF_RELATIVE_PEAK 12.6 /* 11dB */
#endif
Russell Bryant
committed
#if !defined(BUSYDETECT_MARTIN) && !defined(BUSYDETECT) && !defined(BUSYDETECT_TONEONLY) && !defined(BUSYDETECT_COMPARE_TONE_AND_SILENCE)
#define BUSYDETECT_MARTIN
#endif
typedef struct {
float v2;
float v3;
float fac;
#ifndef OLD_DSP_ROUTINES
int samples;
#endif
goertzel_state_t row_out[4];
goertzel_state_t col_out[4];
#ifdef FAX_DETECT
goertzel_state_t fax_tone;
#ifdef OLD_DSP_ROUTINES
goertzel_state_t row_out2nd[4];
goertzel_state_t col_out2nd[4];
#ifdef FAX_DETECT
goertzel_state_t fax_tone2nd;
int hit1;
int hit2;
int hit3;
int hit4;
#else
#endif
int mhit;
float energy;
int current_sample;
char digits[MAX_DTMF_DIGITS + 1];
int current_digits;
int detected_digits;
int lost_digits;
int digit_hits[16];
#ifdef FAX_DETECT
} dtmf_detect_state_t;
typedef struct
{
goertzel_state_t tone_out[6];
int mhit;
#ifdef OLD_DSP_ROUTINES
int hit1;
int hit2;
int hit3;
int hit4;
goertzel_state_t tone_out2nd[6];
float energy;
#else
#endif
int current_sample;
char digits[MAX_DTMF_DIGITS + 1];
int current_digits;
int detected_digits;
int lost_digits;
#ifdef FAX_DETECT
} mf_detect_state_t;
static float dtmf_row[] =
{
697.0, 770.0, 852.0, 941.0
1209.0, 1336.0, 1477.0, 1633.0
};
static float mf_tones[] =
{
700.0, 900.0, 1100.0, 1300.0, 1500.0, 1700.0
};
#ifdef FAX_DETECT
static char dtmf_positions[] = "123A" "456B" "789C" "*0#D";
#ifdef OLD_DSP_ROUTINES
static char mf_hit[6][6] = {
/* 700 + */ { 0, '1', '2', '4', '7', 'C' },
/* 900 + */ { '1', 0, '3', '5', '8', 'A' },
/* 1100 + */ { '2', '3', 0, '6', '9', '*' },
/* 1300 + */ { '4', '5', '6', 0, '0', 'B' },
/* 1500 + */ { '7', '8', '9', '0', 0, '#' },
/* 1700 + */ { 'C', 'A', '*', 'B', '#', 0 },
};
#else
static char bell_mf_positions[] = "1247C-358A--69*---0B----#";
#endif
static inline void goertzel_sample(goertzel_state_t *s, short sample)
{
float v1;
float fsamp = sample;
v1 = s->v2;
s->v2 = s->v3;
s->v3 = s->fac * s->v2 - v1 + fsamp;
}
static inline void goertzel_update(goertzel_state_t *s, short *samps, int count)
{
int i;
for (i=0;i<count;i++)
goertzel_sample(s, samps[i]);
}
static inline float goertzel_result(goertzel_state_t *s)
{
return s->v3 * s->v3 + s->v2 * s->v2 - s->v2 * s->v3 * s->fac;
}
static inline void goertzel_init(goertzel_state_t *s, float freq, int samples)
{
s->v2 = s->v3 = 0.0;
s->fac = 2.0 * cos(2.0 * M_PI * (freq / 8000.0));
#ifndef OLD_DSP_ROUTINES
s->samples = samples;
#endif
}
static inline void goertzel_reset(goertzel_state_t *s)
{
s->v2 = s->v3 = 0.0;
}
struct ast_dsp {
struct ast_frame f;
int threshold;
int totalsilence;
int totalnoise;
int features;
int ringtimeout;
int busy_tonelength;
int busy_quietlength;
int historicnoise[DSP_HISTORY];
int historicsilence[DSP_HISTORY];
goertzel_state_t freqs[7];
Russell Bryant
committed
enum gsamp_size gsamp_size;
enum prog_mode progmode;
int tstate;
int tcount;
int digitmode;
int thinkdigit;
float genergy;
union {
dtmf_detect_state_t dtmf;
mf_detect_state_t mf;
} td;
};
static void ast_dtmf_detect_init (dtmf_detect_state_t *s)
{
#ifdef OLD_DSP_ROUTINES
s->hit3 =
s->hit4 =
#else
s->hits[0] = s->hits[1] = s->hits[2] = 0;
#endif
for (i = 0; i < 4; i++) {
goertzel_init (&s->row_out[i], dtmf_row[i], 102);
goertzel_init (&s->col_out[i], dtmf_col[i], 102);
#ifdef OLD_DSP_ROUTINES
goertzel_init (&s->row_out2nd[i], dtmf_row[i] * 2.0, 102);
goertzel_init (&s->col_out2nd[i], dtmf_col[i] * 2.0, 102);
#endif
#ifdef FAX_DETECT
goertzel_init (&s->fax_tone, fax_freq, 102);
#ifdef OLD_DSP_ROUTINES
goertzel_init (&s->fax_tone2nd, fax_freq * 2.0, 102);
#endif
#endif /* FAX_DETECT */
s->current_sample = 0;
s->detected_digits = 0;
s->current_digits = 0;
memset(&s->digits, 0, sizeof(s->digits));
s->lost_digits = 0;
s->digits[0] = '\0';
}
static void ast_mf_detect_init (mf_detect_state_t *s)
{
#ifdef OLD_DSP_ROUTINES
s->hit1 =
s->hit2 = 0;
#else
s->hits[0] = s->hits[1] = s->hits[2] = s->hits[3] = s->hits[4] = 0;
#endif
for (i = 0; i < 6; i++) {
goertzel_init (&s->tone_out[i], mf_tones[i], 160);
#ifdef OLD_DSP_ROUTINES
goertzel_init (&s->tone_out2nd[i], mf_tones[i] * 2.0, 160);
#endif
s->current_digits = 0;
memset(&s->digits, 0, sizeof(s->digits));
s->current_sample = 0;
s->detected_digits = 0;
s->lost_digits = 0;
s->digits[0] = '\0';
s->mhit = 0;
static int dtmf_detect (dtmf_detect_state_t *s, int16_t amp[], int samples,
int digitmode, int *writeback, int faxdetect)
float row_energy[4];
float col_energy[4];
#ifdef FAX_DETECT
#ifdef OLD_DSP_ROUTINES
#endif
#endif /* FAX_DETECT */
float famp;
float v1;
int i;
int j;
int sample;
int best_row;
int best_col;
int hit;
int limit;
hit = 0;
for (sample = 0; sample < samples; sample = limit) {
/* 102 is optimised to meet the DTMF specs. */
if ((samples - sample) >= (102 - s->current_sample))
limit = sample + (102 - s->current_sample);
else
limit = samples;
_dtmf_goertzel_update (s->row_out, amp + sample, limit - sample);
_dtmf_goertzel_update (s->col_out, amp + sample, limit - sample);
#ifdef OLD_DSP_ROUTINES
_dtmf_goertzel_update (s->row_out2nd, amp + sample, limit2 - sample);
_dtmf_goertzel_update (s->col_out2nd, amp + sample, limit2 - sample);
#endif
/* XXX Need to fax detect for 3dnow too XXX */
#warning "Fax Support Broken"
#else
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
/* The following unrolled loop takes only 35% (rough estimate) of the
time of a rolled loop on the machine on which it was developed */
for (j=sample;j<limit;j++) {
famp = amp[j];
s->energy += famp*famp;
/* With GCC 2.95, the following unrolled code seems to take about 35%
(rough estimate) as long as a neat little 0-3 loop */
v1 = s->row_out[0].v2;
s->row_out[0].v2 = s->row_out[0].v3;
s->row_out[0].v3 = s->row_out[0].fac*s->row_out[0].v2 - v1 + famp;
v1 = s->col_out[0].v2;
s->col_out[0].v2 = s->col_out[0].v3;
s->col_out[0].v3 = s->col_out[0].fac*s->col_out[0].v2 - v1 + famp;
v1 = s->row_out[1].v2;
s->row_out[1].v2 = s->row_out[1].v3;
s->row_out[1].v3 = s->row_out[1].fac*s->row_out[1].v2 - v1 + famp;
v1 = s->col_out[1].v2;
s->col_out[1].v2 = s->col_out[1].v3;
s->col_out[1].v3 = s->col_out[1].fac*s->col_out[1].v2 - v1 + famp;
v1 = s->row_out[2].v2;
s->row_out[2].v2 = s->row_out[2].v3;
s->row_out[2].v3 = s->row_out[2].fac*s->row_out[2].v2 - v1 + famp;
v1 = s->col_out[2].v2;
s->col_out[2].v2 = s->col_out[2].v3;
s->col_out[2].v3 = s->col_out[2].fac*s->col_out[2].v2 - v1 + famp;
v1 = s->row_out[3].v2;
s->row_out[3].v2 = s->row_out[3].v3;
s->row_out[3].v3 = s->row_out[3].fac*s->row_out[3].v2 - v1 + famp;
v1 = s->col_out[3].v2;
s->col_out[3].v2 = s->col_out[3].v3;
s->col_out[3].v3 = s->col_out[3].fac*s->col_out[3].v2 - v1 + famp;
#ifdef FAX_DETECT
/* Update fax tone */
v1 = s->fax_tone.v2;
s->fax_tone.v2 = s->fax_tone.v3;
s->fax_tone.v3 = s->fax_tone.fac*s->fax_tone.v2 - v1 + famp;
#endif /* FAX_DETECT */
#ifdef OLD_DSP_ROUTINES
v1 = s->col_out2nd[0].v2;
s->col_out2nd[0].v2 = s->col_out2nd[0].v3;
s->col_out2nd[0].v3 = s->col_out2nd[0].fac*s->col_out2nd[0].v2 - v1 + famp;
v1 = s->row_out2nd[0].v2;
s->row_out2nd[0].v2 = s->row_out2nd[0].v3;
s->row_out2nd[0].v3 = s->row_out2nd[0].fac*s->row_out2nd[0].v2 - v1 + famp;
v1 = s->col_out2nd[1].v2;
s->col_out2nd[1].v2 = s->col_out2nd[1].v3;
s->col_out2nd[1].v3 = s->col_out2nd[1].fac*s->col_out2nd[1].v2 - v1 + famp;
v1 = s->row_out2nd[1].v2;
s->row_out2nd[1].v2 = s->row_out2nd[1].v3;
s->row_out2nd[1].v3 = s->row_out2nd[1].fac*s->row_out2nd[1].v2 - v1 + famp;
v1 = s->col_out2nd[2].v2;
s->col_out2nd[2].v2 = s->col_out2nd[2].v3;
s->col_out2nd[2].v3 = s->col_out2nd[2].fac*s->col_out2nd[2].v2 - v1 + famp;
v1 = s->row_out2nd[2].v2;
s->row_out2nd[2].v2 = s->row_out2nd[2].v3;
s->row_out2nd[2].v3 = s->row_out2nd[2].fac*s->row_out2nd[2].v2 - v1 + famp;
v1 = s->col_out2nd[3].v2;
s->col_out2nd[3].v2 = s->col_out2nd[3].v3;
s->col_out2nd[3].v3 = s->col_out2nd[3].fac*s->col_out2nd[3].v2 - v1 + famp;
v1 = s->row_out2nd[3].v2;
s->row_out2nd[3].v2 = s->row_out2nd[3].v3;
s->row_out2nd[3].v3 = s->row_out2nd[3].fac*s->row_out2nd[3].v2 - v1 + famp;
#ifdef FAX_DETECT
/* Update fax tone */
v1 = s->fax_tone.v2;
s->fax_tone2nd.v2 = s->fax_tone2nd.v3;
s->fax_tone2nd.v3 = s->fax_tone2nd.fac*s->fax_tone2nd.v2 - v1 + famp;
#endif /* FAX_DETECT */
#endif
s->current_sample += (limit - sample);
if (s->current_sample < 102) {
if (hit && !((digitmode & DSP_DIGITMODE_NOQUELCH))) {
/* If we had a hit last time, go ahead and clear this out since likely it
will be another hit */
for (i=sample;i<limit;i++)
amp[i] = 0;
*writeback = 1;
}
#ifdef FAX_DETECT
/* Detect the fax energy, too */
fax_energy = goertzel_result(&s->fax_tone);
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
/* We are at the end of a DTMF detection block */
/* Find the peak row and the peak column */
row_energy[0] = goertzel_result (&s->row_out[0]);
col_energy[0] = goertzel_result (&s->col_out[0]);
for (best_row = best_col = 0, i = 1; i < 4; i++) {
row_energy[i] = goertzel_result (&s->row_out[i]);
if (row_energy[i] > row_energy[best_row])
best_row = i;
col_energy[i] = goertzel_result (&s->col_out[i]);
if (col_energy[i] > col_energy[best_col])
best_col = i;
}
hit = 0;
/* Basic signal level test and the twist test */
if (row_energy[best_row] >= DTMF_THRESHOLD &&
col_energy[best_col] >= DTMF_THRESHOLD &&
col_energy[best_col] < row_energy[best_row]*DTMF_REVERSE_TWIST &&
col_energy[best_col]*DTMF_NORMAL_TWIST > row_energy[best_row]) {
/* Relative peak test */
for (i = 0; i < 4; i++) {
if ((i != best_col &&
col_energy[i]*DTMF_RELATIVE_PEAK_COL > col_energy[best_col]) ||
(i != best_row
&& row_energy[i]*DTMF_RELATIVE_PEAK_ROW > row_energy[best_row])) {
break;
}
}
#ifdef OLD_DSP_ROUTINES
/* ... and second harmonic test */
if (i >= 4 &&
(row_energy[best_row] + col_energy[best_col]) > 42.0*s->energy &&
goertzel_result(&s->col_out2nd[best_col])*DTMF_2ND_HARMONIC_COL < col_energy[best_col]
&& goertzel_result(&s->row_out2nd[best_row])*DTMF_2ND_HARMONIC_ROW < row_energy[best_row]) {
#else
/* ... and fraction of total energy test */
if (i >= 4 &&
(row_energy[best_row] + col_energy[best_col]) > DTMF_TO_TOTAL_ENERGY*s->energy) {
#endif
hit = dtmf_positions[(best_row << 2) + best_col];
if (!(digitmode & DSP_DIGITMODE_NOQUELCH)) {
/* Zero out frame data if this is part DTMF */
for (i=sample;i<limit;i++)
amp[i] = 0;
*writeback = 1;
}
/* Look for two successive similar results */
/* The logic in the next test is:
We need two successive identical clean detects, with
something different preceeding it. This can work with
back to back differing digits. More importantly, it
can work with nasty phones that give a very wobbly start
to a digit */
#ifdef OLD_DSP_ROUTINES
if (hit == s->hit3 && s->hit3 != s->hit2) {
s->mhit = hit;
s->digit_hits[(best_row << 2) + best_col]++;
s->detected_digits++;
if (s->current_digits < MAX_DTMF_DIGITS) {
s->digits[s->current_digits++] = hit;
s->digits[s->current_digits] = '\0';
} else {
s->lost_digits++;
}
}
#else
if (hit == s->hits[2] && hit != s->hits[1] && hit != s->hits[0]) {
s->mhit = hit;
s->digit_hits[(best_row << 2) + best_col]++;
s->detected_digits++;
if (s->current_digits < MAX_DTMF_DIGITS) {
s->digits[s->current_digits++] = hit;
s->digits[s->current_digits] = '\0';
} else {
s->lost_digits++;
}
}
#endif
#ifdef FAX_DETECT
if (!hit && (fax_energy >= FAX_THRESHOLD) &&
(fax_energy >= DTMF_TO_TOTAL_ENERGY*s->energy) &&
(faxdetect)) {
#if 0
printf("Fax energy/Second Harmonic: %f\n", fax_energy);
#endif
/* XXX Probably need better checking than just this the energy XXX */
hit = 'f';
s->fax_hits++;
} else {
hit = 'f';
s->mhit = 'f';
s->detected_digits++;
if (s->current_digits < MAX_DTMF_DIGITS) {
s->digits[s->current_digits++] = hit;
s->digits[s->current_digits] = '\0';
} else {
s->lost_digits++;
}
#endif /* FAX_DETECT */
#ifdef OLD_DSP_ROUTINES
s->hit1 = s->hit2;
s->hit2 = s->hit3;
s->hit3 = hit;
#else
s->hits[0] = s->hits[1];
s->hits[1] = s->hits[2];
s->hits[2] = hit;
#endif
/* Reinitialise the detector for the next block */
for (i = 0; i < 4; i++) {
goertzel_reset(&s->row_out[i]);
goertzel_reset(&s->col_out[i]);
#ifdef OLD_DSP_ROUTINES
goertzel_reset(&s->row_out2nd[i]);
goertzel_reset(&s->col_out2nd[i]);
#endif
#ifdef FAX_DETECT
goertzel_reset (&s->fax_tone);
#ifdef OLD_DSP_ROUTINES
goertzel_reset (&s->fax_tone2nd);
#endif
s->current_sample = 0;
}
if ((!s->mhit) || (s->mhit != hit)) {
s->mhit = 0;
return(0);
}
return (hit);
#ifdef OLD_DSP_ROUTINES
#else
#define MF_GSIZE 120
#endif
static int mf_detect (mf_detect_state_t *s, int16_t amp[],
int samples, int digitmode, int *writeback)
#ifdef OLD_DSP_ROUTINES
float tone_energy[6];
int best1;
int best2;
float max;
int sofarsogood;
#else
float energy[6];
int best;
int second_best;
#endif
float famp;
float v1;
int i;
int j;
int sample;
int hit;
int limit;
hit = 0;
for (sample = 0; sample < samples; sample = limit) {
/* 80 is optimised to meet the MF specs. */
if ((samples - sample) >= (MF_GSIZE - s->current_sample))
limit = sample + (MF_GSIZE - s->current_sample);
else
limit = samples;
_dtmf_goertzel_update (s->row_out, amp + sample, limit - sample);
_dtmf_goertzel_update (s->col_out, amp + sample, limit - sample);
#ifdef OLD_DSP_ROUTINES
_dtmf_goertzel_update (s->row_out2nd, amp + sample, limit2 - sample);
_dtmf_goertzel_update (s->col_out2nd, amp + sample, limit2 - sample);
#endif
/* XXX Need to fax detect for 3dnow too XXX */
#warning "Fax Support Broken"
#else
/* The following unrolled loop takes only 35% (rough estimate) of the
time of a rolled loop on the machine on which it was developed */
for (j = sample; j < limit; j++) {
famp = amp[j];
#ifdef OLD_DSP_ROUTINES
#endif
/* With GCC 2.95, the following unrolled code seems to take about 35%
(rough estimate) as long as a neat little 0-3 loop */
v1 = s->tone_out[0].v2;
s->tone_out[0].v2 = s->tone_out[0].v3;
s->tone_out[0].v3 = s->tone_out[0].fac*s->tone_out[0].v2 - v1 + famp;
v1 = s->tone_out[1].v2;
s->tone_out[1].v2 = s->tone_out[1].v3;
s->tone_out[1].v3 = s->tone_out[1].fac*s->tone_out[1].v2 - v1 + famp;
v1 = s->tone_out[2].v2;
s->tone_out[2].v2 = s->tone_out[2].v3;
s->tone_out[2].v3 = s->tone_out[2].fac*s->tone_out[2].v2 - v1 + famp;
v1 = s->tone_out[3].v2;
s->tone_out[3].v2 = s->tone_out[3].v3;
s->tone_out[3].v3 = s->tone_out[3].fac*s->tone_out[3].v2 - v1 + famp;
v1 = s->tone_out[4].v2;
s->tone_out[4].v2 = s->tone_out[4].v3;
s->tone_out[4].v3 = s->tone_out[4].fac*s->tone_out[4].v2 - v1 + famp;
v1 = s->tone_out[5].v2;
s->tone_out[5].v2 = s->tone_out[5].v3;
s->tone_out[5].v3 = s->tone_out[5].fac*s->tone_out[5].v2 - v1 + famp;
#ifdef OLD_DSP_ROUTINES
v1 = s->tone_out2nd[0].v2;
s->tone_out2nd[0].v2 = s->tone_out2nd[0].v3;
s->tone_out2nd[0].v3 = s->tone_out2nd[0].fac*s->tone_out2nd[0].v2 - v1 + famp;
v1 = s->tone_out2nd[1].v2;
s->tone_out2nd[1].v2 = s->tone_out2nd[1].v3;
s->tone_out2nd[1].v3 = s->tone_out2nd[1].fac*s->tone_out2nd[1].v2 - v1 + famp;
v1 = s->tone_out2nd[2].v2;
s->tone_out2nd[2].v2 = s->tone_out2nd[2].v3;
s->tone_out2nd[2].v3 = s->tone_out2nd[2].fac*s->tone_out2nd[2].v2 - v1 + famp;
v1 = s->tone_out2nd[3].v2;
s->tone_out2nd[3].v2 = s->tone_out2nd[3].v3;
s->tone_out2nd[3].v3 = s->tone_out2nd[3].fac*s->tone_out2nd[3].v2 - v1 + famp;
v1 = s->tone_out2nd[4].v2;
s->tone_out2nd[4].v2 = s->tone_out2nd[4].v3;
s->tone_out2nd[4].v3 = s->tone_out2nd[4].fac*s->tone_out2nd[2].v2 - v1 + famp;
v1 = s->tone_out2nd[3].v2;
s->tone_out2nd[5].v2 = s->tone_out2nd[6].v3;
s->tone_out2nd[5].v3 = s->tone_out2nd[6].fac*s->tone_out2nd[3].v2 - v1 + famp;
#endif
s->current_sample += (limit - sample);
if (s->current_sample < MF_GSIZE) {
if (hit && !((digitmode & DSP_DIGITMODE_NOQUELCH))) {
/* If we had a hit last time, go ahead and clear this out since likely it
will be another hit */
for (i=sample;i<limit;i++)
amp[i] = 0;
*writeback = 1;
}
#ifdef OLD_DSP_ROUTINES
/* We're at the end of an MF detection block. Go ahead and calculate
all the energies. */
for (i=0;i<6;i++) {
tone_energy[i] = goertzel_result(&s->tone_out[i]);
}
/* Find highest */
best1 = 0;
max = tone_energy[0];
for (i=1;i<6;i++) {
if (tone_energy[i] > max) {
max = tone_energy[i];
best1 = i;
}
}
/* Find 2nd highest */
if (best1) {
best2 = 0;
} else {
best2 = 1;
}
for (i=0;i<6;i++) {
if (i == best1) continue;
if (tone_energy[i] > max) {
max = tone_energy[i];
best2 = i;
}
}
hit = 0;
if (best1 != best2)
sofarsogood=1;
else
sofarsogood=0;
/* Check for relative energies */
for (i=0;i<6;i++) {
if (i == best1)
continue;
if (i == best2)
continue;
if (tone_energy[best1] < tone_energy[i] * MF_RELATIVE_PEAK) {
sofarsogood = 0;
break;
}
if (tone_energy[best2] < tone_energy[i] * MF_RELATIVE_PEAK) {
sofarsogood = 0;
break;
}
}
if (sofarsogood) {
/* Check for 2nd harmonic */
if (goertzel_result(&s->tone_out2nd[best1]) * MF_2ND_HARMONIC > tone_energy[best1])
sofarsogood = 0;
else if (goertzel_result(&s->tone_out2nd[best2]) * MF_2ND_HARMONIC > tone_energy[best2])
sofarsogood = 0;
}
if (sofarsogood) {
hit = mf_hit[best1][best2];
if (!(digitmode & DSP_DIGITMODE_NOQUELCH)) {
/* Zero out frame data if this is part DTMF */
for (i=sample;i<limit;i++)
amp[i] = 0;
*writeback = 1;
}
/* Look for two consecutive clean hits */
if ((hit == s->hit3) && (s->hit3 != s->hit2)) {
s->mhit = hit;
s->detected_digits++;
if (s->current_digits < MAX_DTMF_DIGITS - 2) {
s->digits[s->current_digits++] = hit;
s->digits[s->current_digits] = '\0';
} else {
s->lost_digits++;
}
}
}
s->hit1 = s->hit2;
s->hit2 = s->hit3;
s->hit3 = hit;
/* Reinitialise the detector for the next block */
for (i = 0; i < 6; i++) {
goertzel_reset(&s->tone_out[i]);
goertzel_reset(&s->tone_out2nd[i]);
}
s->current_sample = 0;
}
#else
/* We're at the end of an MF detection block. */
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
/* Find the two highest energies. The spec says to look for
two tones and two tones only. Taking this literally -ie
only two tones pass the minimum threshold - doesn't work
well. The sinc function mess, due to rectangular windowing
ensure that! Find the two highest energies and ensure they
are considerably stronger than any of the others. */
energy[0] = goertzel_result(&s->tone_out[0]);
energy[1] = goertzel_result(&s->tone_out[1]);
if (energy[0] > energy[1]) {
best = 0;
second_best = 1;
} else {
best = 1;
second_best = 0;
}
/*endif*/
for (i=2;i<6;i++) {
energy[i] = goertzel_result(&s->tone_out[i]);
if (energy[i] >= energy[best]) {
second_best = best;
best = i;
} else if (energy[i] >= energy[second_best]) {
second_best = i;
}
}
/* Basic signal level and twist tests */
hit = 0;
if (energy[best] >= BELL_MF_THRESHOLD && energy[second_best] >= BELL_MF_THRESHOLD
&& energy[best] < energy[second_best]*BELL_MF_TWIST
&& energy[best]*BELL_MF_TWIST > energy[second_best]) {
/* Relative peak test */
hit = -1;
for (i=0;i<6;i++) {
if (i != best && i != second_best) {
if (energy[i]*BELL_MF_RELATIVE_PEAK >= energy[second_best]) {
/* The best two are not clearly the best */
hit = 0;
break;
}
}
}
}
if (hit) {
/* Get the values into ascending order */
if (second_best < best) {
i = best;
best = second_best;
second_best = i;
}
best = best*5 + second_best - 1;
hit = bell_mf_positions[best];
/* Look for two successive similar results */
/* The logic in the next test is:
For KP we need 4 successive identical clean detects, with
two blocks of something different preceeding it. For anything
else we need two successive identical clean detects, with
two blocks of something different preceeding it. */
if (hit == s->hits[4] && hit == s->hits[3] &&
((hit != '*' && hit != s->hits[2] && hit != s->hits[1])||
(hit == '*' && hit == s->hits[2] && hit != s->hits[1] &&
hit != s->hits[0]))) {
s->detected_digits++;
if (s->current_digits < MAX_DTMF_DIGITS) {
s->digits[s->current_digits++] = hit;
s->digits[s->current_digits] = '\0';
} else {
s->lost_digits++;
}
}
} else {
hit = 0;
}
s->hits[0] = s->hits[1];
s->hits[1] = s->hits[2];
s->hits[2] = s->hits[3];
s->hits[3] = s->hits[4];
s->hits[4] = hit;
/* Reinitialise the detector for the next block */
for (i = 0; i < 6; i++)
goertzel_reset(&s->tone_out[i]);
s->current_sample = 0;
}
#endif
if ((!s->mhit) || (s->mhit != hit)) {
}
static int __ast_dsp_digitdetect(struct ast_dsp *dsp, short *s, int len, int *writeback)
{
int res;
if (dsp->digitmode & DSP_DIGITMODE_MF)
res = mf_detect(&dsp->td.mf, s, len, dsp->digitmode & DSP_DIGITMODE_RELAXDTMF, writeback);
else
res = dtmf_detect(&dsp->td.dtmf, s, len, dsp->digitmode & DSP_DIGITMODE_RELAXDTMF, writeback, dsp->features & DSP_FEATURE_FAX_DETECT);
return res;
}
int ast_dsp_digitdetect(struct ast_dsp *dsp, struct ast_frame *inf)
{
short *s;
int len;
int ign=0;
if (inf->frametype != AST_FRAME_VOICE) {
ast_log(LOG_WARNING, "Can't check call progress of non-voice frames\n");
return 0;
}
if (inf->subclass != AST_FORMAT_SLINEAR) {
ast_log(LOG_WARNING, "Can only check call progress in signed-linear frames\n");
return 0;
}
s = inf->data;