Skip to content
Snippets Groups Projects
udptl.c 33.3 KiB
Newer Older
/*
 * Asterisk -- A telephony toolkit for Linux.
 *
 * UDPTL support for T.38
 * 
 * Copyright (C) 2005, Steve Underwood, partly based on RTP code which is
 * Copyright (C) 1999-2006, Digium, Inc.
 *
 * Steve Underwood <steveu@coppice.org>
 *
 * This program is free software, distributed under the terms of
 * the GNU General Public License
 *
 * This version is disclaimed to DIGIUM for inclusion in the Asterisk project.
 */

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/time.h>
#include <signal.h>
#include <errno.h>
#include <unistd.h>
#include <netinet/in.h>
#include <sys/time.h>
#include <sys/socket.h>
#include <arpa/inet.h>
#include <fcntl.h>

#include "asterisk.h"

ASTERISK_FILE_VERSION(__FILE__, "$Revision$")
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663

#include "asterisk/udptl.h"
#include "asterisk/frame.h"
#include "asterisk/logger.h"
#include "asterisk/options.h"
#include "asterisk/channel.h"
#include "asterisk/acl.h"
#include "asterisk/channel.h"
#include "asterisk/config.h"
#include "asterisk/lock.h"
#include "asterisk/utils.h"
#include "asterisk/cli.h"
#include "asterisk/unaligned.h"
#include "asterisk/utils.h"

#define UDPTL_MTU		1200

#if !defined(FALSE)
#define FALSE 0
#endif
#if !defined(TRUE)
#define TRUE (!FALSE)
#endif

static int udptlstart = 0;
static int udptlend = 0;
static int udptldebug = 0;		        /* Are we debugging? */
static struct sockaddr_in udptldebugaddr;	/* Debug packets to/from this host */
#ifdef SO_NO_CHECK
static int nochecksums = 0;
#endif
static int udptlfectype = 0;
static int udptlfecentries = 0;
static int udptlfecspan = 0;
static int udptlmaxdatagram = 0;

#define LOCAL_FAX_MAX_DATAGRAM      400
#define MAX_FEC_ENTRIES             5
#define MAX_FEC_SPAN                5

#define UDPTL_BUF_MASK              15

typedef struct {
	int buf_len;
	uint8_t buf[LOCAL_FAX_MAX_DATAGRAM];
} udptl_fec_tx_buffer_t;

typedef struct {
	int buf_len;
	uint8_t buf[LOCAL_FAX_MAX_DATAGRAM];
	int fec_len[MAX_FEC_ENTRIES];
	uint8_t fec[MAX_FEC_ENTRIES][LOCAL_FAX_MAX_DATAGRAM];
	int fec_span;
	int fec_entries;
} udptl_fec_rx_buffer_t;

struct ast_udptl {
	int fd;
	char resp;
	struct ast_frame f[16];
	unsigned char rawdata[8192 + AST_FRIENDLY_OFFSET];
	unsigned int lasteventseqn;
	int nat;
	int flags;
	struct sockaddr_in us;
	struct sockaddr_in them;
	int *ioid;
	uint16_t seqno;
	struct sched_context *sched;
	struct io_context *io;
	void *data;
	ast_udptl_callback callback;
	int udptl_offered_from_local;

	/*! This option indicates the error correction scheme used in transmitted UDPTL
	    packets. */
	int error_correction_scheme;

	/*! This option indicates the number of error correction entries transmitted in
	    UDPTL packets. */
	int error_correction_entries;

	/*! This option indicates the span of the error correction entries in transmitted
	    UDPTL packets (FEC only). */
	int error_correction_span;

	/*! This option indicates the maximum size of a UDPTL packet that can be accepted by
	    the remote device. */
	int far_max_datagram_size;

	/*! This option indicates the maximum size of a UDPTL packet that we are prepared to
	    accept. */
	int local_max_datagram_size;

	int verbose;

	struct sockaddr_in far;

	int tx_seq_no;
	int rx_seq_no;
	int rx_expected_seq_no;

	udptl_fec_tx_buffer_t tx[UDPTL_BUF_MASK + 1];
	udptl_fec_rx_buffer_t rx[UDPTL_BUF_MASK + 1];
};

static struct ast_udptl_protocol *protos = NULL;

static int udptl_rx_packet(struct ast_udptl *s, uint8_t *buf, int len);
static int udptl_build_packet(struct ast_udptl *s, uint8_t *buf, uint8_t *ifp, int ifp_len);

static inline int udptl_debug_test_addr(struct sockaddr_in *addr)
{
	if (udptldebug == 0)
		return 0;
	if (udptldebugaddr.sin_addr.s_addr) {
		if (((ntohs(udptldebugaddr.sin_port) != 0)
			&& (udptldebugaddr.sin_port != addr->sin_port))
			|| (udptldebugaddr.sin_addr.s_addr != addr->sin_addr.s_addr))
		return 0;
	}
	return 1;
}

static int decode_length(uint8_t *buf, int limit, int *len, int *pvalue)
{
	if ((buf[*len] & 0x80) == 0) {
		if (*len >= limit)
			return -1;
		*pvalue = buf[*len];
		(*len)++;
		return 0;
	}
	if ((buf[*len] & 0x40) == 0) {
		if (*len >= limit - 1)
			return -1;
		*pvalue = (buf[*len] & 0x3F) << 8;
		(*len)++;
		*pvalue |= buf[*len];
		(*len)++;
		return 0;
	}
	if (*len >= limit)
		return -1;
	*pvalue = (buf[*len] & 0x3F) << 14;
	(*len)++;
	/* Indicate we have a fragment */
	return 1;
}
/*- End of function --------------------------------------------------------*/

static int decode_open_type(uint8_t *buf, int limit, int *len, const uint8_t **p_object, int *p_num_octets)
{
	int octet_cnt;
	int octet_idx;
	int stat;
	int i;
	const uint8_t **pbuf;

	for (octet_idx = 0, *p_num_octets = 0;  ;  octet_idx += octet_cnt) {
		if ((stat = decode_length(buf, limit, len, &octet_cnt)) < 0)
			return -1;
		if (octet_cnt > 0) {
			*p_num_octets += octet_cnt;

			pbuf = &p_object[octet_idx];
			i = 0;
			/* Make sure the buffer contains at least the number of bits requested */
			if ((*len + octet_cnt) > limit)
				return -1;

			*pbuf = &buf[*len];
			*len += octet_cnt;
		}
		if (stat == 0)
			break;
	}
	return 0;
}
/*- End of function --------------------------------------------------------*/

static int encode_length(uint8_t *buf, int *len, int value)
{
	int multiplier;

	if (value < 0x80) {
		/* 1 octet */
		buf[*len] = value;
		(*len)++;
		return value;
	}
	if (value < 0x4000) {
		/* 2 octets */
		/* Set the first bit of the first octet */
		buf[*len] = ((0x8000 | value) >> 8) & 0xFF;
		(*len)++;
		buf[*len] = value & 0xFF;
		(*len)++;
		return value;
	}
	/* Fragmentation */
	multiplier = (value < 0x10000)  ?  (value >> 14)  :  4;
	/* Set the first 2 bits of the octet */
	buf[*len] = 0xC0 | multiplier;
	(*len)++;
	return multiplier << 14;
}
/*- End of function --------------------------------------------------------*/

static int encode_open_type(uint8_t *buf, int *len, const uint8_t *data, int num_octets)
{
	int enclen;
	int octet_idx;
	uint8_t zero_byte;

	/* If open type is of zero length, add a single zero byte (10.1) */
	if (num_octets == 0) {
		zero_byte = 0;
		data = &zero_byte;
		num_octets = 1;
	}
	/* Encode the open type */
	for (octet_idx = 0;  ;  num_octets -= enclen, octet_idx += enclen) {
		if ((enclen = encode_length(buf, len, num_octets)) < 0)
			return -1;
		if (enclen > 0) {
			memcpy(&buf[*len], &data[octet_idx], enclen);
			*len += enclen;
		}
		if (enclen >= num_octets)
			break;
	}

	return 0;
}
/*- End of function --------------------------------------------------------*/

static int udptl_rx_packet(struct ast_udptl *s, uint8_t *buf, int len)
{
	int stat;
	int stat2;
	int i;
	int j;
	int k;
	int l;
	int m;
	int x;
	int limit;
	int which;
	int ptr;
	int count;
	int total_count;
	int seq_no;
	const uint8_t *ifp;
	const uint8_t *data;
	int ifp_len;
	int repaired[16];
	const uint8_t *bufs[16];
	int lengths[16];
	int span;
	int entries;
	int ifp_no;

	ptr = 0;
	ifp_no = 0;
	s->f[0].prev = NULL;
	s->f[0].next = NULL;

	/* Decode seq_number */
	if (ptr + 2 > len)
		return -1;
	seq_no = (buf[0] << 8) | buf[1];
	ptr += 2;

	/* Break out the primary packet */
	if ((stat = decode_open_type(buf, len, &ptr, &ifp, &ifp_len)) != 0)
		return -1;
	/* Decode error_recovery */
	if (ptr + 1 > len)
		return -1;
	if ((buf[ptr++] & 0x80) == 0) {
		/* Secondary packet mode for error recovery */
		if (seq_no > s->rx_seq_no) {
			/* We received a later packet than we expected, so we need to check if we can fill in the gap from the
			   secondary packets. */
			total_count = 0;
			do {
				if ((stat2 = decode_length(buf, len, &ptr, &count)) < 0)
					return -1;
				for (i = 0;  i < count;  i++) {
					if ((stat = decode_open_type(buf, len, &ptr, &bufs[total_count + i], &lengths[total_count + i])) != 0)
						return -1;
				}
				total_count += count;
			}
			while (stat2 > 0);
			/* Step through in reverse order, so we go oldest to newest */
			for (i = total_count;  i > 0;  i--) {
				if (seq_no - i >= s->rx_seq_no) {
					/* This one wasn't seen before */
					/* Decode the secondary IFP packet */
					//fprintf(stderr, "Secondary %d, len %d\n", seq_no - i, lengths[i - 1]);
					s->f[ifp_no].frametype = AST_FRAME_MODEM;
					s->f[ifp_no].subclass = AST_MODEM_T38;

					s->f[ifp_no].mallocd = 0;
					//s->f[ifp_no].???seq_no = seq_no - i;
					s->f[ifp_no].datalen = lengths[i - 1];
					s->f[ifp_no].data = (uint8_t *) bufs[i - 1];
					s->f[ifp_no].offset = 0;
					s->f[ifp_no].src = "UDPTL";
					if (ifp_no > 0) {
						s->f[ifp_no].prev = &s->f[ifp_no - 1];
						s->f[ifp_no - 1].next = &s->f[ifp_no];
					}
					s->f[ifp_no].next = NULL;
					ifp_no++;
				}
			}
		}
		/* If packets are received out of sequence, we may have already processed this packet from the error
		   recovery information in a packet already received. */
		if (seq_no >= s->rx_seq_no) {
			/* Decode the primary IFP packet */
			s->f[ifp_no].frametype = AST_FRAME_MODEM;
			s->f[ifp_no].subclass = AST_MODEM_T38;
			
			s->f[ifp_no].mallocd = 0;
			//s->f[ifp_no].???seq_no = seq_no;
			s->f[ifp_no].datalen = ifp_len;
			s->f[ifp_no].data = (uint8_t *) ifp;
			s->f[ifp_no].offset = 0;
			s->f[ifp_no].src = "UDPTL";
			if (ifp_no > 0) {
				s->f[ifp_no].prev = &s->f[ifp_no - 1];
				s->f[ifp_no - 1].next = &s->f[ifp_no];
			}
			s->f[ifp_no].next = NULL;
		}
	}
	else
	{
		/* FEC mode for error recovery */
		/* Our buffers cannot tolerate overlength IFP packets in FEC mode */
		if (ifp_len > LOCAL_FAX_MAX_DATAGRAM)
			return -1;
		/* Update any missed slots in the buffer */
		for (  ;  seq_no > s->rx_seq_no;  s->rx_seq_no++) {
			x = s->rx_seq_no & UDPTL_BUF_MASK;
			s->rx[x].buf_len = -1;
			s->rx[x].fec_len[0] = 0;
			s->rx[x].fec_span = 0;
			s->rx[x].fec_entries = 0;
		}

		x = seq_no & UDPTL_BUF_MASK;

		memset(repaired, 0, sizeof(repaired));

		/* Save the new IFP packet */
		memcpy(s->rx[x].buf, ifp, ifp_len);
		s->rx[x].buf_len = ifp_len;
		repaired[x] = TRUE;

		/* Decode the FEC packets */
		/* The span is defined as an unconstrained integer, but will never be more
		   than a small value. */
		if (ptr + 2 > len)
			return -1;
		if (buf[ptr++] != 1)
			return -1;
		span = buf[ptr++];
		s->rx[x].fec_span = span;

		/* The number of entries is defined as a length, but will only ever be a small
		   value. Treat it as such. */
		if (ptr + 1 > len)
			return -1;
		entries = buf[ptr++];
		s->rx[x].fec_entries = entries;

		/* Decode the elements */
		for (i = 0;  i < entries;  i++) {
			if ((stat = decode_open_type(buf, len, &ptr, &data, &s->rx[x].fec_len[i])) != 0)
				return -1;
			if (s->rx[x].fec_len[i] > LOCAL_FAX_MAX_DATAGRAM)
				return -1;

			/* Save the new FEC data */
			memcpy(s->rx[x].fec[i], data, s->rx[x].fec_len[i]);
#if 0
			fprintf(stderr, "FEC: ");
			for (j = 0;  j < s->rx[x].fec_len[i];  j++)
				fprintf(stderr, "%02X ", data[j]);
			fprintf(stderr, "\n");
#endif
	   }

		/* See if we can reconstruct anything which is missing */
		/* TODO: this does not comprehensively hunt back and repair everything that is possible */
		for (l = x;  l != ((x - (16 - span*entries)) & UDPTL_BUF_MASK);  l = (l - 1) & UDPTL_BUF_MASK) {
			if (s->rx[l].fec_len[0] <= 0)
				continue;
			for (m = 0;  m < s->rx[l].fec_entries;  m++) {
				limit = (l + m) & UDPTL_BUF_MASK;
				for (which = -1, k = (limit - s->rx[l].fec_span*s->rx[l].fec_entries) & UDPTL_BUF_MASK;  k != limit;  k = (k + s->rx[l].fec_entries) & UDPTL_BUF_MASK) {
					if (s->rx[k].buf_len <= 0)
						which = (which == -1)  ?  k  :  -2;
				}
				if (which >= 0) {
					/* Repairable */
					for (j = 0;  j < s->rx[l].fec_len[m];  j++) {
						s->rx[which].buf[j] = s->rx[l].fec[m][j];
						for (k = (limit - s->rx[l].fec_span*s->rx[l].fec_entries) & UDPTL_BUF_MASK;  k != limit;  k = (k + s->rx[l].fec_entries) & UDPTL_BUF_MASK)
							s->rx[which].buf[j] ^= (s->rx[k].buf_len > j)  ?  s->rx[k].buf[j]  :  0;
					}
					s->rx[which].buf_len = s->rx[l].fec_len[m];
					repaired[which] = TRUE;
				}
			}
		}
		/* Now play any new packets forwards in time */
		for (l = (x + 1) & UDPTL_BUF_MASK, j = seq_no - UDPTL_BUF_MASK;  l != x;  l = (l + 1) & UDPTL_BUF_MASK, j++) {
			if (repaired[l]) {
				//fprintf(stderr, "Fixed packet %d, len %d\n", j, l);
				s->f[ifp_no].frametype = AST_FRAME_MODEM;
				s->f[ifp_no].subclass = AST_MODEM_T38;
			
				s->f[ifp_no].mallocd = 0;
				//s->f[ifp_no].???seq_no = j;
				s->f[ifp_no].datalen = s->rx[l].buf_len;
				s->f[ifp_no].data = s->rx[l].buf;
				s->f[ifp_no].offset = 0;
				s->f[ifp_no].src = "UDPTL";
				if (ifp_no > 0) {
					s->f[ifp_no].prev = &s->f[ifp_no - 1];
					s->f[ifp_no - 1].next = &s->f[ifp_no];
				}
				s->f[ifp_no].next = NULL;
				ifp_no++;
			}
		}
		/* Decode the primary IFP packet */
		s->f[ifp_no].frametype = AST_FRAME_MODEM;
		s->f[ifp_no].subclass = AST_MODEM_T38;
			
		s->f[ifp_no].mallocd = 0;
		//s->f[ifp_no].???seq_no = j;
		s->f[ifp_no].datalen = ifp_len;
		s->f[ifp_no].data = (uint8_t *) ifp;
		s->f[ifp_no].offset = 0;
		s->f[ifp_no].src = "UDPTL";
		if (ifp_no > 0) {
			s->f[ifp_no].prev = &s->f[ifp_no - 1];
			s->f[ifp_no - 1].next = &s->f[ifp_no];
		}
		s->f[ifp_no].next = NULL;
	}

	s->rx_seq_no = seq_no + 1;
	return 0;
}
/*- End of function --------------------------------------------------------*/

static int udptl_build_packet(struct ast_udptl *s, uint8_t *buf, uint8_t *ifp, int ifp_len)
{
	uint8_t fec[LOCAL_FAX_MAX_DATAGRAM];
	int i;
	int j;
	int seq;
	int entry;
	int entries;
	int span;
	int m;
	int len;
	int limit;
	int high_tide;

	seq = s->tx_seq_no & 0xFFFF;

	/* Map the sequence number to an entry in the circular buffer */
	entry = seq & UDPTL_BUF_MASK;

	/* We save the message in a circular buffer, for generating FEC or
	   redundancy sets later on. */
	s->tx[entry].buf_len = ifp_len;
	memcpy(s->tx[entry].buf, ifp, ifp_len);
	
	/* Build the UDPTLPacket */

	len = 0;
	/* Encode the sequence number */
	buf[len++] = (seq >> 8) & 0xFF;
	buf[len++] = seq & 0xFF;

	/* Encode the primary IFP packet */
	if (encode_open_type(buf, &len, ifp, ifp_len) < 0)
		return -1;

	/* Encode the appropriate type of error recovery information */
	switch (s->error_correction_scheme)
	{
	case UDPTL_ERROR_CORRECTION_NONE:
		/* Encode the error recovery type */
		buf[len++] = 0x00;
		/* The number of entries will always be zero, so it is pointless allowing
		   for the fragmented case here. */
		if (encode_length(buf, &len, 0) < 0)
			return -1;
		break;
	case UDPTL_ERROR_CORRECTION_REDUNDANCY:
		/* Encode the error recovery type */
		buf[len++] = 0x00;
		if (s->tx_seq_no > s->error_correction_entries)
			entries = s->error_correction_entries;
		else
			entries = s->tx_seq_no;
		/* The number of entries will always be small, so it is pointless allowing
		   for the fragmented case here. */
		if (encode_length(buf, &len, entries) < 0)
			return -1;
		/* Encode the elements */
		for (i = 0;  i < entries;  i++) {
			j = (entry - i - 1) & UDPTL_BUF_MASK;
			if (encode_open_type(buf, &len, s->tx[j].buf, s->tx[j].buf_len) < 0)
				return -1;
		}
		break;
	case UDPTL_ERROR_CORRECTION_FEC:
		span = s->error_correction_span;
		entries = s->error_correction_entries;
		if (seq < s->error_correction_span*s->error_correction_entries) {
			/* In the initial stages, wind up the FEC smoothly */
			entries = seq/s->error_correction_span;
			if (seq < s->error_correction_span)
				span = 0;
		}
		/* Encode the error recovery type */
		buf[len++] = 0x80;
		/* Span is defined as an inconstrained integer, which it dumb. It will only
		   ever be a small value. Treat it as such. */
		buf[len++] = 1;
		buf[len++] = span;
		/* The number of entries is defined as a length, but will only ever be a small
		   value. Treat it as such. */
		buf[len++] = entries;
		for (m = 0;  m < entries;  m++) {
			/* Make an XOR'ed entry the maximum length */
			limit = (entry + m) & UDPTL_BUF_MASK;
			high_tide = 0;
			for (i = (limit - span*entries) & UDPTL_BUF_MASK;  i != limit;  i = (i + entries) & UDPTL_BUF_MASK) {
				if (high_tide < s->tx[i].buf_len) {
					for (j = 0;  j < high_tide;  j++)
						fec[j] ^= s->tx[i].buf[j];
					for (  ;  j < s->tx[i].buf_len;  j++)
						fec[j] = s->tx[i].buf[j];
					high_tide = s->tx[i].buf_len;
				} else {
					for (j = 0;  j < s->tx[i].buf_len;  j++)
						fec[j] ^= s->tx[i].buf[j];
				}
			}
			if (encode_open_type(buf, &len, fec, high_tide) < 0)
				return -1;
		}
		break;
	}

	if (s->verbose)
		fprintf(stderr, "\n");

	s->tx_seq_no++;
	return len;
}

int ast_udptl_fd(struct ast_udptl *udptl)
{
	return udptl->fd;
}

void ast_udptl_set_data(struct ast_udptl *udptl, void *data)
{
	udptl->data = data;
}

void ast_udptl_set_callback(struct ast_udptl *udptl, ast_udptl_callback callback)
{
	udptl->callback = callback;
}

void ast_udptl_setnat(struct ast_udptl *udptl, int nat)
{
	udptl->nat = nat;
}

static int udptlread(int *id, int fd, short events, void *cbdata)
{
	struct ast_udptl *udptl = cbdata;
	struct ast_frame *f;

	if ((f = ast_udptl_read(udptl))) {
		if (udptl->callback)
			udptl->callback(udptl, f, udptl->data);
	}
	return 1;
}

struct ast_frame *ast_udptl_read(struct ast_udptl *udptl)
{
	int res;
	struct sockaddr_in sin;
	socklen_t len;
	uint16_t seqno = 0;
	char iabuf[INET_ADDRSTRLEN];
	uint16_t *udptlheader;

	len = sizeof(sin);
	
	/* Cache where the header will go */
	res = recvfrom(udptl->fd,
			udptl->rawdata + AST_FRIENDLY_OFFSET,
			sizeof(udptl->rawdata) - AST_FRIENDLY_OFFSET,
			0,
			(struct sockaddr *) &sin,
			&len);
	udptlheader = (uint16_t *)(udptl->rawdata + AST_FRIENDLY_OFFSET);
	if (res < 0) {
		if (errno != EAGAIN)
			ast_log(LOG_WARNING, "UDPTL read error: %s\n", strerror(errno));
		if (errno == EBADF)
			CRASH;
	}

	/* Ignore if the other side hasn't been given an address yet. */
	if (!udptl->them.sin_addr.s_addr || !udptl->them.sin_port)

	if (udptl->nat) {
		/* Send to whoever sent to us */
		if ((udptl->them.sin_addr.s_addr != sin.sin_addr.s_addr) ||
			(udptl->them.sin_port != sin.sin_port)) {
			memcpy(&udptl->them, &sin, sizeof(udptl->them));
			ast_log(LOG_DEBUG, "UDPTL NAT: Using address %s:%d\n", ast_inet_ntoa(iabuf, sizeof(iabuf), udptl->them.sin_addr), ntohs(udptl->them.sin_port));
		}
	}

	if (udptl_debug_test_addr(&sin)) {
		ast_verbose("Got UDPTL packet from %s:%d (type %d, seq %d, len %d)\n",
			ast_inet_ntoa(iabuf, sizeof(iabuf), sin.sin_addr), ntohs(sin.sin_port), 0, seqno, res);
	}
#if 0
	printf("Got UDPTL packet from %s:%d (seq %d, len = %d)\n", ast_inet_ntoa(iabuf, sizeof(iabuf), sin.sin_addr), ntohs(sin.sin_port), seqno, res);
#endif
	udptl_rx_packet(udptl, udptl->rawdata + AST_FRIENDLY_OFFSET, res);

	return &udptl->f[0];
}

void ast_udptl_offered_from_local(struct ast_udptl* udptl, int local)
{
	if (udptl)
		udptl->udptl_offered_from_local = local;
	else
		ast_log(LOG_WARNING, "udptl structure is null\n");
}

int ast_udptl_get_error_correction_scheme(struct ast_udptl* udptl)
{
    if (udptl)
	    return udptl->error_correction_scheme;
    else {
	    ast_log(LOG_WARNING, "udptl structure is null\n");
	    return -1;
    }
}

void ast_udptl_set_error_correction_scheme(struct ast_udptl* udptl, int ec)
{
    if (udptl) {
	switch (ec) {
	    case UDPTL_ERROR_CORRECTION_FEC:
		udptl->error_correction_scheme = UDPTL_ERROR_CORRECTION_FEC;
		break;
	    case UDPTL_ERROR_CORRECTION_REDUNDANCY:
		udptl->error_correction_scheme = UDPTL_ERROR_CORRECTION_REDUNDANCY;
		break;
	    case UDPTL_ERROR_CORRECTION_NONE:
		udptl->error_correction_scheme = UDPTL_ERROR_CORRECTION_NONE;
		break;
	    default:
		ast_log(LOG_WARNING, "error correction parameter invalid");
	};
    } else
	    ast_log(LOG_WARNING, "udptl structure is null\n");
}

int ast_udptl_get_local_max_datagram(struct ast_udptl* udptl)
{
    if (udptl)
	    return udptl->local_max_datagram_size;
    else {
	    ast_log(LOG_WARNING, "udptl structure is null\n");
	    return -1;
    }
}

int ast_udptl_get_far_max_datagram(struct ast_udptl* udptl)
{
    if (udptl)
	    return udptl->far_max_datagram_size;
    else {
	    ast_log(LOG_WARNING, "udptl structure is null\n");
	    return -1;
    }
}

void ast_udptl_set_local_max_datagram(struct ast_udptl* udptl, int max_datagram)
{
    if (udptl)
	    udptl->local_max_datagram_size = max_datagram;
    else
	    ast_log(LOG_WARNING, "udptl structure is null\n");
}

void ast_udptl_set_far_max_datagram(struct ast_udptl* udptl, int max_datagram)
{
    if (udptl)
	    udptl->far_max_datagram_size = max_datagram;
    else
	    ast_log(LOG_WARNING, "udptl structure is null\n");
}

struct ast_udptl *ast_udptl_new_with_bindaddr(struct sched_context *sched, struct io_context *io, int callbackmode, struct in_addr addr)
{
	struct ast_udptl *udptl;
	int x;
	int startplace;
	int i;
	long int flags;

	if ((udptl = malloc(sizeof(struct ast_udptl))) == NULL)
		return NULL;
	memset(udptl, 0, sizeof(struct ast_udptl));

	if (udptlfectype == 2)
		udptl->error_correction_scheme = UDPTL_ERROR_CORRECTION_FEC;
	else if (udptlfectype == 1)
		udptl->error_correction_scheme = UDPTL_ERROR_CORRECTION_REDUNDANCY;
	else
		udptl->error_correction_scheme = UDPTL_ERROR_CORRECTION_NONE;
	udptl->error_correction_span = udptlfecspan;
	udptl->error_correction_entries = udptlfecentries;
	
	udptl->far_max_datagram_size = udptlmaxdatagram;
	udptl->local_max_datagram_size = udptlmaxdatagram;

	memset(&udptl->rx, 0, sizeof(udptl->rx));
	memset(&udptl->tx, 0, sizeof(udptl->tx));
	for (i = 0;  i <= UDPTL_BUF_MASK;  i++) {
		udptl->rx[i].buf_len = -1;
		udptl->tx[i].buf_len = -1;
	}

	udptl->them.sin_family = AF_INET;
	udptl->us.sin_family = AF_INET;

	if ((udptl->fd = socket(AF_INET, SOCK_DGRAM, 0)) < 0) {
		free(udptl);
		ast_log(LOG_WARNING, "Unable to allocate socket: %s\n", strerror(errno));
		return NULL;
	}
	flags = fcntl(udptl->fd, F_GETFL);
	fcntl(udptl->fd, F_SETFL, flags | O_NONBLOCK);
#ifdef SO_NO_CHECK
	if (nochecksums)
		setsockopt(udptl->fd, SOL_SOCKET, SO_NO_CHECK, &nochecksums, sizeof(nochecksums));
#endif
	/* Find us a place */
	x = (ast_random() % (udptlend - udptlstart)) + udptlstart;
	startplace = x;
	for (;;) {
		udptl->us.sin_port = htons(x);
		udptl->us.sin_addr = addr;
		if (bind(udptl->fd, (struct sockaddr *) &udptl->us, sizeof(udptl->us)) == 0)
			break;
		if (errno != EADDRINUSE) {
			ast_log(LOG_WARNING, "Unexpected bind error: %s\n", strerror(errno));
			close(udptl->fd);
			free(udptl);
			return NULL;
		}
		if (++x > udptlend)
			x = udptlstart;
		if (x == startplace) {
			ast_log(LOG_WARNING, "No UDPTL ports remaining\n");
			close(udptl->fd);
			free(udptl);
			return NULL;
		}
	}
	if (io && sched && callbackmode) {
		/* Operate this one in a callback mode */
		udptl->sched = sched;
		udptl->io = io;
		udptl->ioid = ast_io_add(udptl->io, udptl->fd, udptlread, AST_IO_IN, udptl);
	}
	return udptl;
}

struct ast_udptl *ast_udptl_new(struct sched_context *sched, struct io_context *io, int callbackmode)
{
	struct in_addr ia;
	memset(&ia, 0, sizeof(ia));
	return ast_udptl_new_with_bindaddr(sched, io, callbackmode, ia);
}

int ast_udptl_settos(struct ast_udptl *udptl, int tos)
{
	int res;

	if ((res = setsockopt(udptl->fd, IPPROTO_IP, IP_TOS, &tos, sizeof(tos)))) 
		ast_log(LOG_WARNING, "UDPTL unable to set TOS to %d\n", tos);
	return res;
}

void ast_udptl_set_peer(struct ast_udptl *udptl, struct sockaddr_in *them)
{
	udptl->them.sin_port = them->sin_port;
	udptl->them.sin_addr = them->sin_addr;
}

void ast_udptl_get_peer(struct ast_udptl *udptl, struct sockaddr_in *them)
{
	them->sin_family = AF_INET;
	them->sin_port = udptl->them.sin_port;
	them->sin_addr = udptl->them.sin_addr;
}

void ast_udptl_get_us(struct ast_udptl *udptl, struct sockaddr_in *us)
{
	memcpy(us, &udptl->us, sizeof(udptl->us));
}

void ast_udptl_stop(struct ast_udptl *udptl)
{
	memset(&udptl->them.sin_addr, 0, sizeof(udptl->them.sin_addr));
	memset(&udptl->them.sin_port, 0, sizeof(udptl->them.sin_port));
}

void ast_udptl_destroy(struct ast_udptl *udptl)
{
	if (udptl->ioid)
		ast_io_remove(udptl->io, udptl->ioid);
	if (udptl->fd > -1)
		close(udptl->fd);
	free(udptl);
}

int ast_udptl_write(struct ast_udptl *s, struct ast_frame *f)
{
	int len;
	int res;
	uint8_t buf[LOCAL_FAX_MAX_DATAGRAM];
	char iabuf[INET_ADDRSTRLEN];

	/* If we have no peer, return immediately */	
	if (s->them.sin_addr.s_addr == INADDR_ANY)
		return 0;

	/* If there is no data length, return immediately */
	if (f->datalen == 0)
		return 0;
	
	if (f->frametype != AST_FRAME_MODEM) {
		ast_log(LOG_WARNING, "UDPTL can only send T.38 data\n");
		return -1;
	}

	/* Cook up the UDPTL packet, with the relevant EC info. */
	len = udptl_build_packet(s, buf, f->data, f->datalen);

	if (len > 0  &&  s->them.sin_port && s->them.sin_addr.s_addr) {
		if ((res = sendto(s->fd, buf, len, 0, (struct sockaddr *) &s->them, sizeof(s->them))) < 0)
			ast_log(LOG_NOTICE, "UDPTL Transmission error to %s:%d: %s\n", ast_inet_ntoa(iabuf, sizeof(iabuf), s->them.sin_addr), ntohs(s->them.sin_port), strerror(errno));
#if 0
		printf("Sent %d bytes of UDPTL data to %s:%d\n", res, ast_inet_ntoa(iabuf, sizeof(iabuf), udptl->them.sin_addr), ntohs(udptl->them.sin_port));
#endif
		if (udptl_debug_test_addr(&s->them))
			ast_verbose("Sent UDPTL packet to %s:%d (type %d, seq %d, len %d)\n",
					ast_inet_ntoa(iabuf, sizeof(iabuf), s->them.sin_addr),
					ntohs(s->them.sin_port), 0, s->seqno, len);
	}
		
	return 0;
}

void ast_udptl_proto_unregister(struct ast_udptl_protocol *proto)
{
	struct ast_udptl_protocol *cur;
	struct ast_udptl_protocol *prev;

	cur = protos;
	prev = NULL;
	while(cur) {
		if (cur == proto) {
			if (prev)
				prev->next = proto->next;
			else
				protos = proto->next;
			return;
		}
		prev = cur;
		cur = cur->next;
	}
}

int ast_udptl_proto_register(struct ast_udptl_protocol *proto)
{
	struct ast_udptl_protocol *cur;

	cur = protos;
	while(cur) {
		if (cur->type == proto->type) {
			ast_log(LOG_WARNING, "Tried to register same protocol '%s' twice\n", cur->type);
			return -1;
		}
		cur = cur->next;
	}
	proto->next = protos;
	protos = proto;
	return 0;
}

static struct ast_udptl_protocol *get_proto(struct ast_channel *chan)
{
	struct ast_udptl_protocol *cur;

	cur = protos;
	while (cur) {
		if (cur->type == chan->tech->type)
			return cur;
		cur = cur->next;
	}
	return NULL;
}

int ast_udptl_bridge(struct ast_channel *c0, struct ast_channel *c1, int flags, struct ast_frame **fo, struct ast_channel **rc)
{
	struct ast_frame *f;
	struct ast_channel *who;
	struct ast_channel *cs[3];
	struct ast_udptl *p0;
	struct ast_udptl *p1;
	struct ast_udptl_protocol *pr0;
	struct ast_udptl_protocol *pr1;
	struct sockaddr_in ac0;
	struct sockaddr_in ac1;
	struct sockaddr_in t0;
	struct sockaddr_in t1;
	char iabuf[INET_ADDRSTRLEN];
	void *pvt0;
	void *pvt1;
	int to;
	
	ast_mutex_lock(&c0->lock);
	while (ast_mutex_trylock(&c1->lock)) {